Antagonist Static Stretching Between Sets Improves Leg Press Repetition Performance in Adolescent Female Volleyball Players: A Randomized Crossover Within-Subject Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Implementation of Experimental Protocols
2.4. Anthropometry
2.5. Ten Repetition Maximum (10RM) Test
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Ziv, G.; Lidor, R. Vertical Jump in Female and Male Volleyball Players: A Review of Observational and Experimental Studies. Scand. J. Med. Sci. Sports 2010, 20, 556–567. [Google Scholar] [CrossRef]
- Ho, I.M.K.; Luk, J.T.C.; Ngo, J.K.; Wong, D.P. Effects of Different Intraset Rest Durations on Lifting Performance and Self-Perceived Exertion During Bench Press Exercise. J. Strength Cond. Res. 2021, 35, 2114–2120. [Google Scholar] [CrossRef]
- Senna, G.W.; Willardson, J.M.; Scudese, E.; Simão, R.; Queiroz, C.; Avelar, R.; Dantas, E.H.M. Effect of Different Interset Rest Intervals on Performance of Single and Multijoint Exercises with Near-Maximal Loads. J. Strength Cond. Res. 2016, 30, 710–716. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Skrepnik, M.; Davies, T.B.; Mikulic, P. Effects of Rest Interval Duration in Resistance Training on Measures of Muscular Strength: A Systematic Review. Sports Med. 2018, 48, 137–151. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Henselmans, M.; Schoenfeld, B.J. The Effect of Inter-Set Rest Intervals on Resistance Exercise-Induced Muscle Hypertrophy. Sports Med. 2014, 44, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Miranda, H.; de Freitas Maia, M.; Paz, G.A.; Costa, P.B. Acute Effects of Antagonist Static Stretching in the Inter-Set Rest Period on Repetition Performance and Muscle Activation. Res. Sports Med. 2015, 23, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Simão, R.; de Salles, B.F.; Figueiredo, T.; Dias, I.; Willardson, J.M. Exercise Order in Resistance Training. Sports Med. 2012, 42, 251–265. [Google Scholar] [CrossRef]
- Sharman, M.J.; Cresswell, A.G.; Riek, S. Proprioceptive Neuromuscular Facilitation Stretching: Mechanisms and Clinical Implications. Sports Med. 2006, 36, 929–939. [Google Scholar] [CrossRef]
- Pessoa, D.; Penfold, H.; Pegado, S.; Gonçalves, M.; Brandão, J.; Willardson, J.; Miranda, H. Effect of Static Stretching on Agonists, Antagonists, and Agonist-Antagonist Combination on Total Training Volume. Int. J. Exerc. Sci. 2023, 16, 665–675. [Google Scholar] [CrossRef]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute Effects of Muscle Stretching on Physical Performance, Range of Motion, and Injury Incidence in Healthy Active Individuals: A Systematic Review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.R.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth Resistance Training: Updated Position Statement Paper from the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23 (Suppl. 5), S60–S79. [Google Scholar] [CrossRef]
- Behm, D.G.; Chaouachi, A. A Review of the Acute Effects of Static and Dynamic Stretching on Performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Zwierko, M.; Jedziniak, W.; Popowczak, M.; Rokita, A. Effects of a 6-Week Stroboscopic Training Program on Specific Blocking Reaction Speed in Young Volleyball Players. Phys. Act. Rev. 2024, 12, 1–10. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29 (Suppl. 1), S17–S27. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.D.; Blazevich, A.J. Effect of Acute Static Stretch on Maximal Muscle Performance: A Systematic Review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef]
- Shrier, I.; McHugh, M. Does Static Stretching Reduce Maximal Muscle Performance? A Review. Clin. J. Sport Med. 2012, 22, 450–451. [Google Scholar] [CrossRef]
- Konrad, A.; Nakamura, M.; Paternoster, F.K.; Tilp, M.; Behm, D.G. A Comparison of a Single Bout of Stretching or Foam Rolling on Range of Motion in Healthy Adults. Eur. J. Appl. Physiol. 2022, 122, 1545–1557. [Google Scholar] [CrossRef]
