Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, J.M.; Raju, B.C.; Hung, H.-Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa Gen. Nov., Sp. Nov: Gram-Negative, Xylem-Limited, Fastidious Plant Bacteria Related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- Cavalieri, V.; Fasanelli, E.; Gibin, D.; Gutierrez Linares, A.; La Notte, P.; Pasinato, L.; Delbianco, A. Update of the Xylella spp. Host Plant Database—Systematic Literature Search up to 31 December 2023. EFSA J. 2024, 22, e8898. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.L.; Purcell, A.H. Acquisition and Retention of Xylella fastidiosa by an Efficient Vector, Graphocephala atropunctata. Phytopathology 1995, 85, 209–212. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Transmission of Xylella fastidiosa to Grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J. Econ. Entomol. 2003, 96, 264–271. Available online: https://academic.oup.com/jee/article/96/2/264/2217700 (accessed on 29 September 2024). [CrossRef] [PubMed]
- Teviotdale, B.L.; Connell, J.H. UC Agriculture & Natural Resources Almond Leaf Scorch; University of California: Parlier, CA, USA, 2003; ANR Pubblication. [Google Scholar] [CrossRef]
- Sanborn, R.R.; Mircetich, S.M.; Nyland, G.; Moller, W.J. “Golden Death” a new leaf scorch threat to almond growers. Calif. Agric. 1974, 28, 4–5. [Google Scholar]
- Sisterson, M.S.; Chen, J.; Viveros, M.A.; Civerolo, E.L.; Ledbetter, C.; Groves, R.L. Effects of Almond Leaf Scorch Disease on Almond Yield: Implications for Management. Plant Dis. 2008, 92, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Sisterson, M.S.; Ledbetter, C.A.; Chen, J.; Higbee, B.S.; Groves, R.L.; Daane, K.M. Management of Almond Leaf Scorch Disease: Long-Term Data on Yield, Tree Vitality, and Disease Progress. Plant Dis. 2012, 96, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Olmo, D.; Nieto, A.; Adrover, F.; Urbano, A.; Beidas, O.; Juan, A.; Marco-Noales, E.; López, M.M.; Navarro, I.; Monterde, A.; et al. First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtifolia Plants, in Mallorca Island, Spain. Plant Dis. 2017, 101, 1820. [Google Scholar] [CrossRef]
- Landa, B.B.; Velasco-Amo, M.P.; Marco-Noales, E.; Olmo, D.; López, M.M.; Navarro, I.; Monterde, A.; Barbé, S.; Montes-Borrego, M.; Román-Écija, M.; et al. Draft Genome Sequence of Xylella fastidiosa subsp. Fastidiosa Strain IVIA5235, Isolated from Prunus Avium in Mallorca Island, Spain. Microbiol. Resour. Announc. 2018, 7, e01222-18. [Google Scholar] [CrossRef]
- Moralejo, E.; Gomila, M.; Montesinos, M.; Borràs, D.; Pascual, A.; Nieto, A.; Adrover, F.; Gost, P.A.; Seguí, G.; Busquets, A.; et al. Phylogenetic Inference Enables Reconstruction of a Long-Overlooked Outbreak of Almond Leaf Scorch Disease (Xylella fastidiosa) in Europe. Commun. Biol. 2020, 3, 560. [Google Scholar] [CrossRef]
- Olmo, D.; Nieto, A.; Borràs, D.; Montesinos, M.; Adrover, F.; Pascual, A.; Gost, P.A.; Quetglas, B.; Urbano, A.; de Dios García, J.; et al. Landscape Epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy 2021, 11, 473. [Google Scholar] [CrossRef]
- Baró, A.; Montesinos, L.; Badosa, E.; Montesinos, E. Aggressiveness of Spanish Isolates of Xylella fastidiosa to Almond Plants of Different Cultivars Under Greenhouse Conditions. Phytopathology 2021, 111, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Romero, À.; Moralejo, E.; Matías, M.A. A Compartmental Model for Xylella fastidiosa Diseases with Explicit Vector Seasonal Dynamics. Phytopathology 2023, 113, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Quetglas, B.; Olmo, D.; Nieto, A.; Borràs, D.; Adrover, F.; Pedrosa, A.; Montesinos, M.; de Dios García, J.; López, M.; Juan, A.; et al. Evaluation of Control Strategies for Xylella fastidiosa in the Balearic Islands. Microorganisms 2022, 10, 2393. [Google Scholar] [CrossRef] [PubMed]
