Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars
Abstract
:1. Introduction
- RQ1: What is the performance of our representation learning model in capturing the design characteristics of TABs?
- RQ2: What clustering algorithm is most suitable for grouping the learned representations of TABs?
- RQ3: How does the clustering outcome compare to human judgment in identifying TAB design patterns?
- A prove-of-concept approach for mining design patterns of the TABs, extendable to support diverse design pattern types.
- A representation and learning strategy for TABs, pivotal in UI design pattern mining.
- An open dataset on TABs, fostering research endeavors and advancing UI design practices within the community [7].
2. Related Work
2.1. Design Patterns
2.2. UI Representation Learning
2.3. UI Repositories
3. The Proposed Approach
3.1. Preprocessing
3.2. Learning Vector Representations
3.3. Clustering Design Patterns
4. Experimental Design
4.1. Preprocessed Datasets
4.2. Experimental Settings
4.3. Annotation
4.4. Evaluation Metrics
4.4.1. Evaluation Metrics for Representation Learning
4.4.2. Evaluation Metrics for Clustering
5. Evaluation
5.1. RQ1: What Is the Performance of Our Representation Learning Model?
5.2. RQ2: What Algorithm Is Suitable for Clustering Learned Representations?
5.3. RQ3: How Does the Clustering Outcome Compare to Human Judgment?
6. Discussion
6.1. Clustering Methods
6.2. Application Scenarios
6.3. Threats to Validity
6.4. Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Material Design. Top App Bar—Material Design 3. Available online: https://m3.material.io/components/top-app-bar/guidelines (accessed on 4 April 2024).
- Dong, Y.; Xue, C.; Peng, N.; Niu, Y. The Effect of LOGO Location in Navigation Bar on Web Brand Recognition Based on Event-Related Potential. In Proceedings of the HCI in Business, Government, and Organizations: 5th International Conference, HCIBGO 2018, Las Vegas, NV, USA, 15–20 July 2018. [Google Scholar]
- Johnson, J. GUI Bloopers 2.0: Common User Interface Design Do Nots and Dos; Morgan Kaufmann: San Francisco, CA, USA, 2007. [Google Scholar]
- Cooper, A.; Reimann, R.; Cronin, D.; Noessel, C. About Face: The Essentials of Interaction Design; John Wiley & Sons: Indianapolis, IN, USA, 2014. [Google Scholar]
- dos Santos, E.P.; de Lara, S.M.; Watanabe, W.M.; Filho, M.C.; Fortes, R.P. Usability evaluation of horizontal navigation bar with drop-down menus by middle aged adults. In Proceedings of the 29th ACM International Conference on Design of Communication, Pisa, Italy, 3–5 October 2011. [Google Scholar]
- Van Welie, M.; Van Der Veer, G.C.; Eliëns, A. Patterns as tools for user interface design. In Tools for Working with Guidelines: Annual Meeting of the Special Interest Group; Springer: London, UK, 2001. [Google Scholar]
- Ming, L. Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars. Zenodo. 2024. Available online: https://zenodo.org/records/13207361 (accessed on 18 January 2025).
- Alexander, C. A Pattern Language: Towns, Buildings, Construction; Oxford University Press: New York, NY, USA, 1977. [Google Scholar]
- Beck, K. Using pattern languages for object-oriented programs. In Proceedings of the OOPSLA-87 workshop on the Specification and Design for Object-Oriented Programming, Orlando, FL, USA, 4–8 October 1987. [Google Scholar]
- Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Bayle, E.; Bellamy, R.; Casaday, G.; Erickson, T.; Fincher, S.; Grinter, B.; Gross, B.; Lehder, D.; Marmolin, H.; Moore, B.; et al. Putting it all together: Towards a pattern language for interaction design: A CHI 97 workshop. ACM SIGCHI Bull. 1998, 30, 17–23. [Google Scholar] [CrossRef]
- Seffah, A. The evolution of design patterns in HCI: From pattern languages to pattern-oriented design. In Proceedings of the 1st International Workshop on Pattern-Driven Engineering of Interactive Computing Systems, Berlin, Germany, 19–23 June 2010. [Google Scholar]
- Borchers, J.O. A pattern approach to interaction design. In Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, New York, NY, USA, 17–19 August 2000. [Google Scholar]
- Tidwell, J. Designing Interfaces: Patterns for Effective Interaction Design; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2010. [Google Scholar]
- Nudelman, G. Android Design Patterns: Interaction Design Solutions for Developers; John Wiley & Sons: Indianapolis, IN, USA, 2013. [Google Scholar]
- Neil, T. Mobile Design Pattern Gallery: UI Patterns for Smartphone Apps; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2014. [Google Scholar]
- Dearden, A.; Finlay, J. Pattern languages in HCI: A critical review. Hum.-Comput. Interact. 2006, 21, 49–102. [Google Scholar] [CrossRef]
