Calculations of Ionization Cross-Sections of Acenes Based on Electron and Positron Impact
Abstract
1. Introduction
2. Methods
2.1. Cross Section for Ionization by Electron Impact
2.2. Cross Section for Ionization by Positron Impact
2.2.1. BEB-0 Model
2.2.2. BEB-W Model
2.2.3. BEB-A Model
2.2.4. BEB-B Model
3. Computational Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEB | binary-encounter Bethe |
BEB-0 | binary-encounter Bethe for positrons |
BEB-W | binary-encounter Bethe for positrons with Wannier-type threshold law |
BEB-A | binary-encounter Bethe for positrons with Jansen-type threshold law, version A |
BEB-B | binary-encounter Bethe for positrons with Jansen-type threshold law, version B |
B3LYP | Becke, 3-parameter, Lee–Yang–Parr exchange-correlation functional |
DFT | Density Functional Theory |
eV | electron volt |
HF | Hartree–Fock |
ISM | interstellar medium |
OVGF | Outer Valence Green Function |
PAH | polycyclic aromatic hydrocarbon |
PCM | pixel counting method |
SCOP | spherical complex optical potential |
B97X | modified Becke97 functional with long-range corrections |
B97XD | modified Becke97 functional with empirical atom–atom dispersion corrections |
References
- Köhler, A.; Bässler, H. Electronic Processes in Organic Semiconductors: An Introduction; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Obarowska, M. Badanie Mechanizmów Fotoiniekcji, Fotogeneracji i Rekombinacji Nośników ładunku w Warstwach Tetracenu i Pentacenu. Ph. D. Thesis, Gdańsk University of Technology, Gdańsk, Poland, 2005. [Google Scholar]
- Alcácer, L. Physics of Organic Electronics; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Petty, M.C. Organic and Molecular Electronics: From Principles to Practice; Wiley: Chichester, UK, 2019. [Google Scholar]
- Geoghegan, M.; Hadziioannou, G. Polymer Electronics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Anthony, J.E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028–5048. [Google Scholar] [CrossRef]
- Dryzek, J. Positron Profilometry Probing Material Depths for Enhanced Understanding, 1st ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Keeble, D.J.; Wiktor, J.; Pathak, S.K.; Phillips, L.J.; Dickmann, M.; Durose, K.; Snaith, H.J.; Egger, W. Identification of lead vacancy defects in lead halide perovskites. Nat. Com. 2021, 12, 5566. [Google Scholar] [CrossRef]
- Dapor, M. Transport of Energetic Electrons in Solids, 3rd ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Franz, M.; Franz, J. A Monte Carlo strategy to simulate positrons and positronium in biological materials. Bio-Algorithms Med-Syst. 2023, 19, 40–42. [Google Scholar] [CrossRef]
- Wiciak-Pawłowska, K.; Winiarska, A.; Taioli, S.; Dapor, M.; Franz, M.; Franz, J. The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid. Molecules 2023, 28, 1126. [Google Scholar] [CrossRef]
- Gupta, D.; Choi, H.; Singh, S.; Modak, P.; Antony, B.; Kwon, D.-C.; Song, M.-Y.; Yoon, J.-S. Total ionization cross section of cyclic organic molecules. J. Chem. Phys. 2018, 150, 064313. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gupta, D.; Antony, B.; Tudorovskaya, M.; Tennyson, J. Electron Scattering Cross Sections for Anthracene and Pyrene. J. Phys. Chem. A 2020, 124, 7088–7100. [Google Scholar] [CrossRef] [PubMed]
- Krishnadas, A.; Nidhi Sinha, N.; Kirchner, T.; Antony, B. Calculation of electron-impact ionization of various benzene derivatives. Phys. Scr. 2024, 99, 095403. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Chem. Inf. 2012, 4, 17. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 1994, 50, 3954–3967. [Google Scholar] [CrossRef]
