A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. 1RM Back Squat and Familiarization
2.4. Traditional and Accentuated Eccentric Loading Testing Sessions
2.5. Data Analyses
2.6. Statistical Analyses
3. Results
Condition × Load Interaction Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isner-Horobeti, M.-E.; Dufour, S.P.; Vautravers, P.; Geny, B.; Coudeyre, E.; Richard, R. Eccentric exercise training: Modalities, applications and perspectives. Sports Med. 2013, 43, 483–512. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M.R. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Handford, M.J.; Bright, T.E.; Mundy, P.; Lake, J.P.; Theis, N.; Hughes, J.D. The need for eccentric speed: A narrative review of the effects of accelerated eccentric actions during resistance-based training. Sports Med. 2022, 52, 2061–2083. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 2: Practical recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Handford, M.J.; Bright, T.E.; Mundy, P.; Lake, J.; Theis, N.; Hughes, J.D. A conceptual framework of different eccentric training methods. Strength. Cond. J. 2024, 46, 148–158. [Google Scholar] [CrossRef]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated eccentric loading for training and performance: A review. Sports Med. 2017, 47, 2473–2495. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R.U. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int. J. Sports Sci. Coach. 2008, 3, 355–363. [Google Scholar] [CrossRef]
- Sheppard, J.; Newton, R.U.; McGuigan, M.R. The effect of accentuated eccentric load on jump kinetics in high-performance volleyball players. Int. J. Sports Sci. Coach. 2007, 2, 267–273. [Google Scholar] [CrossRef]
- Bright, T.E.; Harry, J.R.; Lake, J.; Mundy, P.; Theis, N.; Hughes, J.D. Methodological considerations in assessing countermovement jumps with handheld accentuated eccentric loading. Sports. Biomech. 2024. [Google Scholar] [CrossRef]
- Taber, C.B.; Butler, C.; Dabek, V.; Kochan, B.; McCormick, K.; Petro, E.; Suchomel, T.J.; Merrigan, J. The effects of accentuated eccentric loading on barbell and trap bar countermovement jumps. Int. J. Strength. Cond. 2023, 3, 1–15. [Google Scholar] [CrossRef]
- Wagle, J.P.; Cunanan, A.J.; Carroll, K.M.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stuart, C.A. Accentuated eccentric loading and cluster set configurations in the back squat: A kinetic and kinematic analysis. J. Strength. Cond. Res. 2021, 35, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.P.; Taber, C.B.; Carroll, K.M.; Cunanan, A.J.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; DeWeese, B.H.; Sato, K.; Stuart, C.A. Repetition-to-repetition differences using cluster and accentuated eccentric loading in the back squat. Sports 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Cantwell, C.J.; Campbell, B.A.; Schroeder, Z.S.; Marshall, L.K.; Taber, C.B. Braking and propulsion phase characteristics of traditional and accentuated eccentric loaded back squats. J. Hum. Kinet. 2024, 91, 121–133. [Google Scholar] [CrossRef]