- Seffah, A. Patterns of HCI Design and HCI Design of Patterns: Bridging HCI Design and Model-Driven Software Engineering; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Braham, A.; Buendía, F.; Khemaja, M.; Gargouri, F. User interface design patterns and ontology models for adaptive mobile applications. Pers. Ubiquitous Comput. 2022, 26, 1395–1411. [Google Scholar] [CrossRef]
- Leiva, L.A.; Hota, A.; Oulasvirta, A. Enrico: A Dataset for Topic Modeling of Mobile UI Designs. In Proceedings of the 22nd International Conference on Human–Computer Interaction with Mobile Devices and Services, Oldenburg, Germany, 5–8 October 2020; MobileHCI. ACM: Oldenburg, Germany, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wu, J.; Wang, S.; Shen, S.; Peng, Y.H.; Nichols, J.; Bigham, J.P. WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; CHI. Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Chen, J.; Xie, M.; Xing, Z.; Chen, C.; Xu, X.; Zhu, L.; Li, G. Object Detection for Graphical User Interface: Old Fashioned or Deep Learning or a Combination? In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, Virtual, 8–13 November 2020; pp. 1202–1214. [Google Scholar] [CrossRef]
- Deka, B.; Huang, Z.; Franzen, C.; Hibschman, J.; Afergan, D.; Li, Y.; Nichols, J.; Kumar, R. Rico: A Mobile App Dataset for Building Data-Driven Design Applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST, Québec City, QC, Canada, 22–25 October 2017; ACM: Québec City, QC, Canada, 2017; pp. 845–854. [Google Scholar] [CrossRef]
- Liu, T.F.; Craft, M.; Situ, J.; Yumer, E.; Mech, R.; Kumar, R. Learning Design Semantics for Mobile Apps. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST, Berlin, Germany, 14–17 October 2018; ACM: Berlin, Germany, 2018; pp. 569–579. [Google Scholar] [CrossRef]
- Chen, J.; Chen, C.; Xing, Z.; Xia, X.; Zhu, L.; Grundy, J.; Wang, J. Wireframe-Based UI Design Search through Image Autoencoder. ACM Trans. Softw. Eng. Methodol. ToSEM 2020, 29, 1–31. [Google Scholar] [CrossRef]
- Li, T.J.J.; Popowski, L.; Mitchell, T.; Myers, B.A. Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI, Yokohama Japan, 8–13 May 2021; pp. 1–15. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.T.; Han, Y.S. An Empirical Study on Multimodal Activity Clustering of Android Applications. IEEE Access 2023, 11, 53598–53614. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.T.; Han, Y.S. JIDECA: Jointly Improved Deep Embedded Clustering for Android activity. In Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Republic of Korea, 13–16 February 2023; pp. 105–112. [Google Scholar] [CrossRef]
- He, Z.; Sunkara, S.; Zang, X.; Xu, Y.; Liu, L.; Wichers, N.; Schubiner, G.; Lee, R.; Chen, J. ActionBert: Leveraging User Actions for Semantic Understanding of User Interfaces. Proc. AAAI Conf. Artif. Intell. 2021, 35, 5931–5938. [Google Scholar] [CrossRef]
- Feiz, S.; Wu, J.; Zhang, X.; Swearngin, A.; Barik, T.; Nichols, J. Understanding Screen Relationships from Screenshots of Smartphone Applications. In Proceedings of the 27th International Conference on Intelligent User Interfaces, IUI, Helsinki, Finland, 22–25 March 2022; ACM: Helsinki, Finland, 2022; pp. 447–458. [Google Scholar] [CrossRef]
- Bai, C.; Zang, X.; Xu, Y.; Sunkara, S.; Rastogi, A.; Chen, J. UIBert: Learning Generic Multimodal Representations for UI Understanding. arXiv 2021, arXiv:2107.13731. [Google Scholar]
- Banerjee, P.; Mahajan, S.; Arora, K.; Baral, C.; Riva, O. Lexi: Self-Supervised Learning of the UI Language. arXiv 2023, arXiv:2301.10165. [Google Scholar]
- Viennot, N.; Garcia, E.; Nieh, J. A measurement study of google play. ACM Sigmetrics Perform. Eval. Rev. 2014, 42, 221–233. [Google Scholar] [CrossRef]
- Frank, M.; Dong, B.; Felt, A.P.; Song, D. Mining permission request patterns from android and facebook applications. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012. [Google Scholar]
- Alharbi, K.; Yeh, T. Collect, decompile, extract, stats, and diff: Mining design pattern changes in Android apps. In Proceedings of the 17th International Conference on Human–Computer Interaction with Mobile Devices and Services MobileHCI, Copenhagen, Denmark, 24–27 August 2015. [Google Scholar]
- Sahami Shirazi, A.; Henze, N.; Schmidt, A.; Goldberg, R.; Schmidt, B.; Schmauder, H. Insights into layout patterns of mobile user interfaces by an automatic analysis of Android apps. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems EICS, London, UK, 24–27 June 2013. [Google Scholar]
- Deka, B.; Huang, Z.; Kumar, R. ERICA: Interaction mining mobile apps. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST, Tokyo, Japan, 16–19 October 2016. [Google Scholar]
- Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans. Knowl. Data Eng. 2021, 35, 857–876. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems 26, Lake Tahoe, NA, USA, 5–8 December 2013. [Google Scholar]
- Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018, unpublished. Available online: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 18 January 2025).