- Hwang, W.; Kim, Y.-K.; Rudd, M.E. New model for electron-impact ionization cross sections of molecules. J. Phys. Chem. 1995, 104, 2956–2966. [Google Scholar] [CrossRef]
- Fedus, K.; Karwasz, G. Binary-encounter dipole model for positron-impact direct ionization. Phys. Rev. A 2019, 100, 062702. [Google Scholar] [CrossRef]
- Franz, M.; Wiciak-Pawlowska, K.; Franz, J. Binary-encounter model for direct ionization of molecules by positron-impact. Atoms 2021, 9, 99. [Google Scholar] [CrossRef]
- Klar, H. Threshold ionisation of atoms by positrons. J. Phys. B At. Mol. Opt. Phys. 1981, 14, 4165–4170. [Google Scholar] [CrossRef]
- Wannier, G.H. The Threshold Law for Single Ionization of Atoms or Ions by Electrons. Phys. Rev. 1953, 90, 817–825. [Google Scholar] [CrossRef]
- Rost, J.M.; Heller, E.J. Ionization of hydrogen by positron impact near the fragmentation threshold. Phys. Rev. A 1994, 49, R4289–R4292. [Google Scholar] [CrossRef]
- Ashley, P.; Moxom, J.; Laricchia, G. Near-Threshold Ionization of He and H2 by Positron Impact. Phys. Rev. Lett. 1996, 77, 1250–1253. [Google Scholar] [CrossRef]
- Ihra, W.; Macek, J.H.; Mota-Furtado, F.; O’Mahony, P.F. Threshold Law For Positron Impact Ionization of Atoms. Phys. Rev. Lett. 1997, 78, 4027–4030. [Google Scholar] [CrossRef]
- Jansen, K.; Ward, S.J.; Shertzer, J.; Macek, J.H. Absolute cross sections for positron impact ionization of hydrogen near threshold. Phys. Rev. A 2009, 79, 022704. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Raghavachari, K.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- von Niessen, W.; Schirmer, J.; Cederbaum, L.S. Computational methods for the one-particle Green’s function. Comp. Phys. Rep. 1984, 1, 57–125. [Google Scholar] [CrossRef]
- Koopmans, T. Ordering of Wave Functions and Eigenenergies to the Individual Electrons of an Atom. Physica 1933, 1, 104–113. [Google Scholar] [CrossRef]
- Clar, E.; Schmidt, W. Correlations between Photoelectron and Phosphorescence Spectra of Polycyclic Hydrocarbons. Tetrahedron 1976, 32, 2563–2566. [Google Scholar] [CrossRef]
- Schmidt, W. Photoelectron Spectra of Polynuclear Aromatics. V. Correlations with Ultraviolet Absorption Spectra in the Catacondensed Series. J. Chem. Phys. 1977, 66, 828–845. [Google Scholar] [CrossRef]
- Boschi, R.; Clar, E.; Schmidt, W. Photoelectron Spectra of Polynuclear Aromatics. III. The Effect of Nonplanarity in Sterically Overcrowded Aromatic Hydrocarbons. J. Chem. Phys. 1974, 60, 4406–4418. [Google Scholar]
- Wagner, M.S.; Peisert, H.; Chassé, T.; Hemberger, P.; Bettinger, H.F. Gas Phase Ionization Energy of Heptacene. J. Phys. Chem. Lett. 2024, 15, 2332–2336. [Google Scholar] [CrossRef]
- Deleuze, M.S.; Claes, L.; Kryachko, E.S.; Francois, J.P. Benchmark Theoretical Study of the Ionization Threshold of Benzene and Oligoacenes. J. Chem. Phys. 2003, 119, 3106–3119. [Google Scholar] [CrossRef]
- Andrzejak, M.; Petelenz, P. Vibronic relaxation energies of acene-related molecules upon excitation or ionization. Phys. Chem. Chem. Phys. 2018, 20, 14061. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 1997, 107, 8554–8560. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Rost, J.M.; Pattard, T. Analytical parametrization for the shape of atomic ionization cross sections. Phys. Rev. A 1997, 55, R5–R7. [Google Scholar] [CrossRef]
