Application of the Allium Test in Toxicity Studies of Lead and Copper: A Cytological Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material Used
2.3. Experimental Design
2.4. Treatments Used and Preparations
2.5. Fixation, Hydrolysis, and Staining Procedures
2.6. Microscope Slide Preparation and Microscope Used
- (a)
- A drop of Carnoy’s reagent was applied to the microscope slide.
- (b)
- The root tip (1–2 mm) was placed into the drop.
- (c)
- The slide was gently heated over the flame of a spirit lamp.
- (d)
- A cover slip was placed over the specimen.
- (e)
- The cover slip was pressed to uniformly spread the material across the slide.
- (f)
- Excess stains were removed using filter paper by gently pressing.
2.7. Cytological Assessment
2.8. Determination of the Inhibition Index (IC50)
2.9. Statistical Analysis
3. Results
3.1. Analysis of the Effect of Lead on the Mitotic Index
3.2. Analysis of the Effect of Cu+2 on the Mitotic Index
3.3. Comparison Between Pb²⁺ and Cu²⁺ Regarding the Mitotic Index
3.4. Comparison of the Impact of Pb²⁺ and Cu²⁺ on the Abnormalities Index
3.5. Correlations Between Cytological Indices Under Copper and Lead Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R. Global health and environmental pollution. Int. J. Public Health 2015, 60, 761–762. [Google Scholar] [CrossRef] [PubMed]
- Kupiec, J.; Góra, D. Analysis of Selected Health Problems in Children and Youth with Environmental Issues in the Context of Air Pollution Emissions in Poland. J. Ecol. Eng. 2024, 25, 273–290. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M.; Filho, M.C.M.T.; Nogueira, T.A.R.; Galindo, F.S. Sustainable Crop Production; BoD—Books on Demand; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Lee, S.; Yun, J.-M.; Lee, J.-Y.; Hong, G.; Kim, J.-S.; Kim, D.; Han, J.-G. The Remediation Characteristics of Heavy Metals (Copper and Lead) on Applying Recycled Food Waste Ash and Electrokinetic Remediation Techniques. Appl. Sci. 2021, 11, 7437. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Kim, D.; Han, J. Remediation of Copper Contaminated Soils Using Water Containing Hydrogen Nanobubbles. Appl. Sci. 2020, 10, 2185. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Torchinskii, Y.M. Sulfhydryl and Disulfide Groups of Proteins; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- D’Souza, L.C.; Shekher, A.; Challagundla, K.B.; Sharma, A.; Gupta, S.C. Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin. Cancer Biol. 2022, 87, 127–136. [Google Scholar] [CrossRef]
- Ioan, S.; Irina, P.; Emilian, O.; Sorina, P.; Cerasela, P.; Adriana, C.; Dorin, C.; Alina-Maria, T.-C.; Dacian, L.; Ciprian, S.; et al. Application of the Drosophila melanogaster Research Model to Evaluate the Toxicity Levels between Lead and Copper. Appl. Sci. 2024, 14, 4190. [Google Scholar] [CrossRef]
- Farkas, A.; Salánki, J.; Specziár, A. Age- and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site. Water Res. 2003, 37, 959–964. [Google Scholar] [CrossRef]
- Chang, L.; Shen, S.; Zhang, Z.; Song, X.; Jiang, Q. Study on the relationship between age and the concentrations of heavy metal elements in human bone. Ann. Transl. Med. 2018, 6, 320. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jin, L.; Wang, X. Cadmium absorption and transportation pathways in plants. Int. J. Phytoremediat. 2017, 19, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Wildung, R.E. Soil and plant factors influencing the accumulation of heavy metals by plants. Environ. Health Perspect. 1978, 27, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wang, L.; Yang, J.; Zhao, P.; Zhu, Y.; Li, Y.; Yu, Y.; Liu, H.; Rensing, C.; Wu, Z.; et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J. Hazard. Mater. 2021, 402, 123570. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Nawaz, N.; Ali, I.; Azam, M.; Rizwan, M.; Ahmad, P.; Ali, S. Regulation of Photosynthesis Under Metal Stress. In Photosynthesis, Productivity and Environmental Stress; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 95–105. [Google Scholar]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, D. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol. 2010, 10, 40. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Cortés-Eslava, J.; Gómez-Arroyo, S.; Risueño, M.C.; Testillano, P.S. The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environ. Pollut. 2018, 240, 77–86. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Udeigwe, T.K.; Teboh, J.M.; Eze, P.N.; Hashem Stietiya, M.; Kumar, V.; Hendrix, J.; Mascagni, H.J.; Ying, T.; Kandakji, T. Implications of leading crop production practices on environmental quality and human health. J. Environ. Manag. 2015, 151, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. About the Programme|Global Soil Partnership. Available online: https://www.fao.org/global-soil-partnership/pillars-action/2-awareness-raising/soil-doctor/en/#c853850 (accessed on 10 December 2024).