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Morissette, L.; Chartier, S. The k-means clustering technique: General considerations and implementation in Mathematica. Tutorials Quant. Methods Psychol. 2013, 9, 15–24. [Google Scholar] [CrossRef]
- Oyewole, G.J.; Thopil, G.A. Data clustering: Application and trends. Artif. Intell. Rev. 2023, 56, 6439–6475. [Google Scholar] [CrossRef] [PubMed]
- Saisubramanian, S.; Galhotra, S.; Zilberstein, S. Balancing the tradeoff between clustering value and interpretability. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, 7–9 February 2020. [Google Scholar]
- Huang, F.; Canny, J.F.; Nichols, J. Swire: Sketch-Based User Interface Retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI, Glasgow, UK, 4–9 May 2019; ACM: Glasgow, UK, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Wei, J.; Courbis, A.L.; Lambolais, T.; Xu, B.; Bernard, P.L.; Dray, G.; Maalej, W. GUing: A Mobile GUI Search Engine using a Vision-Language Model. arXiv 2024, arXiv:2405.00145. [Google Scholar] [CrossRef]
- Chen, C.; Su, T.; Meng, G.; Xing, Z.; Liu, Y. From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), ICSE, Gothenburg, Sweden, 27 May–3 June 2018; pp. 665–676. [Google Scholar]
- Li, J.; Yang, J.; Hertzmann, A.; Zhang, J.; Xu, T. Layoutgan: Generating graphic layouts with wireframe discriminators. arXiv 2019, arXiv:1901.06767. [Google Scholar]
- Qin, C.; Zhang, S.; Yu, N.; Feng, Y.; Yang, X.; Zhou, Y.; Wang, H.; Niebles, J.C.; Xiong, C.; Savarese, S.; et al. Unicontrol: A unified diffusion model for controllable visual generation in the wild. arXiv 2023, arXiv:2305.11147. [Google Scholar]
- Shao, Z.; Gao, F.; Xing, H.; Zhu, Z.; Yu, Z.; Bu, J.; Zheng, Q.; Yao, C. WebRPG: Automatic Web Rendering Parameters Generation for Visual Presentation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Dixit, R.; Chinnam, R.B.; Singh, H. Artificial Intelligence and Machine Learning in Sparse/Inaccurate Data Situations. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Li, G.; Baechler, G.; Tragut, M.; Li, Y. Learning to Denoise Raw Mobile UI Layouts for Improving Datasets at Scale. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI, New York, NY, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
Clustering into | |||
---|---|---|---|
Same Cluster | Different Cluster | ||
Labeled as | Same Cluster | TP | FN |
Different Cluster | FP | TN |
Sequence Length | Accuracy |
---|---|
2 | 0.687135 |
3 | 0.548105 |
4 | 0.729592 |
5 | 0.782051 |
6 | 0.923077 |
7 | 0.750000 |
8 | 0.750000 |
9 | 1.000000 |
10 | 1.000000 |
All | 0.666994 |
Algorithms | Silhouette ↑ | CH Index ↑ | DB Index ↓ |
---|---|---|---|
K-means | 0.643866 | 1473.76 | 0.611127 |
GMM | 0.603790 | 1112.25 | 0.755012 |
BIRCH | 0.511648 | 931.525 | 0.703171 |
Spectral | 0.503043 | 966.923 | 0.671477 |
Algorithms | JC ↑ | FMI ↑ | Purity ↑ | RI ↑ | F-1 ↑ |
---|---|---|---|---|---|
K-means | 0.596189 | 0.615253 | 0.592848 | 0.557367 | 0.716875 |
GMM | 0.0372244 | 0.570767 | 0.607771 | 0.505694 | 0.0606872 |
BIRCH | 0.159146 | 0.498117 | 0.532139 | 0.403558 | 0.236254 |
Spectral | 0.0380405 | 0.547349 | 0.578134 | 0.471077 | 0.0709708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, Z.; Lin, T. Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars. Appl. Sci. 2025, 15, 1060. https://doi.org/10.3390/app15031060
Li M, Zhang Z, Lin T. Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars. Applied Sciences. 2025; 15(3):1060. https://doi.org/10.3390/app15031060
Chicago/Turabian StyleLi, Ming, Zhenbo Zhang, and Tao Lin. 2025. "Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars" Applied Sciences 15, no. 3: 1060. https://doi.org/10.3390/app15031060
APA StyleLi, M., Zhang, Z., & Lin, T. (2025). Streamlining Visual UI Design: Mining UI Design Patterns for Top App Bars. Applied Sciences, 15(3), 1060. https://doi.org/10.3390/app15031060