Characterization of Avocado (Persea americana Mill) Seed Extract from the Variety Semil 34 Cultivated in the Dominican Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Avocado Samples and Processing
2.3. Extraction of Phytochemicals Through Cooking
2.4. Extraction of Phytochemicals Through Infusion
2.5. Extraction of Phytochemicals Through Ultrasound-Assisted Extraction
2.6. Apparent Color Determination
2.7. Antioxidant Activity Assays
2.8. Total Phenolic Compounds
2.9. Total Flavonoids
2.10. Identification and Characterization of Bioactive Compounds by HPLC-QTOF-MS/MS
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Compounds, Flavonoids, and Antioxidant Capacity
3.2. Effect of pH on Antioxidant Activity
3.3. Proposed Identification of Chemicals in Avocado (P. americana Mill.) Semil 34 Seed
Peak No. | RT | Proposed Compound Identification | Molecular Formula | Ionization | m/z Observed | m/z Theoretical | Error (ppm) | References |
---|---|---|---|---|---|---|---|---|
Carboxylic acids and derivatives | ||||||||
1 | 0.98 | gamma-Aminobutyric acid | C4H9NO2 | [M+H]+ | 104.0703 | 104.0706 | −2.8 | [51] |
2 | 1.14 | Citric acid | C6H8O7 | [M-H]− | 191.0188 | 191.0197 | −4.7 | [40,47] |
3 | 1.36 | Pantothenic acid | C9H17NO5 | [M+H]+ | 220.1178 | 220.1179 | −0.4 | [51] |
Cinnamic acid and derivatives | ||||||||
4 | 1.64 | Neochlorogenic acid | C16H18O9 | [M-H]− | 353.0873 | 353.0878 | −1.4 | [47] |
5 | 2.85 | Caffeic acid | C9H8O4 | [M+H-H2O]+ | 163.0387 | 163.0389 | −1.2 | [41] |
6 | 2.85 | Caffeoylquinic acid | C16H18O9 | [M+H]+ | 355.1022 | 355.1023 | −0.3 | [20,41,48] |
7 | 3.53 | 3-O-p-Coumaroylquinic acid | C16H18O8 | [M-H]− | 337.0922 | 337.0929 | −2 | [18,42] |
Fatty acyls | ||||||||
8 | 15.92 | Methyl tetradecanoate | C15H30O2 | [M+H]+ | 243.2316 | 243.2318 | −0.6 | [51] |
9 | 17.60 | 9,10-Methylenehexadecanoic acid | C17H32O2 | [M+H-H2O]+ | 251.2367 | 251.2369 | −0.7 | |
10 | 27.45 | 2-Linoleoylglycerol | C21H38O4 | [M+H-H2O]+ | 337.2732 | 337.2737 | −1.4 | [52] |
11 | 28.32 | 1-Palmitoyl-2-linoleoyl-rac-glycerol | C37H68O5 | [M+H]+ | 593.5131 | 593.5138 | −1.17 | [52] |
12 | 20.39 | Monopalmitolein | C19H36O4 | [M+H-H2O]+ | 311.2569 | 311.2580 | −3.5 | |
13 | 6.51 | 3-Hydroxy-3-methylglutaric acid | C6H10O5 | [M+H]+ | 163.0599 | 163.0601 | −1.2 | [53] |
14 | 21.99 | Linoelaidic acid | C18H32O2 | [M+H-H2O]+ | 263.2367 | 263.2369 | −0.7 | |
15 | 18.36 | Avocadenol A | C17H32O3 | [M+H-3H2O]+ | 231.2105 | 231.2107 | −0.8 | [54,55] |
16 | 18.52 | 4-AcO-avocadyne | C19H34O4 | [M+H-H2O]+ | 309.2423 | 309.2424 | −0.3 | [54,55] |
17 | 19.24 | Avocadene acetate | C19H36O4 | [M+H-2H2O]+ | 293.2472 | 293.2475 | −1.02 | [54,55,56] |