- Anjum, N.A.; Pereira, M.E.; Ahmad, I.; Duarte, A.C.; Umar, S.; Khan, N.A. Phytotechnologies: Remediation of Environmental Contaminants; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Saadaoui, W.; Gamboa-Rosales, H.; Sifuentes-Gallardo, C.; Durán-Muñoz, H.; Abrougui, K.; Mohammadi, A.; Tarchoun, N. Effects of Lead, Copper and Cadmium on Bioaccumulation and Translocation Factors and Biosynthesis of Photosynthetic Pigments in Vicia faba L. (Broad Beans) at Different Stages of Growth. Appl. Sci. 2022, 12, 8941. [Google Scholar] [CrossRef]
- Yadav, A.; Chowdhary, P.; Kaithwas, G.; Bharagava, R.N. Toxic Metals in the Environment: Threats on Ecosystem and Bioremediation Approaches. In Handbook of Metal-Microbe Interactions and Bioremediation; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zhou, C.; Huang, M.; Ren, H.; Yu, J.; Wu, J.; Ma, X. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Ecotoxicol. Environ. Saf. 2017, 142, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ur Rahman, S.; Qin, A.; Zain, M.; Mushtaq, Z.; Mehmood, F.; Riaz, L.; Naveed, S.; Ansari, M.J.; Saeed, M.; Ahmad, I.; et al. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024, 10, e27724. [Google Scholar] [CrossRef]
- Silva, I.R.; Smyth, T.J.; Moxley, D.F.; Carter, T.E.; Allen, N.S.; Rufty, T.W. Aluminum Accumulation at Nuclei of Cells in the Root Tip. Fluorescence Detection Using Lumogallion and Confocal Laser Scanning Microscopy. Plant Physiol. 2000, 123, 543–552. [Google Scholar] [CrossRef]
- Oorts, K.; Smolders, E.; Lanno, R.; Chowdhury, M.J. Bioavailability and Ecotoxicity of Lead in Soil: Implications for Setting Ecological Soil Quality Standards. Environ. Toxicol. Chem. 2021, 40, 1948–1961. [Google Scholar] [CrossRef]
- Singh, D.; Roy, B.K. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol. Plant. 2017, 39, 92. [Google Scholar] [CrossRef]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Angelova, M.; Asenova, S.; Nedkova, V.; Koleva-Kolarova, R. Copper in the human organism. Trakia J. Sci. 2011, 9, 88–98. [Google Scholar]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- Ghorbani, R. 18—Reducing copper-based fungicide use in organic crop production systems. In Handbook of Organic Food Safety and Quality; Cooper, J., Niggli, U., Leifert, C., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: New Delhi, India, 2007; pp. 392–412. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 2016, 39, 305–315. [Google Scholar] [CrossRef]
- Chizzola, R. Metallic Mineral Elements and Heavy Metals in Medicinal Plants. Med. Aromat. Plant Sci. Biotechnol. 2012, 6, 39–53. [Google Scholar]
- Markert, B.; Wappelhorst, O.; Weckert, V.; Herpin, U.; Siewers, U.; Friese, K.; Breulmann, G. The use of bioindicators for monitoring the heavy-metal status of the environment. J. Radioanal. Nucl. Chem. 1999, 240, 425–429. [Google Scholar] [CrossRef]
- Stankovic, S.; Stankovic, A.R. Bioindicators of Toxic Metals. In Green Materials for Energy, Products and Depollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 151–228. [Google Scholar] [CrossRef]
- Ioan, S.; Irina, P.; Dumitru, C.D.; Emilian, O.; Ramona, M.A.; Mariana, G. Analyzes Regarding the Cytotoxicity of ZnSO 4 Excess on Cell Division. Pharmacophore 2023, 14, 7–14. [Google Scholar] [CrossRef]
