Acute Effects of a Simulated Karate Bout on Muscular Strength Asymmetries of the Lower Limbs in Elite Athletes of Different Age Categories
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Study Participants
2.3. Procedures
2.4. Isometric Mid-Thigh Pull Test
2.5. Simulated WKF Karate Bout
2.6. Assessment of Lower Limb Dominancy
2.7. Treadmill Walk
2.8. Statistical Analyses
3. Results
3.1. Dominant Lower Limb
3.2. Non-Dominant Lower Limb
3.3. Inter-Limb Asymmetry
4. Discussion
Limitations
5. Conclusions
- The results of our study indicate that elite kumite athletes, regardless of the age category, tend to have inter-limb strength asymmetries in the lower extremities; however, the impact of a simulated kumite bout was not fully confirmed.
- A kumite bout seems to have a favorable impact on bilateral strength asymmetries in the lower limbs in U16 and U18 athletes but not in Seniors, who simultaneously seem to be at increased risk of injury after completing the bout (asymmetry > 15%).
- Limb dominancy is not necessarily related to greater values of the PVF, as other factors such as tactical strategy, an athlete’s habitual fighting position, or the kick-to-punch ratio can also impact the IMTP test results.
- A short-lasting sport-specific physical effort (a single kumite bout) can lead to relevant changes in inter-limb strength asymmetries, which may indicate an early onset of adaptation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumate, J.M.; Falcous, M. Grappling with judo: Reflections on the complexities of embodied ethnography. Qual. Res. Sport Exerc. Health 2017, 9, 200–213. [Google Scholar] [CrossRef]
- Miarka, B.; Aedo-Munoz, E.; Vanenzuela Perez, D.I.; Guimaraes Teixeira, F.; Brito, C.J. Ending an MMA combat bout: Specific striking techniques which determine the type of outcome. J. Martial Arts Anthrop. 2020, 20, 9–17. [Google Scholar]
- Gaweł, E.; Zwierzchowska, A. The Acute and Long-Term Effects of Olympic Karate Kata Training on Structural and Functional Changes in the Body Posture of Polish National Team Athletes. Sports 2024, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, L.; Taborri, J.; Montecchiani, M.; Rossi, S. Assessing the Effects of Kata and Kumite Techniques on Physical Performance in Elite Karatekas. Sensors 2020, 20, 3186. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, E.; Coetzee, F.F.; Schall, R.; Van Rensburg, C.J. Time-motion analysis of simulated elite Karate kumite matches. Afr. J. Phys. Act. Health Sci. 2016, 22, 1080–1093. [Google Scholar]
- Alinaghipour, M.; Zareian, E.; Pooraghaei Ardakani, Z. The scoring techniques in the final competitions of the Karate World Championships 2016. Ann. Appl. Sport Sci. 2020, 8, e760. [Google Scholar]
- Venkatraman, J.; Nasiriavanaki, M. Biomechanics of kumite style gyaku tsuki in karate. Biomed. J. Sci. Technol. Res. 2019, 14, 10656–10662. [Google Scholar]
- Junior, N.K.M. Velocity of the offensive technique of the karate for the mixed martial arts fighter: A systematic review. Rev. Obs. Deporte 2015, 1, 29–62. [Google Scholar]
- Mudrić, R.; Ranković, V. Analysis of hand techniques in karate. Sport Sci. Pract. 2016, 6, 47–74. [Google Scholar]
- Izzo, R.; Febo, M.; Cruciani, A.; Cejudo, A.; Crudelini, E. Analysis of peak linear accelerations expressed in the technical gesture of gyaku-zuki in Karate/Kumite, comparing dominant and non-dominant limbs, including a complete review of the subject. J. Phys. Educ. Sport 2023, 23, 1829–1845. [Google Scholar]
- Ciubucciu-Ionete, G.; Mereuta, E. Biomechanics of karate techniques. In The Annals of “Dunarea De Jos” University of Galati Fascicle XV ISSN–1454–9832–212; University of Galati Fascicle: Galati, Romania, 2008. [Google Scholar]
- Mohamed Gaafar, A. Standard rate for some basic stances in karate. Ann. Appl. Sport Sci. 2015, 5, 1–7. [Google Scholar]