- Krugner, R.; Ledbetter, C.A. Rootstock Effects on Almond Leaf Scorch Disease Incidence and Severity. Plant Dis. 2016, 100, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- PM 7/24 (5) Xylella fastidiosa. EPPO Bull. 2023, 53, 205–276. [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- De Boer, S.H.; López, M.M. New Grower-Friendly Methods for Plant Pathogen Monitoring. Annu. Rev. Phytopathol. 2012, 50, 197–218. [Google Scholar] [CrossRef]
- Donoso, A.; Valenzuela, S. In-Field Molecular Diagnosis of Plant Pathogens: Recent Trends and Future Perspectives. Plant Pathol. 2018, 67, 1451–1461. [Google Scholar] [CrossRef]
- Baldi, P.; La Porta, N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. Front. Plant Sci. 2020, 11, 570862. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.; Aprile, A.; De Bellis, L.; Luvisi, A. Diseases Caused by Xylella fastidiosa in Prunus Genus: An Overview of the Research on an Increasingly Widespread Pathogen. Front. Plant Sci. 2021, 12, 712452. [Google Scholar] [CrossRef] [PubMed]
- Schaad, N.W.; Opgenorth, D.; Gaush, P. Real-Time Polymerase Chain Reaction for One-Hour On-Site Diagnosis of Pierce’s Disease of Grape in Early Season Asymptomatic Vines. Phytopathology 2002, 92, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Amoia, S.S.; Loconsole, G.; Ligorio, A.; Pantazis, A.K.; Papadakis, G.; Gizeli, E.; Minafra, A. A Colorimetric LAMP Detection of Xylella fastidiosa in Crude Alkaline Sap of Olive Trees in Apulia as a Field-Based Tool for Disease Containment. Agriculture 2023, 13, 448. [Google Scholar] [CrossRef]
- Papadakis, G.; Pantazis, A.K.; Fikas, N.; Chatziioannidou, S.; Tsiakalou, V.; Michaelidou, K.; Pogka, V.; Megariti, M.; Vardaki, M.; Giarentis, K.; et al. Portable Real-Time Colorimetric LAMP-Device for Rapid Quantitative Detection of Nucleic Acids in Crude Samples. Sci. Rep. 2022, 12, 3775. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef]
- Giampetruzzi, A.; Velasco-Amo, M.P.; Marco-Noales, E.; Montes-Borrego, M.; Román-Écija, M.; Navarro, I.; Monterde, A.; Barbé, S.; Almeida, R.P.P.; Saldarelli, P.; et al. Draft Genome Resources of Two Strains (“ESVL” and “IVIA5901”) of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in Alicante, Spain. Phytopathology 2019, 109, 219–221. [Google Scholar] [CrossRef]
- Marco-Noales, E.; Barbe, S.; Monterde, A.; Navarro-Herrero, I.; Ferrer, A.; Dalmau, V.; Aure, C.M.; Domingo-Calap, M.L.; Landa, B.B.; Rosello, M. Evidence That Xylella fastidiosa Is the Causal Agent of Almond Leaf Scorch Disease in Alicante, Mainland Spain (Iberian Peninsula). Plant Dis. 2021, 105, 3349–3352. [Google Scholar] [CrossRef]
- D’Attoma, G.; Morelli, M.; Saldarelli, P.; Saponari, M.; Giampetruzzi, A.; Boscia, D.; Savino, V.N.; De La Fuente, L.; Cobine, P.A. Ionomic Differences between Susceptible and Resistant Olive Cultivars Infected by Xylella fastidiosa in the Outbreak Area of Salento, Italy. Pathogens 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- PM 7/76 (5) Use of EPPO Diagnostic Standards. EPPO Bull. 2018, 48, 373–377. [CrossRef]
- Amoia, S.S.; Minafra, A.; Ligorio, A.; Cavalieri, V.; Boscia, D.; Saponari, M.; Loconsole, G. Detection of Xylella fastidiosa in Host Plants and Insect Vectors by Droplet Digital PCR. Agriculture 2023, 13, 716. [Google Scholar] [CrossRef]
- Park, J.W. Principles and Applications of Loop-Mediated Isothermal Amplification to Point-of-Care Tests. Biosensors 2022, 12, 857. [Google Scholar] [CrossRef]
- Aglietti, C.; Luchi, N.; Pepori, A.L.; Bartolini, P.; Pecori, F.; Raio, A.; Capretti, P.; Santini, A. Real-Time Loop-Mediated Isothermal Amplification: An Early-Warning Tool for Quarantine Plant Pathogen Detection. AMB Express 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Luchi, N.; Migliorini, D.; Pecori, F.; Santini, A. Real-Time Portable LAMP Assay for a Rapid Detection of Xylella fastidiosa In-Field. In Plant-Pathogen Interactions; Springer: New York, NY, USA, 2023; pp. 51–60. [Google Scholar]