- Lates, A.D.; Greer, B.K.; Wagle, J.P.; Taber, C.B. Accentuated eccentric loading and cluster set configurations in the bench press. J. Strength. Cond. Res. 2022, 36, 1485–1489. [Google Scholar] [CrossRef]
- Taber, C.B.; Morris, J.R.; Wagle, J.P.; Merrigan, J.J. Accentuated eccentric loading in the bench press: Considerations for eccentric and concentric loading. Sports 2021, 9, 54. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Tufano, J.J.; Falzone, M.; Jones, M.T. Effectiveness of accentuated eccentric loading: Contingent on concentric load. Int. J. Sports Physiol. Perform. 2020, 16, 66–72. [Google Scholar] [CrossRef]
- Castro, A.H.; Zangakis, D.; Moir, G.L. The effects of accentuated eccentric loading on mechanical variables and agonist electromyography during the bench press. Sports 2020, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, E.L.; Larsen, S.; van den Tillaar, R. The acute effect of accentuated eccentric overloading upon the kinematics and myoelectric activity in the eccentric and concentric phase of a traditional bench press. Sports 2021, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Kwan, K. The effects of augmented eccentric loading upon kinematics and muscle activation in bench press performance. J. Funct. Morphol. Kinesiol. 2020, 5, 8. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J. Strength. Cond. Res. 2018, 32, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Blazevich, A.J.; Haff, G.G.; Tufano, J.J.; Newton, R.U.; Häkkinen, K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front. Physiol. 2016, 7, 149. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Docherty, D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J. Strength. Cond. Res. 2002, 16, 25–32. [Google Scholar]
- Yarrow, J.F.; Borsa, P.A.; Borst, S.E.; Sitren, H.S.; Stevens, B.R.; White, L.J. Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. J. Strength. Cond. Res. 2008, 22, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Munger, C.N.; Jones, B.C.; Halloran, I.J.; Eggleston, G.G.; Post, P.G.; Brown, L.E.; Berning, J.M. Short-term effects of eccentric overload versus traditional back squat training on strength and power. Int. J. Kinesiol. Sports Sci. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Huang, K.; Huang, H.; Zhang, Y.; Yuan, X. Effects of inertial flywheel training vs. Accentuated eccentric loading training on strength, power, and speed in well-trained male college sprinters. Life 2024, 14, 1081. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Martín-Rivera, F.; Nosaka, K.; Beato, M.; González-Gallego, J.; de Paz, J.A. Effects of submaximal and supramaximal accentuated eccentric loading on mass and function. Front. Physiol. 2023, 14, 1176835. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S. Exercise and sport science failing by design in understanding female athletes. Int. J. Sports Physiol. Perform. 2019, 14, 1157–1158. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2014. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 31 December 2024).
- Merrigan, J.J.; Tufano, J.J.; Jones, M.T. Potentiating effects of accentuated eccentric loading are dependent upon relative strength. J. Strength. Cond. Res. 2021, 35, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; de Villarreal, E.S.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength. Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef]