- Udara, E.G.D.N.; Chandana, A. Biomechanics of Roundhouse (Mawashi–Geri) Kicking in Karate: A Review. Acad. Accelerafing World’s Res. 2021, 1–13. [Google Scholar]
- Patrua, L.; Negulescua, I.; Ciureab, C.; Angelescub, L. The Effects of the Complementary Training on Coaching the Non-Dominant Side in Karate Shotokan. Eur. Proc. Soc. Behav. Sci. 2016, 398–404. [Google Scholar]
- Mala, L.; Maly, T.; Cabell, L.; Cech, P.; Hank, M.; Coufalova, K.; Zahalka, F. Body composition and morphological limbs asymmetry in competitors in six martial arts. Int. J. Morphol. 2019, 37, 568–575. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Chaabène, H.; Franchini, E.; Miarka, B.; Selmi, M.A.; Mkaouer, B.; Chamari, K. Time–motion analysis and physiological responses to karate official combat sessions: Is there a difference between winners and defeated karatekas? Int. J. Sports Physiol. Perform. 2014, 9, 302–308. [Google Scholar] [CrossRef]
- Tabben, M.; Chaouachi, A.; Mahfoudhi, M.; Aloui, A.; Habacha, H.; Tourny, C.; Franchini, E.P. Physical and physiological characteristics of high-level combat sport athletes. J. Combat Sports Martial Arts. 2014, 5, 1–5. [Google Scholar] [CrossRef]
- Najmi, N.; Abdullah, M.R.; Juahir, H.; Maliki, A.B.H.M.; Musa, R.M.; Mat-Rasid, S.M.; Adnan, A.; Kosni, N.A.; Eswaramoorthi, V.; Alias, N. Comparison of body fat percentage and physical performance of male national senior and junior karate athletes. Mal. J. Fund. Appl. Sci. 2018, 10, 485–511. [Google Scholar]
- Przybylski, P.; Janiak, A.; Szewczyk, P.; Wieliński, D.; Domaszewska, K. Morphological and Motor Fitness Determinants of Shotokan Karate Performance. Int. J. Environ. Res Public Health 2021, 18, 4423. [Google Scholar] [CrossRef]
- James, L.P.; Beckman, E.M.; Kelly, V.G.; Haff, G.G. The Neuromuscular Qualities of Higher- and Lower-Level Mixed-Martial-Arts Competitors. Int. J. Sports Physiol. Perform. 2017, 12, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Ioannides, C.; Apostolidis, A.; Hadjicharalambous, M.; Zaras, N. Effect of a 6-week plyometric training on power, muscle strength, and rate of force development in young competitive karate athletes. J. Phys. Educ. Sport 2020, 20, 1740–1746. [Google Scholar]
- Plush, M.G.; Guppy, S.N.; Nosaka, K.; Barley, O.R. Developing a Comprehensive Testing Battery for Mixed Martial Arts. Int. J. Exerc. Sci. 2021, 14, 941–961. [Google Scholar]
- Bishop, C.; Read, P.; Lake, J.; Loturco, I.; Dawes, J.; Madruga, M.; Romero-Rodrigues, D.; Chavda, S.; Turner, A. Unilateral Isometric Squat: Test Reliability, Interlimb Asymmetries, and Relationships With Limb Dominance. J. Strength Cond. Res. 2021, 35 (Suppl. 1), S144–S151. [Google Scholar] [CrossRef]
- Bailey, C.; Sato, K.; Burnett, A.; Stone, M. Force-production asymmetry in male and female athletes of differing strength levels. Int. J. Sports Physiol. Perform. 2015, 10, 504–508. [Google Scholar] [CrossRef]
- Dos' Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in isometric force-time characteristics are not detrimental to change of direction speed. J. Strength Cond. Res. 2018, 32, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Skalski, D.; Prończuk, M.; Łośinska, K.; Spieszny, M.; Kostrzewa, M.; Aschenbrenner, P.; Maszczyk, A. Impact of Lower Limb Muscle Strength and Power Asymmetry on Multidirectional Speed in Female Soccer Players. Balt. J. Health Phys. Act. 2024, 16, 6. [Google Scholar] [CrossRef]
- Keogh, J.A.J.; Waddington, E.E.; Masood, Z.; Mahmood, S.; Palanisamy, A.C.; Ruder, M.C.; Karsan, S.; Bishop, C.; Jordan, M.J.; Heisz, J.J.; et al. Monitoring lower limb biomechanical asymmetry and psychological measures in athletic populations—A scoping review. Scand. J. Med. Sci. Sports 2023, 33, 2125–2148. [Google Scholar] [CrossRef]
