Monitoring and Improving Aircraft Maintenance Processes Using IT Systems
Abstract
:1. Introduction
1.1. Review of Existing Research
1.2. Unsolved Problems
1.3. Goal, Subject, and Scope of This Study
2. The Importance of Supervising and Modeling the Maintenance Process
- Reliability;
- Maintainability;
- Providing support.
- DMT—the duration of the maintenance task;
- m(τ)—is a function of the probability density of the duration of the maintenance task.
- Designing a technical facility;
- Designing the technique and organization of servicing an object with a shaped susceptibility to servicing.
3. Analysis of the Research Object Maintenance Process
3.1. Airworthiness of Research Object
- C—A/C on the records [pcs.];
- D—airworthy A/C [pcs.];
- X—A/C not counted for airworthiness [pcs.];
- F—airworthiness [%].
- max(F)—the highest recorded percentage airworthiness of the M-346 aircraft in 2018-2020.
3.2. Analysis of the Duration of Periodic Maintenance of the M-346 Aircraft
3.3. Conclusions from the Analysis
4. Data Acquisition Tool—IT System Design
4.1. The Idea of an IT System for Monitoring the Service Process
- Replacing paper registration documentation of aircraft with their digital version;
- Using a mobile device to record the activities performed during services;
- Collecting information enabling the performance of optimization analyses;
- Using the IT systems currently in use, extending them with the above-mentioned functionalities, e.g., the IT system Samanta.
- A mobile application that replaces traditional AMCs, allowing the real-time recording of maintenance tasks and their durations, improving data accuracy, and reducing manual errors.
- Maintainability Analysis Module: This module processes task data to estimate maintainability functions, optimize service schedules, and verify their reliability through advanced analytical tools.
- Enhanced Integration: The system links maintenance data with operational documentation, ensuring synchronized and updated records.
- Task-level data recording and real-time documentation;
- Predictive maintainability analysis for optimizing schedules;
- Mobile integration for efficient field operations.
4.2. Maintainability Analysis Module
4.2.1. Data Acquisition Model
- Probability Distribution of Task Durations: For each task Ti, the duration Di is modeled as a random variable. The probability distribution function (PDF) fDi(d) is estimated from the collected data:
- Cumulative Distribution Function (CDF): The CDF FDi(d) is defined as follows:
- Expected Duration E[Di]: The expected task duration is
4.2.2. Task Scheduling Optimization
- Objective Function:
- Constraints: Tasks dependent on preceding tasks:
4.2.3. Reliability Assessment
- Maintainability Function :
- Variance of Task Duration: Variance helps in identifying bottlenecks.
4.3. Functional Characteristics of the Mobile Application
5. Assessment of the Usefulness of the Collected Data
5.1. Examination of Probability Distributions of Maintenance Tasks
- —probability value estimated using the Median Rank method;
- —are the parameters of the scale, shape, and position of the probability distribution, respectively;
- —the distribution function of the standard normal distribution, N(0, 1);
- —the inverse distribution function of the standard normal distribution, N(0, 1).
5.2. Identification of the Probability Distribution of an Exemplary Technical Task
- Scale parameter μ = 3.45;
- Shape parameter σ = 0.256.
