Polyamine Content of Enteral Nutrition Formulas: Effect of Daily Intake on the Feeding Tolerance of Patients During the First Week in the Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of the Polyamine Content of Commercial EN Formulas via HPLC
2.2. Characteristics of the EN Formulas
2.3. Chemicals
2.4. Study Design, Patient Population, and Clinical Data
2.5. Statistical Analyses
3. Results
3.1. Polyamine Content of the EN Formulas
3.2. Patients and Daily Polyamine Intake via EN Formulas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. Bmj 2018, 361, k2392. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Elfadil, O.; Velapati, S.R.; Patel, J.; Hurt, R.T.; Mundi, M.S. Enteral Nutrition Therapy: Historical Perspective, Utilization, and Complications. Curr. Gastroenterol. Rep. 2024, 26, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Wischmeyer, P.E.; Klek, S.; Berger, M.M.; Berlana, D.; Gray, B.; Ybarra, J.; Ayers, P. Parenteral nutrition in clinical practice: International challenges and strategies. Am. J. Health Syst. Pharm. 2024, 81, S89–S101. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Zhang, Y.H.; Zhang, W. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. Biomed. Res. Int. 2018, 2018, 2819154. [Google Scholar] [CrossRef] [PubMed]
- Demehri, F.R.; Barrett, M.; Ralls, M.W.; Miyasaka, E.A.; Feng, Y.; Teitelbaum, D.H. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front. Cell. Infect. Microbiol. 2013, 3, 105. [Google Scholar] [CrossRef]
- Doyle, D.J.; Hendrix, J.M.; Garmon, E.H. American Society of Anesthesiologists Classification. [Updated 17 August 2023]; In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441940/ (accessed on 3 December 2024).
- Yang, H.; Hou, L.; Sun, H.M.; Ye, S.H. Comparison of micronutrients in adult enteral formulas widely used in clinical practice. Food Sci. Nutr. 2023, 11, 6096–6105. [Google Scholar] [CrossRef] [PubMed]
- Cantabrana, B.; Peña-Iglesias, P.; Castro-Estrada, P.; Suárez, L.; Bordallo, J.; Barreiro-Alonso, E.; Sánchez, M. Dietary intake of polyamines in a Spanish adult population: Age-dependent correlation with Healthy Eating Index and Dietary Inflammatory Index scores. Nutrition 2024, 130, 112608. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, X.; Cai, L.; Zhao, X.; Dai, Z.; Wu, G.; Li, X. Putrescine mitigates intestinal atrophy through suppressing inflammatory response in weanling piglets. J. Anim. Sci. Biotechnol. 2019, 10, 69. [Google Scholar] [CrossRef]
- Minetti, A.; Omrani, O.; Brenner, C.; Allies, G.; Imada, S.; Rösler, J.; Khawaled, S.; Cansiz, F.; Meckelmann, S.W.; Gebert, N.; et al. Polyamines sustain epithelial regeneration in aged intestines by modulating protein homeostasis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Bardócz, S.; Grant, G.; Brown, D.S.; Pusztai, A. Putrescine as a source of instant energy in the small intestine of the rat. Gut 1998, 42, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Tofalo, R.; Cocchi, S.; Suzzi, G. Polyamines and Gut Microbiota. Front. Nutr. 2019, 6, 16. [Google Scholar] [CrossRef]