- Rotar, P.L.; Kozinc, Z.; Katanic, B. Investigation of Dynamic Balance, Limb Asymmetry and Flexibility in Jiu-Jitsu Athletes: A Preliminary Exploratory Study. Sport Mont. 2024, 22, 17–24. [Google Scholar] [CrossRef]
- Moreno-Azze, A.; Prad-Lucas, E.; Fandos Soñén, D.; Pradas de la Fuente, F.; Falcón-Miguel, D. Plyometric Training’s Effects on Young Male Karatekas’ Jump, Change of Direction, and Inter-Limb Asymmetry. Sports 2023, 12, 1. [Google Scholar] [CrossRef]
- Scattone-Silva, R.; Lessi, G.C.; Lobato, D.F.M.; Serrão, F.V. Acceleration time, peak torque and time to peak torque in elite karate athletes. Sci. Sports. 2012, 27, e31–e37. [Google Scholar] [CrossRef]
- Obradović, B.; Madić, D.; Drid, P.; Bogdanovski, M.; Sporiš, G. Muscle strength assessment of upper and lower limbs in elite male karate athletes: Comparative study between different age groups. Acta Kinesiol 2017, 11, 94–99. [Google Scholar]
- Trajković, N.; Madić, D.; Maksimović, N.; Milošević, Z.; Obradović, B.; Dimitrova, N.; Drid, P. Evaluating injury risk in female karate athletes: Bilateral and unilateral asymmetries of isokinetic strength. In Movement in Human Life and Health, Proceedings of the 14th International Scientific Conference of Sport Kinetics, Porec, Croatia, 24–27 June 2018; Faculty of Kinesiology, University of Zagreb: Zagreb, Croatia, 2018; pp. 133–136. ISBN 978-953-317-058-9. [Google Scholar]
- Mekic, A.; Kapo, S.; Alic, H.; Bajramovic, I.; Likic, S.; Besirevic, D.; Covic, N. Differences in the Isokinetic Strength of Thigh Muscles between Track and Field and Karate Athletes. Sport Mont 2020, 18, 57–61. [Google Scholar]
- Kotrljanovic, A.; Atanasov, D.; Veljovic, D.; Drid, P. An isokinetic profile in senior female and male karate athletes national team level. Arch. Budo Sci. Martial Arts Extrem. Sports 2016, 12, 203–210. [Google Scholar]
- Vujkov, B.; Calleja-Gonzalez, J.; Krneta, Ž.; Drid, P.; Ostojić, S. Physiological responses the organism of karate athletes specialists of kata and kumite during simulated competition. Arch. Budo 2015, 11, 370. [Google Scholar]
- Le Roux, E.; Coetzee, F.F.; Schall, R.; Van Rensburg, C.J. Physiological demands of simulated elite Karate kumite matches science. Afr. J. Phys. Act. Health Sci. 2016, 22, 833–852. [Google Scholar]
- Loturco, I.; Nakamura, F.Y.; Lopes-Silva, J.P.; Silva-Santos, J.F.; Pereira, L.A.; Franchini, E. Physical and physiological traits of a double world karate champion and responses to a simulated kumite bout: A case study. Int. J. Sports Sci. Coach 2017, 12, 138–147. [Google Scholar] [CrossRef]
- Mora-Gonzalez, J.; Gould, Z.R.; Moore, C.C.; Aguiar, E.J.; Ducharme, S.W.; Schuna, J.M., Jr.; Barreira, T.V.; Staudenmayer, J.; McAvoy, C.R.; Boikova, M.; et al. A catalog of validity indices for step counting wearable technologies during treadmill walking: The CADENCE-adults study. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 117. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.wkf.net/pdf/WKF_Kumite_Competition_Rules_2024.pdf (accessed on 1 November 2024).
- Brito, C.J.; Marques, L.T.; Muñoz, P.M.; Garrido, A.B.; Ibacache, M.A.; Nóbrega, O.; Miarka, B.; Muñoz, E.A. Is isometric mid-thigh pull associated with the competitive performance of striking high-level athletes? Retos Nuevas Tend. Educ. Fís. Deporte Recreación 2024, 60, 527–533. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Natera, A.O.; Chapman, D.W.; Chapman, N.D.; Keogh, J.W.L. Predicting repeat power ability through common field assessments: Is repeat power ability a unique physical quality? PeerJ. 2024, 12, e16788. [Google Scholar] [CrossRef]
- Beckham, G.K.; Sato, K.; Santana, H.A.P.; Mizuguchi, S.; Haff, G.G.; Stone, M.H. Effect of Body Position on Force Production During the Isometric Midthigh Pull. J. Strength Cond. Res. 2018, 32, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.sportdata.org/ (accessed on 1 November 2024).