- Case, M.J.; Knudson, D.V.; Downey, D.L. Barbell squat relative strength as an identifier for lower extremity injury in collegiate athletes. J. Strength. Cond. Res. 2020, 34, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Harden, M.; Wolf, A.; Evans, M.; Hicks, K.M.; Thomas, K.; Howatson, G. Four weeks of augmented eccentric loading using a novel leg press device improved leg strength in well-trained athletes and professional sprint track cyclists. PLoS ONE 2020, 15, e0236663. [Google Scholar] [CrossRef] [PubMed]
Variable | ICC (95% CI) | |||
---|---|---|---|---|
50% | 60% | 70% | 80% | |
BMF (N/kg) | 0.94 (0.85–0.98) | 0.88 (0.71–0.96) | 0.95 (0.95–0.87) | 0.93 (0.83–0.97) |
BDur (s) | 0.93 (0.82–0.97) | 0.92 (0.81–0.97) | 0.95 0.90–0.98) | 0.92 (0.81–0.97) |
BImp (Ns) | 0.84 (0.61–0.94) | 0.87 (0.68–0.95) | 0.93 (0.84–0.98) | 0.83 (0.59–0.94) |
PMF (N/kg) | 0.97 (0.93–0.99) | 0.94 (0.85–0.98) | 0.94 (0.85–0.98) | 0.89 (0.74–0.96) |
PDur (s) | 0.93 (0.84–0.98) | 0.95 (0.87–0.98) | 0.96 (0.90–0.99) | 0.87 (0.69–0.95) |
PImp (Ns) | 0.91 (0.78–0.97) | 0.91 (0.80–0.97) | 0.93 (0.84–0.98) | 0.76 (0.44–0.91) |
MBV (m/s) | 0.94 (0.85–0.98) | 0.87 (0.67–0.95) | 0.97 (0.93–0.99) | 0.79 (0.50–0.93) |
PBV (m/s) | 0.96 (0.91–0.99) | 0.96 (0.89–0.99) | 0.94 (0.84–0.98) | 0.91 (0.77–0.97) |
Condition | BMF (N/kg) | g (95% CI) | BDur (s) | g (95% CI) | BImp (Ns) | g (95% CI) |
---|---|---|---|---|---|---|
50% 1RM a,b,c | ||||||
TRAD | 4.3 ± 1.1 | - | 0.46 ± 0.10 | - | 130.2 ± 15.9 | - |
AEL-MAX | 5.3 ± 1.2 | 0.78 (0.02–1.55) | 0.50 ± 0.10 | 0.38 (−0.37–1.12) | 180.6 ± 20.5 * | 2.67 (1.65–3.69) |
AEL-SUPRA | 5.7 ± 1.4 * | 1.03 (0.24–1.81) | 0.50 ± 0.10 | 0.40 (−0.35–1.14) | 195.7 ± 22.6 * | 3.25 (2.13–4.38) |
60% 1RM a,b | ||||||
TRAD | 3.9 ± 1.1 | - | 0.51 ± 0.09 | - | 131.6 ± 14.4 | - |
AEL-MAX | 4.9 ± 1.1 | 0.92 (0.14–1.70) | 0.54 ± 0.09 | 0.35 (−0.40–1.10) | 184.9 ± 21.4 * | 2.84 (1.79–3.89) |
AEL-SUPRA | 5.2 ± 1.1 * | 1.11 (0.32–1.91) | 0.52 ± 0.07 | 0.14 (−0.61–0.88) | 187.3 ± 18.3 * | 3.27 (2.14–4.41) |
70% 1RM a | ||||||
TRAD | 3.8 ± 1.2 | - | 0.54 ± 0.12 | - | 134.7 ± 20.2 | - |
AEL-MAX | 4.4 ± 1.2 | 0.49 (−0.26–1.24) | 0.58 ± 0.09 | 0.39 (−0.36–1.14) | 172.4 ± 18.3 * | 1.90 (1.01–2.80) |
AEL-SUPRA | 4.7 ± 1.0 | 0.78 (0.01–1.54) | 0.56 ± 0.07 | 0.28 (−0.46–1.03) | 183.9 ± 13.0 * | 2.82 (1.77–3.86) |
80% 1RM | ||||||
TRAD | 3.1 ± 1.1 | - | 0.64 ± 0.16 | - | 130.9 ± 17.7 | - |
AEL-MAX | 3.7 ± 1.0 | 0.48 (−0.27–1.23) | 0.64 ± 0.09 | −0.01 (−0.75–0.73) | 159.1 ± 24.9 * | 1.27 (0.46–2.08) |
AEL-SUPRA | 3.9 ± 0.9 | 0.71 (−0.05–1.47) | 0.64 ± 0.10 | −0.02 (−0.76–0.72) | 167.5 ± 18.0 * | 1.99 (1.08–2.90) |
Condition | PMF (N/kg) | g (95% CI) | PDur (s) | g (95% CI) | PImp (Ns) | g (95% CI) |
---|---|---|---|---|---|---|
50% 1RM a,b,c | ||||||
TRAD | 3.9 ± 0.7 | - | 0.57 ± 0.07 | - | 150.6 ± 23.5 | - |
AEL-MAX | 3.7 ± 0.6 | −0.18 (−0.92–0.57) | 0.60 ± 0.06 | 0.53 (−0.23–1.28) | 155.6 ± 27.4 | 0.19 (−0.55–0.93) |
AEL-SUPRA | 3.8 ± 0.6 | −0.13 (−0.87–0.61) | 0.63 ± 0.08 | 0.81 (0.04–1.58) | 163.0 ± 23.0 | 0.52 (−0.23–1.27) |