- Salazar Mercado, S.A.; Correa, R.D.C. Examining the interaction between pesticides and bioindicator plants: An in-depth analysis of their cytotoxicity. Environ. Sci. Pollut. Res. 2024, 31, 51114–51125. [Google Scholar] [CrossRef]
- Moghimi Dehkordi, M.; Pournuroz Nodeh, Z.; Soleimani Dehkordi, K.; Salmanvandi, H.; Rasouli Khorjestan, R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Jibunor, V.; Elebo, A. The Study of the Cytotoxicity and Oxidative Impact of Metal Oxide Nanoparticle on Allium cepa L Root Cell. Preprints 2024, 2024102570. [Google Scholar] [CrossRef]
- Mulatu Mamo, G.; Yadeta Ejeta, S. Copper Oxide-Nickel oxide nanocomposites synthesized via Allium cepa peel extract for photocatalytic degradation of methylene blue. Results Chem. 2024, 11, 101801. [Google Scholar] [CrossRef]
- Marques, H.G.; Soares, L.B.; de Andrade, F.P.; de Campos, J.M.S.; Palmieri, M.J.; Brasileiro-Vidal, A.C.; de Oliveira Bustamante, F. Biomonitoring of the Paraopeba river: Cytotoxic, genotoxic and metal concentration analysis three years after the Brumadinho dam rupture-Minas Gerais, Brazil. Sci. Total Environ. 2025, 964, 178618. [Google Scholar] [CrossRef]
- Sabeen, M.; Mahmood, Q.; Ahmad Bhatti, Z.; Faridullah; Irshad, M.; Bilal, M.; Hayat, M.T.; Irshad, U.; Ali Akbar, T.; Arslan, M.; et al. Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi J. Biol. Sci. 2020, 27, 1368–1374. [Google Scholar] [CrossRef]
- Addis, W.; Abebaw, A. Determination of heavy metal concentration in soils used for cultivation of Allium sativum L. (garlic) in East Gojjam Zone, Amhara Region, Ethiopia. Cogent Chem. 2017, 3, 1419422. [Google Scholar] [CrossRef]
- Pardenas, I.J.; Roeslan, M.O. Cytotoxicity activity of Allium sativum extracts against HSC-3 cells. In Quality Improvement in Dental and Medical Knowledge, Research, Skills and Ethics Facing Global Challenges; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Çavuşoğlu, K.; Kalefetoğlu Macar, T.; Macar, O.; Çavuşoğlu, D.; Yalçın, E. Comparative investigation of toxicity induced by UV-A and UV-C radiation using Allium test. Environ. Sci. Pollut. Res. 2022, 29, 33988–33998. [Google Scholar] [CrossRef] [PubMed]
- Velumani, P.; Palani, N.; Casmie, A.A.; Senthilvel, R.; Parthasarthy, V. Cellular and chromosomal interaction of bio-synthesized copper oxide nanoparticles-Induced nano-cytotoxicity and genotoxicity. Toxicology 2025, 104, 106000. [Google Scholar] [CrossRef] [PubMed]
- Awe, E.T.; Akpan, U.U. Cytological Study of Allium Cepa and Allium Sativum. ActaSatech 2017, 9, 113–120. [Google Scholar]
- Melo, E.C.d.; da Silva Pinheiro, R.; Costa, B.S.; Lima, R.M.; Dias, A.C.; de Jesus Aguiar dos Santos, T.; Nascimento, M.L.; de Castro e Sousa, J.M.; Islam, M.T.; de Carvalho Melo Cavalcante, A.A.; et al. Allium cepa as a Toxicogenetic Investigational Tool for Plant Extracts: A Systematic Review. Chem. Biodivers. 2024, 21, e202401406. [Google Scholar] [CrossRef] [PubMed]
- Ristea, M.-E.; Zarnescu, O. Effects of Indigo Carmine on Growth, Cell Division, and Morphology of Allium cepa L. Root Tip. Toxics 2024, 12, 194. [Google Scholar] [CrossRef]