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Hyong, I.; Kim, J. Effects of Treadmill Walking Speed on Lower Extremity Muscle Activity Ratio in College students. Med. Leg. Update 2019, 19, 622–627. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Elsevier Science: Burlington, NJ, USA, 2013; ISBN 978-1-4832-7648-9. [Google Scholar]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
Variables | All Study Participants (nP = 61; nF = 28; nM = 33) (Mean ± SD) | U16 (nP = 20; nF = 8; nM = 12) (Mean ± SD) | U18 (nP = 19; nF = 7; nM = 12) (Mean ± SD) | Seniors (nP = 22; nF = 13; nM = 9) (Mean ± SD) | Between-Group Comparison (p-Value) |
---|---|---|---|---|---|
Age [years] | 17.48 ± 3.26 | 14.5 ± 0.51 | 16.63 ± 0.5 | 20.91 ± 2.91 | 0.001 * (ES = 0.91) |
Body mass [kg] | 63.79 ± 10.00 | 60.43 ± 9.16 | 63.72 ± 9.44 | 66.91 ± 10.61 | 0.07 |
Body height [m] | 1.72 ± 0.08 | 1.7 ± 0.08 | 1.73 ± 0.06 | 1.74 ± 0.09 | 0.3 |
BMI [kg/m2] | 21.38 ± 2.61 | 20.83 ± 2.87 | 21.3 ± 2.42 | 21.95 ± 2.41 | 0.15 |
Muscle mass [kg] | 30.68 ± 6.11 | 29.32 ± 5.41 | 30.52 ± 5.87 | 32.05 ± 6.84 | 0.37 |
Fat mass [kg] | 8.89 ± 4.31 | 7.98 ± 4.71 | 9.34 ± 4.42 | 9.33 ± 3.87 | 0.56 |
Kumite training experience [years] | 10.31 ± 3.97 | 7.53 ± 1.93 | 9.82 ± 2.81 | 13.27 ± 4.25 | 0.001 * |
Number of kumite training sessions per week [n] | 4.43 ± 1.26 | 3.93 ± 1.24 | 4.71 ± 1.28 | 4.64 ± 1.18 | 0.1 |
Standard kumite training (hours) | 1.52 ± 0.24 | 1.52 ± 0.2 | 1.53 ± 0.26 | 1.5 ± 0.26 | 0.93 |
SC training experience (years) | 3.48 ± 2.61 | 2.58 ± 1.61 | 3.0 ± 2.0 | 4.7 ± 3.33 | 0.08 |
Condition Time Point | EXP_PRE (Mean, SD, 95% CI) | EXP_POST (Mean, SD, 95% CI) | ES (Pre vs. Post) | Δ [%] | CTRL_PRE (Mean, SD, 95% CI) | CTRL_POST (Mean, SD, 95% CI) | ES (Pre vs. Post) | Δ [%] |
---|---|---|---|---|---|---|---|---|
PVF [N]—Dominant Lower Limb | ||||||||
U16 (n = 20) | 813.0 ± 147.0 (748.0 to 877.0) | 794.0 ± 156.0 (726 to 863) | 0.44 ‡ | −2.34 ± 6.12 | 794.0 ± 151.0 (726.0 to 863) | 809.0 ± 191.0 (725.0 to 893) | 0.09 ‡ | 1.89 ± 26.49 |
U18 (n = 19) | 849.0 ± 254.0 (735.0 to 963.0) | 832.0 ± 205.0 (740.0 to 924.0) | 0.13 † | −2.0 ± 19.29 | 837.0 ± 226.0 (735.0 to 938.0) | 813.0 ± 218.0 (715.0 to 910.0) | 0.22 † | −2.87 ± 3.54 |
Sen (n = 22) | 934.0 ± 206.0 (848.0 to 1020.0) | 888.0 ± 204.0 (803.0 to 974.0) | 0.25 ‡ | −4.93 ± 0.97 | 913.0 ± 168.0 (843.0 to 983.0) | 909.0 ± 175.0 (836.0 to 983.0) | 0.22 ‡ | −0.44 ± 4.17 |
Condition Time Point | EXP_PRE (Mean, SD, 95% CI) | EXP_POST (Mean, SD, 95% CI) | ES (Pre vs. Post) | Δ [%] | CTRL_PRE (Mean, SD, 95% CI) | CTRL_POST (Mean, SD, 95% CI) | ES (Pre vs. Post) | Δ [%] |
---|---|---|---|---|---|---|---|---|