60% 1RM a,b | ||||||
TRAD | 3.4 ± 0.4 | - | 0.66 ± 0.08 | - | 157.2 ± 18.1 | - |
AEL-MAX | 3.4 ± 0.5 | −0.10 (−0.66–0.82) | 0.69 ± 0.09 | 0.36 (−0.39–1.10) | 162.0 ± 21.5 | 0.23 (−0.51–0.98) |
AEL-SUPRA | 3.5 ± 0.6 | 0.08 (−0.66–0.82) | 0.71 ± 0.09 | 0.57 (−0.18–1.33) | 171.1 ± 24.4 | 0.63 (−0.13–1.39) |
70% 1RM a | ||||||
TRAD | 3.1 ± 0.4 | - | 0.81 ± 0.09 | - | 172.4 ± 21.3 | - |
AEL-MAX | 2.9 ± 0.4 | −0.45 (−1.21–0.30) | 0.88 ± 0.14 | 0.57 (−0.19–1.32) | 176.0 ± 29.0 | 0.14 (−0.61–0.88) |
AEL-SUPRA | 3.1 ± 0.4 | −0.09 (−0.83–0.65) | 0.84 ± 0.11 | 0.32 (−0.42–1.07) | 177.6 ± 24.6 | 0.22 (−0.52–0.96) |
80% 1RM | ||||||
TRAD | 2.5 ± 0.4 | - | 1.06 ± 0.16 | - | 179.5 ± 17.8 | - |
AEL-MAX | 2.3 ± 0.3 | −0.56 (−1.32–0.19) | 1.16 ± 0.17 | 0.60 (−0.16–1.35 | 182.7 ± 20.2 | 0.16 (−0.58–0.91) |
AEL-SUPRA | 2.4 ± 0.5 | −0.28 (−1.03–0.46) | 1.17 ± 0.26 | 0.51 (−0.25–1.26) | 187.9 ± 25.6 | 0.37 (−0.38–1.12) |
Condition | MBV (m/s) | g (95% CI) | PBV (m/s) | g (95% CI) |
---|---|---|---|---|
50% 1RM a,b,c | ||||
TRAD | 0.80 ± 0.07 | - | 1.27 ± 0.14 | - |
AEL-MAX | 0.78 ± 0.07 | −0.18 (−0.93–0.56) | 1.25 ± 0.14 | −0.22 (−0.97–0.52) |
AEL-SUPRA | 0.77 ± 0.07 | −0.17 (−0.91–0.58) | 1.24 ± 0.15 | −0.07 (−0.81–0.67) |
60% 1RM a,b | ||||
TRAD | 0.70 ± 0.07 | - | 1.18 ± 0.12 | - |
AEL-MAX | 0.69 ± 0.07 | −0.16 (−0.90–0.58) | 1.18 ± 0.12 | 0.01 (−0.73–0.75) |
AEL-SUPRA | 0.70 ± 0.07 | 0.07 (−0.67–0.82) | 1.17 ± 0.13 | −0.08 (−0.82–0.66) |
70% 1RM a | ||||
TRAD | 0.62 ± 0.07 | - | 1.12 ± 0.11 | - |
AEL-MAX | 0.59 ± 0.08 | 0.05 (−0.69–0.79) | 1.09 ± 0.14 | −0.26 (−1.00–0.48) |
AEL-SUPRA | 0.61 ± 0.06 | 0.19 (−0.55–0.93) | 1.10 ± 0.13 | −0.12 (−0.86–0.62) |
80% 1RM | ||||
TRAD | 0.49 ± 0.06 | - | 1.02 ± 0.12 | - |
AEL-MAX | 0.47 ± 0.07 | −0.11 (−0.85–0.63) | 0.99 ± 0.12 | −0.19 (−0.93–0.55) |
AEL-SUPRA | 0.47 ± 0.08 | 0.19 (−0.56–0.93) | 1.00 ± 0.11 | −0.14 (−0.88–0.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, B.A.; Cantwell, C.J.; Marshall-Ciochon, L.K.; Schroeder, Z.S.; Sundh, A.E.; Chard, J.B.; Taber, C.B.; Suchomel, T.J. A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women. Appl. Sci. 2025, 15, 661. https://doi.org/10.3390/app15020661
Campbell BA, Cantwell CJ, Marshall-Ciochon LK, Schroeder ZS, Sundh AE, Chard JB, Taber CB, Suchomel TJ. A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women. Applied Sciences. 2025; 15(2):661. https://doi.org/10.3390/app15020661
Chicago/Turabian StyleCampbell, Brookelyn A., Conor J. Cantwell, Lauren K. Marshall-Ciochon, Zachary S. Schroeder, Adam E. Sundh, Jack B. Chard, Christopher B. Taber, and Timothy J. Suchomel. 2025. "A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women" Applied Sciences 15, no. 2: 661. https://doi.org/10.3390/app15020661
APA StyleCampbell, B. A., Cantwell, C. J., Marshall-Ciochon, L. K., Schroeder, Z. S., Sundh, A. E., Chard, J. B., Taber, C. B., & Suchomel, T. J. (2025). A Comparison of the Braking and Propulsion Phase Characteristics of Traditional and Accentuated Eccentric Loaded Back Squats in Resistance-Trained Women. Applied Sciences, 15(2), 661. https://doi.org/10.3390/app15020661