- Konrad, A.; Tilp, M. Increased Range of Motion after Static Stretching Is Not Due to Changes in Muscle and Tendon Structures. Clin. Biomech. 2014, 29, 636–642. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Papadopoulou, S.K.; Papadopoulou, S.D. Nutritional Status of Top Team Sport Athletes According to Body Fat. Nutr. Food Sci. 2010, 40, 64–73. [Google Scholar] [CrossRef]
- Gordon, C.C.; Churchill, T.; Clauser, C.E.; Bradtmiller, B.; McConville, J.T.; Tebbetts, I.; Walker, R.A. 1988 Anthropometric Survey of U.S. Army Personnel; Summary Statistics Interim Report; Army Natick RD&E Center: Natick, MA, USA, 1989. [Google Scholar]
- Baechle, T.R.; Earle, R.W. (Eds.) Essentials of Strength Training and Conditioning, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2008; p. 641. [Google Scholar]
- Shimano, T.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Hatfield, D.L.; Silvestre, R.; Vingren, J.L.; Fragala, M.S.; Maresh, C.M.; Fleck, S.J.; et al. Relationship Between the Number of Repetitions and Selected Percentages of One Repetition Maximum in Free Weight Exercises in Trained and Untrained Men. J. Strength Cond. Res. 2006, 20, 819–823. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Metsios, G.S.; Flouris, A.D.; Koutedakis, Y.; Wyon, M.A. The Relevance of Stretch Intensity and Position—A Systematic Review. Front. Psychol. 2015, 6, 1128. [Google Scholar] [CrossRef]
- Aguilar, A.J.; DiStefano, L.J.; Brown, C.N.; Herman, D.C.; Guskiewicz, K.M.; Padua, D.A. A Dynamic Warm-Up Model Increases Quadriceps Strength and Hamstring Flexibility. J. Strength Cond. Res. 2012, 26, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziem, A.A.; Draz, A.H.; Mosaad, D.M.; Abdelraou, O.R. Effect of Body Position and Type of Stretching on Hamstring Flexibility. Int. J. Med. Res. Health Sci. 2013, 2, 399–406. [Google Scholar] [CrossRef]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Reproducibility and Criterion-Related Validity of the Sit and Reach Test and Toe Touch Test for Estimating Hamstring Flexibility in Recreationally Active Young Adults. Phys. Ther. Sport 2012, 13, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Cannavan, D.; Waugh, C.M.; Miller, S.C.; Thorlund, J.B.; Aagaard, P.; Kay, A.D. Range of Motion, Neurochemical, and Architectural Adaptations to Plantar Flexor Stretch Training in Humans. J. Appl. Physiol. 2014, 117, 452–462. [Google Scholar] [CrossRef]
- Opplert, J.; Babault, N. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature. Sports Med. 2018, 48, 299–325. [Google Scholar] [CrossRef]
- Tammam, A.H.; Hashem, E.M. Individual and Combined Effects of PNF Stretching and Plyometric Training on Muscular Power and Flexibility for Volleyball Players. Amazon. Investig. 2020, 9, 73–81. [Google Scholar] [CrossRef]
- Donti, O.; Panidis, I.; Terzis, G.; Bogdanis, G.C. Gastrocnemius Medialis Architectural Properties at Rest and During Stretching in Female Athletes with Different Flexibility Training Background. Sports 2019, 7, 39. [Google Scholar] [CrossRef]
- Avedesian, J.M.; Judge, L.W.; Wang, H.; Dickin, D.C. Kinetic Analysis of Unilateral Landings in Female Volleyball Players after a Dynamic and Combined Dynamic-Static Warm-Up. J. Strength Cond. Res. 2019, 33, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Coons, J.M.; Gould, C.E.; Kim, J.W.A.; Farley, R.S.; Caputo, J.L. Dynamic Stretching Is Effective as Static Stretching at Increasing Flexibility. J. Hum. Sport Exerc. 2017, 12, 1153–1161. [Google Scholar] [CrossRef]
- Horta, T.; Lima, P.; Matta, G.; Freitas, J.; Miloski, B.; Vianna, J.; Toledo, H.; Miranda, R.; Timoteo, T.; Filho, M. Training Load Impact on Recovery Status in Professional Volleyball Athletes. Rev. Bras. Med. Esporte 2020, 26, 158–161. [Google Scholar] [CrossRef]
- Amasay, T. Static Block Jump Techniques in Volleyball: Upright versus Squat Starting Positions. J. Strength Cond. Res. 2008, 22, 1242–1248. [Google Scholar] [CrossRef]
- Drikos, S.; Kountouris, P.; Laios, A.; Laios, Y. Correlates of Team Performance in Volleyball. Int. J. Perform. Anal. Sport 2009, 9, 149–156. [Google Scholar] [CrossRef]