- Hesterberg, R.S.; Cleveland, J.L.; Epling-Burnette, P.K. Role of Polyamines in Immune Cell Functions. Med. Sci. 2018, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Suárez, L.; Andrés, M.T.; Flórez, B.H.; Bordallo, J.; Riestra, S.; Cantabrana, B. Modulatory effect of intestinal polyamines and trace amines on the spontaneous phasic contractions of the isolated ileum and colon rings of mice. Food Nutr. Res. 2017, 61, 1321948. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Sim, J.H.; Kim, Y.H.; Kwon, S.C.; Lee, S.J.; Kim, S.R.; Kim, D.W.; Park, S.M.; Youn, S.J.; Lee, S.J.; et al. Effects of polyamines on contractility of guinea-pig gastric smooth muscle. J. Korean Med. Sci. 2007, 22, 48–56. [Google Scholar] [CrossRef] [PubMed]
- ter Steege, J.C.; Buurman, W.A.; Forget, P.P. Spermine induces maturation of the immature intestinal immune system in neonatal mice. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 332–340. [Google Scholar] [CrossRef]
- van Wettere, W.H.; Willson, N.L.; Pain, S.J.; Forder, R.E. Effect of oral polyamine supplementation pre-weaning on piglet growth and intestinal characteristics. Animal 2016, 10, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Schibalski, R.S.; Shulha, A.S.; Tsao, B.P.; Palygin, O.; Ilatovskaya, D.V. The role of polyamine metabolism in cellular function and physiology. American journal of physiology. Cell Physiol. 2024, 327, C341–C356. [Google Scholar] [CrossRef] [PubMed]
- Xuan, M.; Gu, X.; Li, J.; Huang, D.; Xue, C.; He, Y. Polyamines: Their significance for maintaining health and contributing to diseases. Cell Commun. Signal. 2023, 21, 348. [Google Scholar] [CrossRef] [PubMed]
- Soda, K.; Dobashi, Y.; Kano, Y.; Tsujinaka, S.; Konishi, F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp. Gerontol. 2009, 44, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Baek, Y.; Lee, S. Dietary polyamine intake lowers the risk of all-cause and cardiovascular disease-related mortality: Follow-up of the Korean National health and nutrition Examination survey 2007–2015. J. Funct. Foods 2024, 119, 106268. [Google Scholar] [CrossRef]
- Soda, K.; Kano, Y.; Chiba, F. Food polyamine and cardiovascular disease--an epidemiological study. Glob. J. Health Sci. 2012, 4, 170–178. [Google Scholar] [CrossRef]
- Madeo, F.; Hofer, S.J.; Pendl, T.; Bauer, M.A.; Eisenberg, T.; Carmona-Gutierrez, D.; Kroemer, G. Nutritional Aspects of Spermidine. Annu. Rev. Nutr. 2020, 40, 135–159. [Google Scholar] [CrossRef] [PubMed]
- Ralph, A.; Englyst, K.; Bardocz, S. Polyamine content of the human diet. In Polyamines in Health and Nutrition; Bardócz, S., White, A., Eds.; Kluwer Academic Publishers: London, UK, 1999. [Google Scholar]
- Atiya Ali, M.; Poortvliet, E.; Strömberg, R.; Yngve, A. Polyamines in foods: Development of a food database. Food Nutr. Res. 2011, 55, 5572. [Google Scholar] [CrossRef] [PubMed]
- Zoumas-Morse, C.; Rock, C.L.; Quintana, E.L.; Neuhouser, M.L.; Gerner, E.W.; Meyskens, F.L., Jr. Development of a polyamine database for assessing dietary intake. J. Am. Diet. Assoc. 2007, 107, 1024–1027. [Google Scholar] [CrossRef]
- Nishibori, N.; Fujihara, S.; Akatuki, T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007, 100, 491–497. [Google Scholar] [CrossRef]
- Buyukuslu, N.; Hizli, H.; Esin, K.; Garipagaoglu, M. A Cross-Sectional Study: Nutritional Polyamines in Frequently Consumed Foods of the Turkish Population. Foods 2014, 3, 541–557. [Google Scholar] [CrossRef]
- Atiya Ali, M.; Poortvliet, E.; Strömberg, R.; Yngve, A. Polyamines: Total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (SNO). Food Nutr. Res. 2011, 55, 5455. [Google Scholar] [CrossRef]