- Thomas, B.; Gupta, D. Ionization study of cyanopolyynes HCnN (n=1 - 17) by electron and positron impact. Phys. Scr. 2025, 100, 015412. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Franz, M.; Pastuszko, A.; Franz, J. Calculations of Cross-Sections for Positron Scattering on Benzene. Appl. Sci. 2025, 15, 153. [Google Scholar] [CrossRef]
- Yang, Y.; Davidson, E.R.; Yang, W. Nature of ground and electronic excited states of higher acenes. Proc. Natl. Acad. Sci. USA 2016, 113, E5098–E5107. [Google Scholar] [CrossRef]
- Bettinger, H.F.; Tönshoff, C.; Doerr, M.; Sanchez-Garcia, E. Electronically Excited States of Higher Acenes up to Nonacene: A Density Functional Theory / Multireference Configuration Interaction Study. J. Chem. Theory Comput. 2016, 12, 305–312. [Google Scholar] [CrossRef]
- Mahla, S.; Antony, B. Positron scattering from structurally related biomolecules. RSC Adv. 2024, 14, 1397–1406. [Google Scholar] [CrossRef]
- Boersma, C.; Bauschlicher, C.W., Jr.; Ricca, A.; Mattioda, A.L.; Peeters, E.; Tielens, A.G.G.M.; Allamandola, L.J. Polycyclic aromatic hydrocarbon far-infrared spectroscopy. Astrophys. J. 2011, 729, 64. [Google Scholar] [CrossRef]
- Omont, A.; Bettinger, H.F.; Tönshoff, C. Polyacenes and diffuse interstellar bands. Astron. Astrophys. 2019, 625, A41. [Google Scholar] [CrossRef]
Molecule | exp | EOM | OVGF | exp | EOM | OVGF |
---|---|---|---|---|---|---|
naphthalene | 8.15 a | 8.10 d | 7.96 | 8.88 a | 8.76 c | 8.64 |
anthracene | 7.41 b | 7.35 d | 7.19 | 8.57 a | 8.48 c | 8.37 |
tetracene | 6.97 b | 6.82 d | 6.65 | 8.44 a | 8.29 c | 8.19 |
pentacene | 6.61 b | 6.45 d | 6.27 | 8.03 a | 8.01 c | 7.69 |
hexacene | 6.44 c | 6.17 d | 5.98 | 7.55 a | 7.57 c | 7.37 |
Molecule | ||
---|---|---|
naphthalene | 69.6 | 23.2 |
anthracene | 69.0 | 32.3 |
tetracene | 68.8 | 41.2 |
pentacene | 68.4 | 50.5 |
hexacene | 68.5 | 58.3 |
BEB-0 | BEB-W | BEB-A | BEB-B | |||||
---|---|---|---|---|---|---|---|---|
Molecule | ||||||||
naphthalene | 57.7 | 28.0 | 62.4 | 27.4 | 71.4 | 25.8 | 69.6 | 25.6 |
anthracene | 57.3 | 39.0 | 61.9 | 38.1 | 70.9 | 35.9 | 69.0 | 35.6 |
tetracene | 57.1 | 49.8 | 61.8 | 48.6 | 70.7 | 45.8 | 68.8 | 45.4 |
pentacene | 56.8 | 60.9 | 61.5 | 59.5 | 70.4 | 56.1 | 68.4 | 55.6 |
hexacene | 56.8 | 70.3 | 61.6 | 68.6 | 70.5 | 64.8 | 68.6 | 64.2 |
Molecule | Model | / | D/ |
---|---|---|---|
electrons | BEB | 5.77 ± 0.59 | 8.85 ± 0.14 |
positrons | BEB-0 | 7.00 ± 0.73 | 10.65 ± 0.17 |
BEB-W | 6.84 ± 0.72 | 10.39 ± 0.17 | |
BEB-A | 6.41 ± 0.66 | 9.82 ± 0.15 | |
BEB-B | 6.34 ± 0.66 | 9.73 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baksalary, D.; Franz, M.; Franz, J. Calculations of Ionization Cross-Sections of Acenes Based on Electron and Positron Impact. Appl. Sci. 2025, 15, 9562. https://doi.org/10.3390/app15179562
Baksalary D, Franz M, Franz J. Calculations of Ionization Cross-Sections of Acenes Based on Electron and Positron Impact. Applied Sciences. 2025; 15(17):9562. https://doi.org/10.3390/app15179562
Chicago/Turabian StyleBaksalary, Damian, Małgorzata Franz, and Jan Franz. 2025. "Calculations of Ionization Cross-Sections of Acenes Based on Electron and Positron Impact" Applied Sciences 15, no. 17: 9562. https://doi.org/10.3390/app15179562
APA StyleBaksalary, D., Franz, M., & Franz, J. (2025). Calculations of Ionization Cross-Sections of Acenes Based on Electron and Positron Impact. Applied Sciences, 15(17), 9562. https://doi.org/10.3390/app15179562