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsakalerou, M.; Nurmaganbetov, D.; Beltenov, N. Aircraft Maintenance 4.0 in an era of disruptions. Procedia Comput. Sci. 2022, 200, 121–131. [Google Scholar] [CrossRef]
- Brzozowski, B.; Kawka, K.; Kaźmierczak, K.; Rochala, Z.; Wojtowicz, K. Supporting the Process of Aircraft Maintenance with Mobile Devices. Trans. Aerosp. Res. 2017, 2017, 7–18. [Google Scholar] [CrossRef]
- Zieja, M.; Kawka, K.; Wojtowicz, K.; Wetoszka, A.; Pietrzak, T. Portable biometric module software for military aviation support system. Aviat. Secur. Issues 2023, 4, 235–252. [Google Scholar] [CrossRef]
- Glinka, S.; Bajer, J.; Wierzbicki, D.; Karwowska, K.; Kedzierski, M. The Use of Deep Learning Methods for Object Height Estimation in High Resolution Satellite Images. Sensors 2023, 23, 8162. [Google Scholar] [CrossRef]
- Dangut, M.D.; Jennions, I.K.; King, S.; Skaf, Z. Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance. Mech. Syst. Signal Process. 2022, 171, 108873. [Google Scholar] [CrossRef]
- Pigłas, M.; Radoń, T.; Szymański, M.; Krutkow, A.; Przystawska, A. Information system support for military aircraft operations SI SAMANTA as a tool to support logistic resource management. J. KONBiN 2020, 50, 269–286. [Google Scholar] [CrossRef]
- Smith, D.J. Reliability, Maintainability and Risk, 9th ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Korba, P.; Šváb, P.; Vereš, M.; Lukáč, J. Optimizing Aviation Maintenance through Algorithmic Approach of Real-Life Data. Appl. Sci. 2023, 13, 3824. [Google Scholar] [CrossRef]
- Izdebski, M.; Jacyna-Gołda, I.; Gołębiowski, P.; Gołda, P.; Pyza, D.; Żak, J. Decision problems in designing database architecture for the assessment of logistics services, Scientific Journal of Silesian University of Technology. Ser. Transp. 2020, 108, 53–71. [Google Scholar] [CrossRef]
- Juncen, V.G. Effectiveness of Aircraft Ground Operation Course in Enriching the Aircraft Maintenance Program. IRE J. 2023, 7, 563–579. [Google Scholar]
- Yang, L.; Zhou, S.; Ma, X.; Chen, Y.; Jia, H.; Dai, W. Group machinery intelligent maintenance: Adaptive health prediction and global dynamic maintenance decision-making. Reliab. Eng. Syst. Saf. 2024, 252, 110426. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Xiahou, T.; Huang, H. A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities. Reliab. Eng. Syst. Saf. 2023, 235, 109239. [Google Scholar] [CrossRef]
- Pastrana, C.; Ricardo, R. Improving Efficiency in Military Aircraft Maintenance Operations in Terms of Jobs Completion Time. PRCR J. 2022. Available online: https://prcrepository.org/xmlui/handle/20.500.12475/2177 (accessed on 12 October 2024).
- Melo, S.P.; Barke, A.; Cerdas, F.; Thies, C.; Mennenga, M.; Spengler, T.S.; Herrmann, C. Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools. Sustainability 2020, 12, 5663. [Google Scholar] [CrossRef]
- Bisanti, G.M.; Mainetti, L.; Montanaro, T.; Patrono, L.; Sergi, I. Digital twins for aircraft maintenance and operation: A systematic literature review and an IoT-enabled modular architecture. Internet Things 2023, 24, 100991. [Google Scholar] [CrossRef]
- Wu, W.; Vu, V. Application of Virtual Reality Method in Aircraft Maintenance Service—Taking Dornier 228 as an Example. Appl. Sci. 2022, 12, 7283. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Wei, F.; Yang, L.; Qiu, Q. Dynamic Scheduling of Intelligent Group Maintenance Planning under Usage Availability Constraint. Mathematics 2022, 10, 2730. [Google Scholar] [CrossRef]