18 | 13.58 | 16-Heptadecyn-4-one, 1,2-dihydroxy | C17H30O3 | [M+H-H2O]+ | 265.2160 | 265.2162 | −0.7 | |
19 | 18.03 | 9E,11E-Octadecadienoic acid | C18H32O2 | [M+H-H2O]+ | 263.2367 | 263.2369 | −0.7 | [57] |
20 | 18.62 | Avocadyne | C17H32O3 | [M+H-2H2O]+ | 249.2210 | 249.2213 | −1.2 | [58] |
21 | 18.63 | 9,10-Methylenehexadecanoic acid | C17H32O2 | [M+H-2H2O]+ | 233.2262 | 233.2272 | −4.2 | |
22 | 9.96 | Nonadecanedioic acid | C19H36O4 | [M+H-H2O]+ | 311.2575 | 311.2581 | −1.9 | |
23 | 23.66 | Oleoyl ethylamide | C20H39NO | [M+H]+ | 310.3101 | 310.3103 | −0.6 | |
24 | 25.47 | cis-13-Docosenoic acid | C22H42O2 | [M+H-H2O]+ | 321.3149 | 321.3152 | −0.9 | [59] |
25 | 10.62 | (9Z)-5,8,11-Trihydroxyoctadec-9-enoic acid | C18H34O5 | [M-H]− | 329.2329 | 329.2333 | −1.2 | |
26 | 14.84 | (12Z)-9,10,11-Trihydroxyoctadec-12-enoic acid | C18H34O5 | [M-H-H2O]− | 311.2221 | 311.2228 | −2.2 | |
27 | 25.47 | Erucamide | C22H43NO | [M+H]+ | 338.3435 | 338.3417 | 5.3 | |
28 | 23.0805 | 1,2,4-nonadecanetriol | C19H40O3 | [M+H]+ | 299.2945 | 299.2945 | 0.0 | |
Flavonoids | ||||||||
29 | 2.41 | Procyanidin B2 | C30H26O12 | [M+H]+ | 579.1493 | 579.1497 | −0.6 | [48] |
30 | 3.82 | Procyanidin B1 | C30H26O12 | [M+H]+ | 579.1490 | 579.1497 | −1.2 | [48] |
31 | 4.04 | Procyanidin A1 | C30H24O12 | [M+H]+ | 577.1338 | 577.1341 | −0.5 | [58] |
32 | 3.54 | Pavetannin B6 | C45H36O18 | [M+H]+ | 865.1968 | 865.1974 | 1.3 | |
Furanoid ligans | ||||||||
33 | 8.16 | Syringaresinol | C22H26O8 | [M+H-H2O]+ | 401.1592 | 401.1595 | 0.3 | [20] |
Glycerolipids | ||||||||
34 | 18.57 | Lichesterinic acid | C19H32O4 | [M-H]− | 325.2377 | 325.238 | −0.9 | |
Glycerophospholipids | ||||||||
35 | 18.11 | 1-Oleoyl-sn-glycero-3-phosphocholine | C26H52NO7P | [M+CHO2]− | 566.3457 | 566.3452 | 0.8 | [45] |
36 | 15.84 | D-myo-Inositol, 1-[2-hydroxy-3-[(1-oxo-9,12-octadecadienyl)oxy]propyl hydrogen phosphate], [S-(Z,Z)]- | C25H49O12P | [M-H]− | 595.2885 | 595.2889 | 0.4 | |
37 | 15.35 | 1-Myristoyl-sn-glycero-3-phosphocholine (LPC 14:0) | C22H46NO7P | [M+H]+ | 468.3079 | 468.3085 | −1.2 | |
38 | 16.01 | 1-palmitoleoyl-glycerophosphocholine (LPC 16:1) | C24H48NO7P | [M+H]+ | 494.3237 | 494.3241 | −0.8 | |
39 | 17.08 | 1-(10Z-heptadecenoyl)-2-hydroxy-sn-glycero-3-phosphocholine (17:1 Lyso PC) | C25H50NO7P | [M+H]+ | 508.3393 | 508.3397 | −0.7 | |
40 | 17.11 | 1-Palmitoyl-sn-glycero-3-phosphocholine (LPC 16:0) | C24H50NO7P | [M+H]+ | 496.3394 | 496.3398 | −0.8 | [60] |
41 | 17.40 | 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (LPE 16:0) | C21H44NO7P | [M+H]+ | 454.2923 | 454.2928 | −1.1 | |
42 | 19.73 | 1-Stearoyl-sn-glycero-3-phosphocholine (LPC 18:0) | C26H54NO7P | [M+H]+ | 524.3715 | 524.3710 | 0.9 | [60] |