- Martín-Vicente, P.; López-Martínez, C.; Rioseras, B.; Albaiceta, G.M. Activation of senescence in critically ill patients: Mechanisms, consequences and therapeutic opportunities. Ann. Intensive Care 2024, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Lu, X.; Li, Y.; Xu, Y.; Zhou, Y.; Mao, H. Metabolism of Polyamines and Kidney Disease: A Promising Therapeutic Target. Kidney Dis. 2023, 9, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, N.; Zeng, Y. Protective effects of spermidine levels against cardiovascular risk factors: An exploration of causality based on a bi-directional Mendelian randomization analysis. Nutrition 2024, 127, 112549. [Google Scholar] [CrossRef] [PubMed]
- Yarova, P.; Al-Zadjali, R.B.A.; Scott, J.; Josiah, E.; Turnbull, E.; Ebbern, C.E.; Telezhkin, V.S.; Rostron, A.; Riccardi, D.; Simpson, A.J. Polyamines as regulators of pulmonary inflammation. Eur. Respir. J. 2024, 64, PA5327. [Google Scholar] [CrossRef]
- Luo, J.; Kim, Y.J.; An, X.; Fan, L.; Erb, C.; Lou, D.; Yao, Y.; Ferguson, A.A.; Pan, Y.; Chen, K. Spermidine dampens inflammation by directly inhibiting Th17 cytokine production through a PRDX1 associated antioxidant pathway. bioRxiv 2021. [Google Scholar] [CrossRef]
- Baek, A.R.; Hong, J.; Song, K.S.; Jang, A.S.; Kim, D.J.; Chin, S.S.; Park, S.W. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp. Mol. Med. 2020, 52, 2034–2045. [Google Scholar] [CrossRef] [PubMed]
- Chia, T.Y.; Zolp, A.; Miska, J. Polyamine Immunometabolism: Central Regulators of Inflammation, Cancer and Autoimmunity. Cells 2022, 11, 896. [Google Scholar] [CrossRef]
- Arthur, R.; Jamwal, S.; Kumar, P. A review on polyamines as promising next-generation neuroprotective and anti-aging therapy. Eur. J. Pharmacol. 2024, 978, 176804. [Google Scholar] [CrossRef]
- Del Rio, B.; Fernandez, M.; Redruello, B.; Ladero, V.; Alvarez, M.A. New insights into the toxicological effects of dietary biogenic amines. Food Chem. 2024, 435, 137558. [Google Scholar] [CrossRef]
- Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 2019, 9, 1300. [Google Scholar] [CrossRef]
- Teng, Y.; Mu, J.; Xu, F.; Zhang, X.; Sriwastva, M.K.; Liu, Q.M.; Li, X.; Lei, C.; Sundaram, K.; Hu, X.; et al. Gut bacterial isoamylamine promotes age-related cognitive dysfunction by promoting microglial cell death. Cell Host Microbe 2022, 30, 944–960.e948. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, V.I.; Apryatina, V.A.; Gainetdinov, R.R.; Apryatin, S.A. Trace Amine-Associated Receptors’ Role in Immune System Functions. Biomedicines 2024, 12, 893. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.D.; Gainetdinov, R.R.; Hoener, M.C.; Shahid, M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol. Ther. 2017, 180, 161–180. [Google Scholar] [CrossRef]
- Escribano, M.I.; Legaz, M.E. High performance liquid chromatography of the dansyl derivatives of putrescine, spermidine, and spermine. Plant Physiol. 1988, 87, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, N.; Teratani, T.; Yokota, S.; Sakuma, Y.; Sasanuma, H.; Fujimoto, Y.; Ijichi, T.; Urahashi, T.; Yoshitomi, H.; Kitayama, J.; et al. Dietary polyamines promote intestinal adaptation in an experimental model of short bowel syndrome. Sci. Rep. 2024, 14, 4605. [Google Scholar] [CrossRef]