- Perehuda, O.; Rodionov, A.; Fedorchuk, D.; Zhuravskyi, S.; Konvisar, M.; Volynets, T.; Datsyk, V.; Zakalad, M.; Tsybulia, S.; Trysnyuk, T. Devising a method for integrated dataset formation and selecting a model for recognizing the technical condition of unmanned aerial vehicle. East.-Eur. J. Enterp. Technol. 2024, 5, 42–51. [Google Scholar] [CrossRef]
- Okoro, O.C.; Zaliskyi, M.; Dmytriiev, S.; Solomentsev, O.; Sribna, O. Optimization of Maintenance Task Interval of Aircraft Systems. Int. J. Comput. Netw. Inf. Secur. 2022, 14, 77–89. [Google Scholar] [CrossRef]
- Yazdi, M. Maintenance Strategies and Optimization Techniques. In Advances in Computational Mathematics for Industrial System Reliability and Maintainability; Springer Series in Reliability Engineering; Springer: Berlin/Heidelberg, Germany, 2024; pp. 43–58. [Google Scholar] [CrossRef]
- Andrade, P.; Silva, C.; Ribeiro, B.; Santos, B.F. Aircraft Maintenance Check Scheduling Using Reinforcement Learning. Aerospace 2021, 8, 113. [Google Scholar] [CrossRef]
- De Pater, I.; Reijins, A.; Mitici, M. Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics. Reliab. Eng. Syst. Saf. 2022, 221, 108341. [Google Scholar] [CrossRef]
- Blond, K.; Himschoot, A.; Klein, E.; Conley, S.; Clark, A. Adapting Commercial Best Practices to U.S. Air Force Maintenance Scheduling. Aerospace 2023, 10, 61. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Zhao, X.; Xiang, J. Predictive Maintenance Scheduling for Aircraft Engines Based on Remaining Useful Life Prediction. IEEE Internet Things J. 2024, 11, 23020–23031. [Google Scholar] [CrossRef]
- Fu, S.; Avdelidis, N.P. Prognostic and Health Management of Critical Aircraft Systems and Components: An Overview. Sensors 2023, 23, 8124. [Google Scholar] [CrossRef]
- Pop, G.I.; Titu, A.M.; Pop, A.B. Enhancing Aerospace Industry Efficiency and Sustainability: Process Integration and Quality Management in the Context of Industry 4.0. Sustainability 2023, 15, 16206. [Google Scholar] [CrossRef]
- Zuluaga, A.E.M.; De Mantenimiento, E.E.G.; Marcos, C.S. Development of a Mobile Application for Maintenance Management. In Proceedings of the 2023 VI Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC), Cali, Colombia, 25–27 October 2023; pp. 1–8. [Google Scholar] [CrossRef]
- OTAC Reliability Monitoring Programs. OTAC 39-14. 2021. Available online: https://www.airsafety.aero/getmedia/6d844aa3-8a14-4199-824c-15aa4cbfda61/20210126_ALPR08_OTAC_39-14_Reliability_Monitoring_Programmes_Issue1.pdf?ext=.pdf (accessed on 12 October 2024).
- Alomar, I.; Yatskiv (Jackiva), I. Digitalization in aircraft maintenance processes. Vilnius Tech J. 2023, 27, 86–94. [Google Scholar] [CrossRef]
- Kechagias, E.P.; Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A. An Application of a Multi-Criteria Approach for the Development of a Process Reference Model for Supply Chain Operations. Sustainability 2020, 12, 5791. [Google Scholar] [CrossRef]
- IEC 60050-192; International Electrotechnical Vocabulary. Chapter 192: Dependability and Quality of Service. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- STANREC 4174, ADMP-02 Guidance for Dependability Management; Guidance for Dependability In-Service; Edition A Version 1; NATO: Brussels, Belgium, 2014.
- Eddarhri, M.; Adib, J.; Hain, M.; Marzak, A. Towards predictive maintenance: The case of the aeronautical industry. Procedia Comput. Sci. 2022, 203, 769–774. [Google Scholar] [CrossRef]