Organic sulfuric acids and derivatives/arylsulfates/phenylsulfates | ||||||||
43 | 3.04 | 3-[3-(Sulfooxy)phenyl]propanoic acid | C9H10O6S | [M-H]− | 245.0117 | 245.0125 | −3.2 | [61] |
Organooxygen compounds | ||||||||
44 | 0.75 | Perseitol | C7H16O7 | [M-H]− | 211.0815 | 211.0823 | −3.7 | [62] |
45 | 26.67 | Soyacerebroside I | C40H75NO9 | [M-H]− | 712.5361 | 712.5369 | −1.1 | |
46 | 5.12 | Phenetyl rutenoside | C20H30O10 | [M+NH4]+ | 448.2170 | 448.2188 | −4.0 | |
47 | 0.94 | Quinic acid | C7H12O6 | [M-H]− | 191.0553 | 191.0561 | 0.8 | [41] |
48 | 0.99 | Volemitol | C7H16O7 | [M-H]− | 211.0814 | 211.082 | 0.6 | [63] |
49 | 1.22 | D-Picose | C6H12O6 | [M-H2O-H]− | 161.0446 | 161.0455 | −5.5 | |
50 | 6.16 | Isomaltulose | C12H22O11 | [M+H-3H2O]+ | 289.0917 | 289.0928 | −3.8 | |
51 | 6.16 | Sucrose | C12H22O11 | [M+H-2H2O]+ | 307.1022 | 307.1034 | 3.9 | [64] |
52 | 2.95 | (1r,3R,4s,5S)-4-(((2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoyl)oxy)-1,3,5-trihydroxycyclohexanecarboxylic acid | C16H18O9 | [M-H]− | 353.0873 | 353.0878 | −1.4 | |
Prenol lipids | ||||||||
53 | 7.52 | Abscisic acid | C15H20O4 | [M+H-H2O]+ | 247.1326 | 247.1329 | 0.3 | [65] |
3.4. Proposed Identification of Novel Chemicals in Avocado (P. americana Mill.) Semil 34 Seed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Statista. Avocado Production Worldwide 2022. Available online: https://www.statista.com/statistics/577455/world-avocado-production/ (accessed on 9 September 2024).
- World Population Review. Avocado Production by Country 2024. Available online: https://worldpopulationreview.com/country-rankings/avocado-production-by-country (accessed on 9 September 2024).
- Bisonó, S.; Hernández, J. Guía Tecnológica Sobre el Cultivo del Aguacate; Cluster del Aguacate Dominicano Santo Domingo: Dominican Republic, 2008. [Google Scholar]
- IICA. The Avocado Crop: Great Potential for the Dominican Republic. Available online: https://iica.int/es/prensa/noticias/avocado-crop-great-potential-dominican-republic (accessed on 16 October 2024).
- Specialty Produce. Semil 34 Avocados. Available online: https://specialtyproduce.com/produce/Semil_34_Avocados_17119.php (accessed on 10 November 2024).
- Cuevas, M. Non-Destructive Methods and Optimum Harvesting Time of “Semil 34” Avocado (Persea americana Mill.) in the Dominican Republic. Available online: https://www.avocadosource.com/wac6/en/Extenso/4a-164.pdf (accessed on 24 October 2024).
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Onavocados. On Avocados. Available online: https://onavocados.com/ (accessed on 12 November 2024).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); UN General Assembly: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 11 November 2024).