- Tan, B.; Xiao, D.; Wang, J.; Tan, B. The Roles of Polyamines in Intestinal Development and Function in Piglets. Animals 2024, 14, 1228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, D.; Wang, X.; Jiang, Y.; Sun, Q.; Ling, W.; An, X.; Ji, C.; Li, S.; Qi, Y.; et al. Spermidine improves the antioxidant capacity and morphology of intestinal tissues and regulates intestinal microorganisms in Sichuan white geese. Front. Microbiol. 2023, 14, 1292984. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.N.; Xiao, L.; Wang, J.Y. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology 2020, 35, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Chamoto, K.; Zhang, B.; Tajima, M.; Honjo, T.; Fagarasan, S. Spermidine-an old molecule with a new age-defying immune function. Trends Cell Biol. 2024, 34, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, C.; Zhai, Q. Gut Microbes Participate in Host Polyamine Metabolism. Proc. Natl. Acad. Sci. USA 2024, 121, e2419368121. [Google Scholar] [CrossRef]
Formula Type | Name | Kcal Per 100 mL | Manufacturer a |
---|---|---|---|
Complete, polymeric | |||
Hyperproteic and hypercaloric | Fresubin Thickened | 150 | Fresenius Kabi |
Isosource Protein Fibre | 133 | Nestlé Health Science | |
Novasource GI Protein | 117.4 | Nestlé Health Science | |
Osmolite Plus | 121 | Abbott | |
Normoproteic and hypercaloric | Nutrison Energy | 150 | Nutricia |
Nutrison Energy Multi Fibre | 153 | Nutricia | |
Normoproteic and normocaloric | Fresubin Original Fibre | 100 | Fresenius Kabi |
Nutrison | 100 | Nutricia | |
Osmolite | 101 | Abbott | |
Hyperproteic and normocaloric | Impact Enteral | 144 | Nestlé Health Science |
Complete, special | |||
Hyperproteic and hypercaloric | Impact | 144 | Nestlé Health Science |
Nepro HP | 180 | Abbott | |
Nutrison Advanced Diason | 150 | Nutricia | |
Energy HP | |||
Normoproteic and hypercaloric | Nutricomp Hepa | 132 | B Braun Sharing Expertise |
Oxepa | 152 | Abbott | |
Hypoproteic and hypercaloric | Nepro LP | 180 | Abbott |
EN Formulas (n) | Putrescine | Spermidine | Spermine | N-Acetyl Putrescine | N-Acetyl Spermidine | N-Acetyl Spermine | Total Polyamines |
---|---|---|---|---|---|---|---|
Fresubin Original Fibre (8) | 1.87(0.2) | 11.46(0.66) | 2.55(0.17) | 42.39(3.72) | 0.58(0.05) | 0.28(0.04) | 15.88(0.95) |
Fresubin Thickened (1) | 2.73 | 1.37 | 0.52 | 176.69 | 3.76 | 0.67 | 4.62 |
Impact (4) | 5.81(0.4) | 12.48(1.27) | 10.82(0.99) | 20.81(0.58) | 1.45(0.3) | 1.47(0.33) | 29.1(2.48) ǂ |
Impact Enteral (1) | 10.67 | 18.24 | 12.78 | 29.74 | 3.75 | 2.62 | 41.69 |
Isosource Protein Fibre (6) | 5.88(1.04) | 10.04(1.72) | 1.52(0.27) | 22.71(9.99) | 0.66(0.07) | 0.2(0.02) | 17.43(2.58) |
Nepro HP (2) | 4.91(1.26) | 2.24(0.63) | 0.55(0.26) | 53.45(7.08) | 1.27(0.73) | 0.14(0.11) | 7.7(2.15) |
Nepro LP (5) | 1.58(0.43) | 1.05(0.2) | 0.4(0.1) | 29.74(0.9) | 1.79(0.93) | 0.08(0.01) | 3.05(0.54) |
Novasource GI Protein (3) | 1.18(0.28) | 0.81(0.22) | 0.14(0.09) | 21.2(5.73) | 0.48(0.32) | 0.02 | 2.13(0.56) |
Nutricomp Hepa (9) | 3.28(1.21) | 1.09(0.27) | 0.55(0.24) | 307.99(177.85) | 6.93(1.22) | 0.32(0.17) | 4.92(1.46) |
Nutrison (5) | 5.13(0.87) | 15.99(3.89) | 1.8(0.41) | 177.59(64.52) | 1.63(0.91) | 0.26(0.12) | 22.92(5.02) ǂ |
Nutrison Advanced Diason Energy HP (10) | 5.75(0.74) | 21.42(1.36) | 3.2(0.21) | 35.15(3.43) | 1.49(0.13) | 0.54(0.07) | 30.37(1.98) ǂ |
Nutrison Energy (1) | 11.13 | 13.91 | 1.16 | 287.73 | 1.25 | 0.18 | 26.19 |
Nutrison Energy Multifibre (3) | 10.8(0.86) | 18.69(2.26) | 2.12(0.4) | 311.19(6.73) | 1.12(0.16) | 0.29(0.04) | 31.61(2.2) ǂ |
Osmolite (1) | 1.7 | 1.2 | 0.16 | 19.82 | 0.39 | 0.22 | 3.06 |