- Patton, J.D. Preventive Maintenance, 3rd ed.; International Society of Automation: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Zhang, Y.; Li, C.; Su, X.; Cui, R.; Wan, B. A baseline-reactive scheduling method for carrier-based aircraft maintenance tasks. Complex Intell. Syst. 2023, 9, 367–397. [Google Scholar] [CrossRef]
- Okeagu, F.N.; Mgbemena, C.E. A systematic review of digital twin systems for improved predictive maintenance of equipment in smart factories. Int. J. Ind. Prod. Eng. 2022, 1, 1–20. [Google Scholar]
- Zieja, M.; Ważny, M.; Stępień, S. Distribution determination of time of exceeding permissible condition as used to determine lifetimes of selected aeronautical devices/systems. Eksploat. Niezawodn. 2016, 18, 57–64. [Google Scholar] [CrossRef]
- Miśkiewicz, R.; Wolniak, R. Practical Application of the Industry 4.0 Concept in a Steel Company. Sustainability 2020, 12, 5776. [Google Scholar] [CrossRef]
- Kawka, K.; Wojtowicz, K.; Zieja, M. Examination and evaluation of training jet aircraft maintainability. In Proceedings of the 2020 IEEE International Workshop on Metrology for Aerospace, Pisa, Italy, 22–24 June 2020; IEEE: Piscataway, NJ, USA. [Google Scholar] [CrossRef]
- Wibowo, U.; Kurniawan, I.E.; Prayitno, H. Implementation of Safety Risk Management in Aircraft Airffame Maintenance. Sinergi Int. J. Logist. 2023, 1, 85–95. [Google Scholar] [CrossRef]
- Jodejko-Pietruczuk, A.; Werbińska-Wojciechowska, S. Availability model of technical objects-block inspection policy implementation. In Proceedings of the Safety and Reliability: Methodology and Applications Conference, Wrocław, Poland, 14–18 September 2014. [Google Scholar] [CrossRef]
- Marugán, A.P.; García Márquez, F.P.; Pinar Pérez, J.M. Optimal maintenance management of offshore wind farms. Energies 2016, 9, 46. [Google Scholar] [CrossRef]
- Stanton, I.; Munir, K.; Ikram, A.; El-Bakry, M. Predictive maintenance analytics and implementation for aircraft: Challenges and opportunities. INCOSE Syst. Eng. 2022, 26, 216–237. [Google Scholar] [CrossRef]
- Inspections Requirements Handbook, PI 1T-M346(PLAF)-6; Leonardo Spa Aircraft Division: Venegono Superiore, Italy, 2017.
- Jacyna, M.; Izdebski, M.; Szczepański, E.; Gołda, P. The task assignment of vehicles for a production company. Symmetry 2018, 10, 551. [Google Scholar] [CrossRef]
- Rabanal, A.; Ulazia, A.; Ibarra-Berastegi, G.; Sáenz, J.; Elosegui, U. A benchmarking multi-criteria method for the identification of defective anemometers in wind farms. Energies 2019, 12, 28. [Google Scholar] [CrossRef]
- Paiva, R.G.N.; Cavalcante, C.A.V.; Do, P. Applying association rules in the maintenance and reliability of physical systems: A review. Comput. Ind. Eng. 2024, 194, 110332. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Shardt, Y.A.W.; Cui, J.; Tong, C. A KPI-based probabilistic soft sensor development approach that maximizes the coefficient of determination. Sensors 2018, 18, 3058. [Google Scholar] [CrossRef]
- Oszczypała, M.; Konwerski, J.; Ziółkowski, J.; Małachowski, J. Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation. Reliab. Eng. Syst. Saf. 2024, 242, 109780. [Google Scholar] [CrossRef]
- Ziółkowski, J.; Oszczypała, M.; Lęgas, A.; Konwerski, J.; Małachowski, J. A method for calculating the technical readiness of aviation refuelling vehicles. Eksploat. Niezawodn. 2024, 26, 187888. [Google Scholar] [CrossRef]