- de Camargo, J.B.B.; Brigatto, F.A.; Germano, M.D.; da Conceição, R.M.; Teixeira, I.; Duarte, R.G.; Fellet, L.; Braz, T.V.; Prestes, J.; Marchetti, P.H.; et al. Acute Effects of Inter-Set Stretching on Performance and Metabolic Parameters of Resistance-Trained Men. Int. J. Exerc. Sci. 2022, 15, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Inoue, H.; Fujiwara, M.; Shimizu, T.; Nagai, C.; Mizuno, K.; Nakamura, M. Effects of Static Stretching and Walking During Inter-Set Intervals of Resistance Training on Muscle Fatigue of the Quadriceps. Front. Sports Act. Living 2025, 6, 1483972. [Google Scholar] [CrossRef]
- Nakamura, M.; Ikezu, H.; Sato, S.; Yahata, K.; Kiyono, R.; Yoshida, R.; Takeuchi, K.; Nunes, J.P. Effects of Adding Inter-Set Static Stretching to Flywheel Resistance Training on Flexibility, Muscular Strength, and Regional Hypertrophy in Young Men. Int. J. Environ. Res. Public Health 2021, 18, 3770. [Google Scholar] [CrossRef] [PubMed]
Variable | N | Mean | Std. Dev. |
---|---|---|---|
Age (years) | 16 | 15.50 | 0.52 |
Height (cm) | 16 | 167.25 | 6.10 |
Body Mass (kg) | 16 | 57.00 | 5.98 |
BMI (kg/m2) | 16 | 20.38 | 2.60 |
10 RM (kg) | 16 | 111.56 | 15.35 |
Group | Protocol | Group × Protocol | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group | Set | Mean ± SD | F | p | ηp2 | F | p | ηp2 | F | p | ηp2 |
Control | Set 1 | 10.63 ± 0.96 | 17.313 | 0.001 | 0.536 | 10.817 | 0.000 | 0.419 | 4.198 | 0.016 | 0.219 |
Set 2 | 11.69 ± 1.14 | ||||||||||
Set 3 | 11.13 ± 0.72 | ||||||||||
Set 4 | 11.00 ± 0.73 | ||||||||||
Experimental | Set 1 | 10.75 ± 1.00 | |||||||||
Set 2 | 12.19 ± 1.17 | ||||||||||
Set 3 | 12.50 ± 1.10 | ||||||||||
Set 4 | 12.56 ± 1.26 |
Control (Mean ± SD) | Experimental (Mean ± SD) | Difference | Significance | |
---|---|---|---|---|
Set 1 | 10.63 ± 0.96 | 10.75 ± 1.00 | 0.12 | p > 0.05 |
Set 2 | 11.69 ± 1.14 | 12.19 ± 1.17 | 0.50 | p > 0.05 |
Set 3 | 11.13 ± 0.72 | 12.50 ± 1.10 a | 1.37 | p < 0.05 |
Set 4 | 11.00 ± 0.73 | 12.56 ± 1.26 a | 1.56 | p < 0.05 |
Total | 11.11 ± 0.12 | 12.00 ± 0.16 b | 0.89 | p < 0.05 |
Comparison | MD | SD | t | df | Sig. (2-Tailed) |
---|---|---|---|---|---|
Control Set 1–Experimental Set 1 | −0.13 | 1.41 | −0.355 | 15 | 0.728 |
Control Set 2–Experimental Set 2 | −0.50 | 1.79 | −1.118 | 15 | 0.281 |
Control Set 3–Experimental Set 3 | −1.38 | 1.26 | −4.371 | 15 | 0.001 |
Control Set 4–Experimental Set 4 | −1.56 | 1.26 | −4.948 | 15 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdemir, M.T.; Pancar, Z.; İlhan, M.T.; Darendeli, M.K.; Karaca, B.; Taşdoğan, A.M.; Migliaccio, G.M.; Russo, L. Antagonist Static Stretching Between Sets Improves Leg Press Repetition Performance in Adolescent Female Volleyball Players: A Randomized Crossover Within-Subject Design. Appl. Sci. 2025, 15, 9933. https://doi.org/10.3390/app15189933
Özdemir MT, Pancar Z, İlhan MT, Darendeli MK, Karaca B, Taşdoğan AM, Migliaccio GM, Russo L. Antagonist Static Stretching Between Sets Improves Leg Press Repetition Performance in Adolescent Female Volleyball Players: A Randomized Crossover Within-Subject Design. Applied Sciences. 2025; 15(18):9933. https://doi.org/10.3390/app15189933
Chicago/Turabian StyleÖzdemir, Mehmet Tahir, Zarife Pancar, Muhammet Taha İlhan, Muhammed Kaan Darendeli, Burak Karaca, Ali Muhittin Taşdoğan, Gian Mario Migliaccio, and Luca Russo. 2025. "Antagonist Static Stretching Between Sets Improves Leg Press Repetition Performance in Adolescent Female Volleyball Players: A Randomized Crossover Within-Subject Design" Applied Sciences 15, no. 18: 9933. https://doi.org/10.3390/app15189933
APA StyleÖzdemir, M. T., Pancar, Z., İlhan, M. T., Darendeli, M. K., Karaca, B., Taşdoğan, A. M., Migliaccio, G. M., & Russo, L. (2025). Antagonist Static Stretching Between Sets Improves Leg Press Repetition Performance in Adolescent Female Volleyball Players: A Randomized Crossover Within-Subject Design. Applied Sciences, 15(18), 9933. https://doi.org/10.3390/app15189933