- Yaseen, T.; Drago, S.; Valentini, F.; Elbeaino, T.; Stampone, G.; Digiaro, M.; D’Onghia, A.M. On-Site Detection of Xylella fastidiosa in Host Plants and in “Spy Insects” Using the Real-Time Loop-Mediated Isothermal Amplification Method. Phytopathol. Mediterr. 2015, 54, 488–496. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.; Kim, G. Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods. Res. Plant Dis. 2021, 27, 38–44. [Google Scholar] [CrossRef]
- Waliullah, S.; Di Genova, D.; Oliver, J.E.; Ali, M.E. Development of a CAPS Marker and a LAMP Assay for Rapid Detection of Xylella fastidiosa Subsp. Multiplex and Differentiation from X. fastidiosa Subsp. Fastidiosa on BlueBerry. Int. J. Mol. Sci. 2022, 23, 1937. [Google Scholar] [CrossRef] [PubMed]
- Kogovšek, P.; Hodgetts, J.; Hall, J.; Prezelj, N.; Nikolić, P.; Mehle, N.; Lenarčič, R.; Rotter, A.; Dickinson, M.; Boonham, N.; et al. LAMP Assay and Rapid Sample Preparation Method for On-Site Detection of Flavescence Dorée Phytoplasma in Grapevine. Plant Pathol. 2015, 64, 286–296. [Google Scholar] [CrossRef]
- Kogovšek, P.; Mehle, N.; Pugelj, A.; Jakomin, T.; Schroers, H.J.; Ravnikar, M.; Dermastia, M. Rapid Loop-Mediated Isothermal Amplification Assays for Grapevine Yellows Phytoplasmas on Crude Leaf-Vein Homogenate Has the Same Performance as QPCR. Eur. J. Plant Pathol. 2017, 148, 75–84. [Google Scholar] [CrossRef]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in Olive in Apulia: Where We Stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, G.; Zicca, S.; Manco, L.; El Hatib, O.; Altamura, G.; Potere, O.; Elicio, V.; Valentini, F.; Boscia, D.; Saponari, M. Diagnostic Procedures to Detect Xylella fastidiosa in Nursery Stocks and Consignments of Plants for Planting. Agriculture 2021, 11, 922. [Google Scholar] [CrossRef]
Sample No. | Average Cq Values | cLAMP Result |
---|---|---|
1 | 20.43 | + |
2 | 24.71 | + |
3 | 24.27 | + |
4 | 24.64 | + |
5 | 25.74 | + |
6 | 25.96 | + |
7 | 25.65 | + |
8 | 25.89 | + |
9 | 26.49 | + |
10 | 26.30 | − |
11 | 26.89 | − |
12 | 26.54 | + |
13 | 26.03 | + |
14 | 26.33 | − |
15 | 26.58 | + |
16 | 26.44 | − |
17 | 26.80 | + |
18 | 27.14 | − |
19 | 27.20 | + |
20 | 27.21 | + |
21 | 27.16 | − |
22 | 27.49 | − |
23 | 28.53 | + |
24 | 28.97 | − |
25 | 28.99 | − |
26 | 28.14 | − |
27 | 29.62 | − |
28 | 29.44 | − |
29 | 29.90 | − |
30 | 29.96 | + |
31 | 29.18 | − |
32 | 30.17 | + |
33 | 30.30 | − |
34 | 31.39 | − |
35 | 31.88 | − |
36 | 32.99 | − |
37 | 32.07 | − |
38 | 32.01 | − |
39 | 32.01 | − |
40 | 32.62 | + |
41 | 32.60 | − |
42 | 33.87 | − |
43 | 33.75 | − |
44 | 34.13 | − |
45 | 35.92 | − |
46 | 35.83 | − |
47 | N/A | − |
48 | N/A | − |
49 | N/A | − |
50 | N/A | − |
51 | N/A | + |
52 | N/A | − |
53 | N/A | − |
qPCR Value | cLAMP Positives/Nr Analyzed Plants (Per Cq Value) | Diagnostic Sensitivity % | Diagnostic Specificity % |
---|---|---|---|
18–24 | 4/4 | 100 | / |
25 | 4/4 | 100 | / |
26 | 5/9 | 55.55 | / |
27 | 2/5 | 40 | / |
28 | 1/4 | 25 | / |
29 | 1/5 | 20 | / |
30–33 | 2/10 | 20 | / |
33.01-NA | 1/12 | 92.30 | |
Total | 20/53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serena, A.S.; Falcón-Piñeiro, A.; Pastar, M.; Garcìa-Madero, J.M.; Contaldo, N.; Muegge, M.; Compant, S.; Saldarelli, P.; Minafra, A. Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Appl. Sci. 2025, 15, 739. https://doi.org/10.3390/app15020739
Serena AS, Falcón-Piñeiro A, Pastar M, Garcìa-Madero JM, Contaldo N, Muegge M, Compant S, Saldarelli P, Minafra A. Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Applied Sciences. 2025; 15(2):739. https://doi.org/10.3390/app15020739
Chicago/Turabian StyleSerena, Amoia Serafina, Ana Falcón-Piñeiro, Milica Pastar, José Manuel Garcìa-Madero, Nicoletta Contaldo, Mikael Muegge, Stéphane Compant, Pasquale Saldarelli, and Angelantonio Minafra. 2025. "Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP" Applied Sciences 15, no. 2: 739. https://doi.org/10.3390/app15020739
APA StyleSerena, A. S., Falcón-Piñeiro, A., Pastar, M., Garcìa-Madero, J. M., Contaldo, N., Muegge, M., Compant, S., Saldarelli, P., & Minafra, A. (2025). Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP. Applied Sciences, 15(2), 739. https://doi.org/10.3390/app15020739