2018 | 2019 | 2020 | |
---|---|---|---|
I quarter | 98.76% | 87.96% | 75.58% |
II quarter | 94.69% | 68.67% | 72.57% |
III quarter | 100.00% | 80.18% | 76.11% |
IV quarter | 94.69% | 53.27% | 76.11% |
Annual | 96.81% | 64.78% | 75.75% |
Duration [Days]: | |
---|---|
Expected value | 10.7 |
Median | 9.5 |
Variance | 13.1 |
Standard deviation | 3.5 |
Minimum value | 5.0 |
Maximum value | 19.0 |
Gap | 14 |
Distribution Type | Normal | Log-Normal | Weibull | Exponential |
---|---|---|---|---|
Distributor | ||||
Distribution coordinates | ||||
Distribution parameters |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Duration [min:sec] | 24:12 | 34:00 | 27:25 | 25:36 | 33:30 | 52:06 | 28:24 | 22:12 | 43:18 | 27:00 |
No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Duration [min:sec] | 29:13 | 45:24 | 39:30 | 31:11 | 31:05 | 30:30 | 41:49 | 27:18 | 21:36 | 33:24 |
Distribution Coordinates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Normal: | Log-Normal: | Weibull: | Exponential: | |||||||
1 | 21.6 | 0.03 | 21.60 | −1.82 | 3.07 | −1.82 | 3.07 | −3.35 | 21.60 | −0.03 |
2 | 22.2 | 0.08 | 22.20 | −1.38 | 3.10 | −1.38 | 3.10 | −2.44 | 22.20 | −0.09 |
3 | 24.2 | 0.13 | 24.20 | −1.12 | 3.19 | −1.12 | 3.19 | −1.95 | 24.20 | −0.14 |
4 | 25.6 | 0.18 | 25.60 | −0.91 | 3.24 | −0.91 | 3.24 | −1.61 | 25.60 | −0.20 |
5 | 27.0 | 0.23 | 27.00 | −0.74 | 3.30 | −0.74 | 3.30 | −1.34 | 27.00 | −0.26 |
6 | 27.2 | 0.28 | 27.20 | −0.58 | 3.30 | −0.58 | 3.30 | −1.12 | 27.20 | −0.33 |
7 | 27.3 | 0.33 | 27.30 | −0.44 | 3.31 | −0.44 | 3.31 | −0.92 | 27.30 | −0.40 |
8 | 28.4 | 0.38 | 28.40 | −0.31 | 3.35 | −0.31 | 3.35 | −0.75 | 28.40 | −0.47 |
9 | 29.2 | 0.43 | 29.20 | −0.19 | 3.37 | −0.19 | 3.37 | −0.59 | 29.20 | −0.56 |
10 | 30.5 | 0.48 | 30.50 | −0.06 | 3.42 | −0.06 | 3.42 | −0.44 | 30.50 | −0.65 |
11 | 31.1 | 0.52 | 31.10 | 0.06 | 3.44 | 0.06 | 3.44 | −0.30 | 31.10 | −0.74 |
12 | 31.2 | 0.57 | 31.20 | 0.19 | 3.44 | 0.19 | 3.44 | −0.16 | 31.20 | −0.85 |
13 | 33.4 | 0.62 | 33.40 | 0.31 | 3.51 | 0.31 | 3.51 | −0.03 | 33.40 | −0.97 |
14 | 33.5 | 0.67 | 33.50 | 0.44 | 3.51 | 0.44 | 3.51 | 0.11 | 33.50 | −1.11 |
15 | 34.2 | 0.72 | 34.20 | 0.58 | 3.53 | 0.58 | 3.53 | 0.24 | 34.20 | −1.28 |
16 | 39.5 | 0.77 | 39.50 | 0.74 | 3.68 | 0.74 | 3.68 | 0.38 | 39.50 | −1.47 |
17 | 41.8 | 0.82 | 41.80 | 0.91 | 3.73 | 0.91 | 3.73 | 0.53 | 41.80 | −1.71 |
18 | 43.3 | 0.87 | 43.30 | 1.12 | 3.77 | 1.12 | 3.77 | 0.70 | 43.30 | −2.02 |
19 | 45.4 | 0.92 | 45.40 | 1.38 | 3.82 | 1.38 | 3.82 | 0.91 | 45.40 | −2.48 |
20 | 52.1 | 0.97 | 52.10 | 1.82 | 3.95 | 1.82 | 3.95 | 1.22 | 52.10 | −3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żyluk, A.; Zieja, M.; Kawka, K.; Główczyk, B. Monitoring and Improving Aircraft Maintenance Processes Using IT Systems. Appl. Sci. 2025, 15, 1374. https://doi.org/10.3390/app15031374
Żyluk A, Zieja M, Kawka K, Główczyk B. Monitoring and Improving Aircraft Maintenance Processes Using IT Systems. Applied Sciences. 2025; 15(3):1374. https://doi.org/10.3390/app15031374
Chicago/Turabian StyleŻyluk, Andrzej, Mariusz Zieja, Karol Kawka, and Bartłomiej Główczyk. 2025. "Monitoring and Improving Aircraft Maintenance Processes Using IT Systems" Applied Sciences 15, no. 3: 1374. https://doi.org/10.3390/app15031374
APA StyleŻyluk, A., Zieja, M., Kawka, K., & Główczyk, B. (2025). Monitoring and Improving Aircraft Maintenance Processes Using IT Systems. Applied Sciences, 15(3), 1374. https://doi.org/10.3390/app15031374