Osmolite Plus (3) | 1.96(0.03) | 1.25(0.08) | 0.17(0.01) | 19.43(0.96) | 0.38(0.02) | 0.09(0.01) | 3.38(0.11) |
Oxepa (2) | 1.5(0.05) | 3.06(0.41) | 0.3(0.04) | 24.41(0.78) | 0.75(0.05) | 0.26(0.07) | 4.86(0.4) |
EN Formulas (n) | Cadaverine | Tyramine | β-Phenyl- Ethylamine | Isoamylamine |
---|---|---|---|---|
Fresubin Original Fibre (8) | 1.21(0.1) *** | 0.97(0.08) | 0.26(0.03) *** | 7.78(2.94) |
Fresubin Thickened (1) | 1.66 | 4.01 | 0 | 8.43 |
Impact (4) (Nestle Health Science) | 1.32(0.1) * | 1.59(0.08) | 0.55(0.02) *** | 1.71(0.25) |
Impact Enteral (1) | 2.88 | 3.03 | 0.54 | 7.26 |
Isosource Protein Fibre (6) | 1.4(0.32) * | 2.25(0.5) | 0.34(0.03) *** | 5.22(1.43) |
Nepro HP (2) | 1.72(0.67) | 4(0.41) | 1.42(0.48) | 14.27(7.14) |
Nepro LP (5) | 0.58(0.19) ***,ɸɸ | 2.57(1.74) | 1.57(0.77) *** | 6.04(1.06) |
Novasource GI Protein (3) | 0.6(0.14) ***,ɸ | 0.78(0.26) | 0.05 | 4.32(0.31) |
Nutricomp Hepa (9) | 1.62(0.35) * | 2.44(0.51) | 6.87(1.01) *** | 63.33(29.49) |
Nutrison (5) | 0.81(0.18) ***,ɸ | 1.82(0.39) | 0.6(0.33) *** | 7.08(1.36) |
Nutrison Advanced Diason Energy HP (10) | 2.67(0.22) | 1.5(0.15) | 0.65(0.09) *** | 5.23(1.12) |
Nutrison Energy (1) | 1.04 | 3.47 | 0.34 | 8 |
Nutrison Energy Multifibre (3) | 2.47(0.13) | 1.32(0.21) | 0.56(0.08) *** | 4.13(1.98) |
Osmolite (1) | 0.62 | 0.71 | 0.46 | 2.32 |
Osmolite Plus (3) | 0.68(0.02) | 0.79(0.07) | 0.39(0.01) *** | 2.07(0.62) |
Oxepa (2) | 0.53(0.05) | 0.71 | 0.6(0.07) | 1.42(0.08) |
Biogenic Amines | Daily Intake via EN (Standard Error) (µmol) | Range of Daily Intake via EN (µmol) |
---|---|---|
Putrescine | 4.04 (1.01) | 0.21–14.06 |
Spermidine | 11.53 (3.42) | 0.07–32.39 |
Spermine | 1.62 (0.49) | 0.03–4.84 |
Total Polyamines | 17.18 (4.79) | 0.31–45.92 |
N-Acetyl putrescine | 81.59 (27.35) | 3.87–405.17 |
N-Acetyl spermidine | 1.26 (0.14) | 0.16–2.36 |
N-Acetyl spermine | 0.27 (0.08) | 0.01–0.82 |
Cadaverine | 1.47 (0.38) | 0.1–4.04 |
Tyramine | 1.11 (0.16) | 0.15–2.56 |
β-Phenyletylamine | 0.73 (0.18) | 0.02–2.34 |
Isoamylamine | 7.05 (1.49) | 0.58–21.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.; Rodríguez-Hernández, E.; Suárez, L.; Cantabrana, B.; González-García, M. Polyamine Content of Enteral Nutrition Formulas: Effect of Daily Intake on the Feeding Tolerance of Patients During the First Week in the Intensive Care Unit. Appl. Sci. 2025, 15, 659. https://doi.org/10.3390/app15020659
Sánchez M, Rodríguez-Hernández E, Suárez L, Cantabrana B, González-García M. Polyamine Content of Enteral Nutrition Formulas: Effect of Daily Intake on the Feeding Tolerance of Patients During the First Week in the Intensive Care Unit. Applied Sciences. 2025; 15(2):659. https://doi.org/10.3390/app15020659
Chicago/Turabian StyleSánchez, Manuel, Eva Rodríguez-Hernández, Lorena Suárez, Begoña Cantabrana, and María González-García. 2025. "Polyamine Content of Enteral Nutrition Formulas: Effect of Daily Intake on the Feeding Tolerance of Patients During the First Week in the Intensive Care Unit" Applied Sciences 15, no. 2: 659. https://doi.org/10.3390/app15020659
APA StyleSánchez, M., Rodríguez-Hernández, E., Suárez, L., Cantabrana, B., & González-García, M. (2025). Polyamine Content of Enteral Nutrition Formulas: Effect of Daily Intake on the Feeding Tolerance of Patients During the First Week in the Intensive Care Unit. Applied Sciences, 15(2), 659. https://doi.org/10.3390/app15020659