- Alkhalaf, M.I.; Alansari, W.S.; Ibrahim, E.A.; Elhalwagy, M.E.A. Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. J. King Saud Univ.-Sci. 2019, 31, 1358–1362. [Google Scholar] [CrossRef]
- Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. Int. J. Food Sci. 2019, 2019, 6509421. [Google Scholar] [CrossRef]
- Egbuonu, A.C.C.; Opara, C.I.; Mbah, O.C.A.U.O. Vitamins composition and antioxidant properties in normal and monosodium glutamate-compromised rats’ serum of Persea americana (avocado pear) seed. Open Access J. Chem. 2017, 1, 19–24. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A. Chemical composition, physicochemical and bioactive properties of avocado (Persea americana) seed and its potential use in functional food design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Féliz-Jiménez, A.; Sanchez-Rosario, R. Bioactive compounds, composition and potential applications of avocado agro-industrial residues: A review. Appl. Sci. 2024, 14, 10070. [Google Scholar] [CrossRef]
- Tan, C.X.; Chin, R.; Tan, S.T.; Tan, S.S. Phytochemicals and antioxidant activity of ultrasound-assisted avocado seed extract. Malays. J. Anal. Sci. 2022, 26, 439–446. [Google Scholar]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Rojas-García, A.; Villegas-Aguilar, M.D.C.; García-Villegas, A.; Cádiz-Gurrea, M.D.L.L.; Fernández-Ochoa, Á.; Fernández-Moreno, P.; Arráez-Román, D.; Segura-Carretero, A. Characterization and biological analysis of avocado seed and peel extracts for the development of new therapeutic strategies. Biol. Life Sci. Forum 2022, 18, 9. [Google Scholar] [CrossRef]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of phenolic composition of byproducts (seeds and peels) of avocado (Persea americana Mill.) cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-rich extracts from avocado fruit residues as functional food ingredients with antioxidant and antiproliferative properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Arukwe, U.; Amadi, B.A.; Duru, M.K.C.; Agomuo, E.N.; Adindu, E.A.; Odika, P.C.; Lele, K.C.; Egejuru, L.; Anudike, J. Chemical composition of Persea americana leaf, fruit and seed. Int. J. Res. Rev. Appl. Sci. 2012, 11, 346–349. [Google Scholar]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- David, D.; Alzate, A.F.; Rojano, B.; Copete-Pertuz, L.S.; Echeverry, R. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activity from avocado seed (Persea americana Mill). Bionatura 2022, 7, 51. [Google Scholar] [CrossRef]
- Dabas, D.; Elias, R.J.; Lambert, J.D.; Ziegler, G.R. A colored avocado seed extract as a potential natural colorant. J. Food Sci. 2011, 76, C1335–C1341. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, E.; Mazzola, E.P.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chem. 2019, 293, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives—Inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Pluskal, T. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Utami, H.; Agustin, V.T.; Novirianti, L.; Darni, Y.; Lesmana, D.; Tagaki, R. The leaching of natural dyes from avocado (Persea americana Mill) seeds using the ultrasonic-assisted extraction method and its application on cellulose fibers. J. Rekayasa Kim. Lingkung. 2021, 16, 100–108. [Google Scholar] [CrossRef]
- Xu, D.P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.N.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of Jatropha integerrima by response surface methodology. Molecules 2015, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Sandoval-Contreras, T.; González Chávez, F.; Poonia, A.; Iñiguez-Moreno, M.; Aguirre-Güitrón, L. Avocado waste biorefinery: Towards sustainable development. Recycling 2023, 8, 81. [Google Scholar] [CrossRef]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.; Rietjens, I.M. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Böcker, S. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Wishart, D.S. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.F.; Reher, R.; Kang, K.B.; Cottrell, G.W. NPClassifier: A deep neural network-based structural classification tool for natural products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Contreras, M.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Younis, I.Y.; Khattab, A.R.; Selim, N.M.; Sobeh, M.; Elhawary, S.S.; Bishbishy, M.H.E. Metabolomics-Based Profiling of 4 Avocado Varieties Using HPLC–MS/MS and GC/MS and Evaluation of Their Antidiabetic Activity. Sci. Rep. 2022, 12, 4966. [Google Scholar] [CrossRef] [PubMed]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C. Bioactive Characterization of Persea americana Mill. By-Products: A Rich Source of Inherent Antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Fan, S.; Qi, Y.; Shi, L.; Giovani, M.; Zaki, N.A.A.; Guo, S.; Suleria, H.A.R. Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes 2022, 10, 1747. [Google Scholar] [CrossRef]
- Golukcu, M.; Ozdemir, F. Changes in Phenolic Composition of Avocado Cultivars During Harvesting Time. Chem. Nat. Compd. 2010, 46, 112–115. [Google Scholar] [CrossRef]
- Waly, D.A.; Zeid, A.H.A.; Attia, H.N.; Ahmed, K.A.; El-Kashoury, E.S.A.; El Halawany, A.M.; Mohammed, R.S. Comprehensive Phytochemical Characterization of Persea americana Mill. Fruit via UPLC/HR-ESI–MS/MS and Anti-Arthritic Evaluation Using Adjuvant-Induced Arthritis Model. Inflammopharmacology 2023, 31, 3243–3262. [Google Scholar] [CrossRef] [PubMed]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as Valuable Tools for the Determination of Phenolic and Other Polar Compounds in the Edible Part and By-Products of Avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; Alencar, S.M.D. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Kermanshahi, B.; Ghazani, S.M.; Tait, K.; Tcheng, M.; Roma, A.; Callender, S.P.; Smith, R.W.; Tam, W.; Wettig, S.D.; et al. Avocado-Derived Polyols for Use as Novel Co-Surfactants in Low Energy Self-Emulsifying Microemulsions. Sci. Rep. 2020, 10, 5566. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, D.G.; Pacheco, A.; Villarreal-Lara, R.; Ramos-González, M.R.; Ramos-Parra, P.A.; Granados-Principal, S.; Díaz de la Garza, R.I.; García-Rivas, G.; Hernández-Brenes, C. Chemical Profile and Safety Assessment of a Food-Grade Acetogenin-Enriched Antimicrobial Extract from Avocado Seed. Molecules 2019, 24, 2354. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Fernández, E.; Bajoub, A.; Morales, J.C.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Exploratory Analysis of Avocado Extracts by GC-MS: New Insights into the Avocado Fruit Ripening Process. Anal. Methods 2015, 7, 7318–7326. [Google Scholar] [CrossRef]
- Degenhardt, A.G.; Hofmann, T. Bitter-Tasting and Kokumi-Enhancing Molecules in Thermally Processed Avocado (Persea americana Mill.). J. Agric. Food Chem. 2010, 58, 12906–12915. [Google Scholar] [CrossRef] [PubMed]
- Lazare, S.; Yasuor, H.; Yermiyahu, U.; Kuhalskaya, A.; Brotman, Y.; Ben-Gal, A.; Dag, A. It Takes Two: Reciprocal Scion-Rootstock Relationships Enable Salt Tolerance in ‘Hass’ Avocado. Plant Sci. 2021, 312, 111048. [Google Scholar] [CrossRef] [PubMed]
- Tcheng, M.; Ahmed, N.; Spagnuolo, P.A. Structure Defines Bioactivity of Avocado-Derived Acetogenins. Stud. Nat. Prod. Chem. 2023, 78, 1–44. [Google Scholar]
- Louis, M.L.M.; Rani, V.P.; Krishnan, P.; Reegan, A.D.; Balakrishna, K.; Ignacimuthu, S.; Packiam, S.M.; Maheswaran, R.; Shirota, O. Mosquito Larvicidal Activity of Compounds from Unripe Fruit Peel of Avocado (Persea americana Mill.). Appl. Biochem. Biotechnol. 2023, 195, 2636–2647. [Google Scholar] [CrossRef]
- Freitas, M.S.; Pereira, A.H.; Pereira, G.O.; Menezes, I.S.; Lucena, A.R.; Almeida, C.R.; Pereira, E.G.; Santos, L.A.; Tozin, L.R.; Alves, F.M.; et al. Acetogenin-Induced Fibrotic Heart Disease from Avocado (Persea americana, Lauraceae) Poisoning in Horses. Toxicon 2022, 219, 106921. [Google Scholar] [CrossRef] [PubMed]