PVF [N]—Non-Dominant Lower Limb | ||||||||
U16 (n = 20) | 769.0 ± 182.0 (689.0 to 849.0) | 772.0 ± 158.0 (702.0 to 841.0) | −0.05 † | 0.39 ± 13.19 | 809.0 ± 179.0 (730.0 to 887.0) | 815.0 ± 185.0 (734.0 to 896) | 0.02 ‡ | 0.74 ± 3.35 |
U18 (n = 19) | 891.0 ± 231.0 (787.0 to 995.0) | 848.0 ± 166.0 (773.0 to 923.0) | 0.31 † | −4.83 ± 28.14 | 870.0 ± 192.0 (783.0 to 956) | 861.0 ± 224.0 (761.0 to 962.0) | 0.08 † | 1.03 ± 16.67 |
Sen (n = 22) | 926.0 ± 218.0 (834.0 to 1017.0) | 893.0 ± 212.0 (804.0 to 981.0) | 0.35 † | −3.56 ± 2.75 | 921.0 ± 232.0 (824.0 to 1018.0) | 897.0 ± 210.0 (809.0 to 985.0) | 0.31 † | −2.61 ± 9.48 |
Condition Time Point | EXP_PRE | EXP_POST | ES | Δ [%] | CTRL_PRE | CTRL_POST | ES | Δ [%] |
---|---|---|---|---|---|---|---|---|
Inter-limb PVF Difference [N] (Mean, SD, 95% CI) | Inter-limb PVF Difference [N] (Mean, SD, 95% CI) | Pre vs. Post | Pre vs. Post | Inter-limb PVF Difference [N] (Mean, SD, 95% CI) | Inter-limb PVF Difference [N] (Mean, SD, 95% CI) | Pre vs. Post | Pre vs. Post | |
U16 (n = 20) | 111.0 ± 91.2 (70.7 to 151) | 94.7 ± 83.7 (58.0 to 131) | 0.18 † | −14.68 ± 8.22 | 121.0 ± 124.0 (66.1 to 175.0) | 154.0 ± 81.8 (118 to 189) | −0.38 ‡ | 27.27 ± 34.03 |
U18 (n = 19) | 163.0 ± 153.0 (94.4 to 232.0) | 91.9 ± 62.8 (63.3 to 120.0) | 0.42 † | −43.62 ± 58.95 | 95.1 ± 86.0 (56.4 to 134.0) | 168.0 ± 129.0 (110.0 to 225.0) * | −0.63 † | 76.66 ± 50.0 |
Sen (n = 22) | 155.0 ± 101.0 (113.0 to 197.0) | 172.0 ± 122.0 (121.0 to 223.0) | −0.15 † | 10.97 ± 20.79 | 103.0 ± 107.0 (57.9 to 148.0) | 125.0 ± 118.0 (75.9 to 175.0) | −0.26 † | 21.36 ± 10.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł, E.; Drozd, M.; Maszczyk, A.; Zając, A. Acute Effects of a Simulated Karate Bout on Muscular Strength Asymmetries of the Lower Limbs in Elite Athletes of Different Age Categories. Appl. Sci. 2025, 15, 888. https://doi.org/10.3390/app15020888
Gaweł E, Drozd M, Maszczyk A, Zając A. Acute Effects of a Simulated Karate Bout on Muscular Strength Asymmetries of the Lower Limbs in Elite Athletes of Different Age Categories. Applied Sciences. 2025; 15(2):888. https://doi.org/10.3390/app15020888
Chicago/Turabian StyleGaweł, Eliza, Miłosz Drozd, Adam Maszczyk, and Adam Zając. 2025. "Acute Effects of a Simulated Karate Bout on Muscular Strength Asymmetries of the Lower Limbs in Elite Athletes of Different Age Categories" Applied Sciences 15, no. 2: 888. https://doi.org/10.3390/app15020888
APA StyleGaweł, E., Drozd, M., Maszczyk, A., & Zając, A. (2025). Acute Effects of a Simulated Karate Bout on Muscular Strength Asymmetries of the Lower Limbs in Elite Athletes of Different Age Categories. Applied Sciences, 15(2), 888. https://doi.org/10.3390/app15020888