- Ofunne, C.; Iyekowa, O.; Okolie, H.O. Chemical Analysis and GC-MS Characterization of Ether Fraction from Persea americana Seed. NIPES-J. Sci. Technol. Res. 2019, 1, 2. [Google Scholar]
- del Refugio Ramos-Jerz, M. Phytochemical Analysis of Avocado Seeds (Persea americana Mill., cv Hass); Cuvillier Verlag: Göttingen, Germany, 2007. [Google Scholar]
- Njoku, G.C.; Alisigwe, C.V.; Iloanusi, D.U.; Aririguzo, P.C. Determination of the Total Phenolic Contents of Essential Oil Obtained from Cymbopogon citratus (Lemongrass) and Persea americana Mill (Avocado Pear Seed) and Its Bioactive Component Using GC-MS Analysis. Int. J. Innov. Sci. Res. Technol. 2022, 7, 127–138. [Google Scholar] [CrossRef]
- Pacetti, D.; Boselli, E.; Lucci, P.; Frega, N.G. Simultaneous Analysis of Glycolipids and Phospholipids Molecular Species in Avocado (Persea americana Mill) Fruit. J. Chromatogr. A 2007, 1150, 241–251. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sievert, J.; Arpaia, M.L.; Madore, M.A. Postulated Physiological Roles of the Seven-Carbon Sugars, Mannoheptulose, and Perseitol in Avocado. J. Am. Soc. Hortic. Sci. 2002, 127, 108–114. [Google Scholar] [CrossRef]
- Richtmyer, N.K. The Isolation of Volemitol and Other Polyhydric Alcohols from Avocado Seeds. Carbohydr. Res. 1970, 12, 135–138. [Google Scholar] [CrossRef]
- Olmedo, P.; Núñez-Lillo, G.; Ponce, E.; Alvaro, J.E.; Baños, J.; Carrera, E.; González-Fernández, J.J.; Hormaza, J.I.; Campos, D.; Chirinos, R.; et al. Metabolite Profiling and Hormone Analysis of the Synchronized Exocarp-Mesocarp Development during Ripening of cv. ‘Fuerte’ and ‘Hass’ Avocado Fruits. Food Biosci. 2024, 60, 104454. [Google Scholar] [CrossRef]
- del Refugio Ramos, M.; Jerz, G.; Villanueva, S.; López-Dellamary, F.; Waibel, R.; Winterhalter, P. Two Glucosylated Abscisic Acid Derivatives from Avocado Seeds (Persea americana Mill. Lauraceae cv. Hass). Phytochemistry 2004, 65, 955–962. [Google Scholar] [CrossRef]
Parameter Tested | Semil 34 Seed Extract | [20] | [21] | [19] | [18] |
---|---|---|---|---|---|
Extraction Method | Ultrasound-assisted extraction (UAE) | Maceration | Maceration | Solid–liquid extraction (SLE) | Microwave-assisted extraction (MAE) |
TEAC (µM/g seed) | 1743.3 ± 52.3 a | 18.4 ± 0.9 d | 32.51 ± 9.07 f | 500 ± 10 i | 266.56 ± 2.76 j |
TPC (mg gallic acid equivalents/g seed) | 25.86 ± 2.17 b | 1303.0 ± 67.7 e | 232.36 ± 12.25 g | - | 307.09 ± 14.16 b |
TFC (mg quercetin equivalents/g seed) | 2.09 ± 0.10 c | - | 2.13 ± 0.22 h | 60 ± 10 e | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Rosario, R.; Castillo, L.; Féliz-Jiménez, A.; Vargas, S.; Pérez-Romero, R.; Aquino, M.; Abutokaikah, M.T. Characterization of Avocado (Persea americana Mill) Seed Extract from the Variety Semil 34 Cultivated in the Dominican Republic. Appl. Sci. 2025, 15, 922. https://doi.org/10.3390/app15020922
Sanchez-Rosario R, Castillo L, Féliz-Jiménez A, Vargas S, Pérez-Romero R, Aquino M, Abutokaikah MT. Characterization of Avocado (Persea americana Mill) Seed Extract from the Variety Semil 34 Cultivated in the Dominican Republic. Applied Sciences. 2025; 15(2):922. https://doi.org/10.3390/app15020922
Chicago/Turabian StyleSanchez-Rosario, Ramon, Luis Castillo, Alejandra Féliz-Jiménez, Sebastián Vargas, Ramón Pérez-Romero, Mónica Aquino, and Maha T. Abutokaikah. 2025. "Characterization of Avocado (Persea americana Mill) Seed Extract from the Variety Semil 34 Cultivated in the Dominican Republic" Applied Sciences 15, no. 2: 922. https://doi.org/10.3390/app15020922
APA StyleSanchez-Rosario, R., Castillo, L., Féliz-Jiménez, A., Vargas, S., Pérez-Romero, R., Aquino, M., & Abutokaikah, M. T. (2025). Characterization of Avocado (Persea americana Mill) Seed Extract from the Variety Semil 34 Cultivated in the Dominican Republic. Applied Sciences, 15(2), 922. https://doi.org/10.3390/app15020922