- Petrescu, I.; Sarac, I.; Bonciu, E.; Madosa, E.; Rosculete, C.A.; Butnariu, M. Study regarding the cytotoxic potential of cadmium and zinc in meristematic tissues of basil (Ocimum basilicum L.). Caryologia 2020, 73, 75–81. [Google Scholar]
- Agic, R.; Popsimonova, G.; Vasić, M.; Varga, J.G.; Todorovic, V.; Neykov, S.; Balliu, A.; Matotan, Z.; Karic, L.; Calin, M.; et al. Collecting of onion (Allium cepa L.) and leek (Allium porrum L.) landaraces in south eastern europe for further ex-situ conservation. Sci. Stud. Res. Ser. Biol. 2015, 24, 10–17. [Google Scholar]
- Smirnova, M.V.; Denisov, D.B. On Using the Allium Test for Waterbody Biomonitoring in the Murmansk Region. Int. J. Plant Biol. 2022, 13, 499–505. [Google Scholar] [CrossRef]
- Matias, A.M.; Fontanilla, I.K. Optimizing the Utility of Allium cepa L. var. aggregatum (sibuyas Tagalog) for the Allium Test by Elucidating its Mitotic Periodicity and Rhythmicity Under Varying Light Conditions. Sci. Diliman 2011, 23, 43–51. [Google Scholar]
- Emilian, O.; Ioan, S.; Irina, P.; Raul, P.; Adriana, C.; Dorin, C.; Ciprian, S. Cytological Applications of the Vacuolization Phenomenon as a Means of Determining Saline Cytotoxicity. Appl. Sci. 2023, 13, 8461. [Google Scholar] [CrossRef]
- Liman, R.; Ali, M.M.; İstifli, E.S.; Ciğerci, İ.H.; Tınaz, Ü.; Kırlangıç, S.; Altay, N.; Uğur, Y.Y. Cyto-Genotoxic Assessment of Sulfoxaflor in Allium cepa Root Cells and DNA Docking Studies. Microscopy Research and Technique. Microsc. Res. Tech. 2025. early view. [Google Scholar] [CrossRef]
- Biesterfeld, S.; Beckers, S.; Cadenas, M.D.C.V.; Schramm, M. Feulgen Staining Remains the Gold Standard for Precise DNA Image Cytometry. Anticancer Res. 2011, 31, 53–58. [Google Scholar] [PubMed]
- Mihaela, C.; Corneanu, G.; Jurescu, N.; Toptan, C. Evalu-ation of the genotoxicity of water bottled in PET recipients. Environ. Eng. Manag. J. 2010, 9, 1531–1537. [Google Scholar] [CrossRef]
- Khikmah, F.F.; Suratsih. Developing enrichment module of polyploidy on shallot (Allium ascalonicum L.) for 12th grade students. J. Phys. Conf. Ser. 2019, 1241, 012022. [Google Scholar] [CrossRef]
- Caldwell, G.W.; Yan, Z.; Lang, W.; Masucci, J.A. The IC50 Concept Revisited. Curr. Top. Med. Chem. 2012, 12, 1282–1290. [Google Scholar] [CrossRef]
- Ha, M.-W.; Ma, R.; Shun, L.-P.; Gong, Y.-H.; Yuan, Y. Effects of allitridi on cell cycle arrest of human gastric cancer cells. World J. Gastroenterol. WJG 2005, 11, 5433–5437. [Google Scholar] [CrossRef]
- Abed, M.S.; Moosa, A.A.; Alzuhairi, M.A. Heavy metals in cosmetics and tattoos: A review of historical background, health impact, and regulatory limits. J. Hazard. Mater. Adv. 2024, 13, 100390. [Google Scholar] [CrossRef]
- Robledo Ardila, P.A.; Álvarez-Alonso, R.; Árcega-Cabrera, F.; Durán Valsero, J.J.; Morales García, R.; Lamas-Cosío, E.; Oceguera-Vargas, I.; DelValls, A. Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci. 2024, 14, 1435. [Google Scholar] [CrossRef]
- Adhikari, N.; Martyshkin, D.; Fedorov, V.; Das, D.; Antony, V.; Mirov, S. Laser-Induced Breakdown Spectroscopy Detection of Heavy Metal Contamination in Soil Samples from North Birmingham, Alabama. Appl. Sci. 2024, 14, 7868. [Google Scholar] [CrossRef]
- Rajasekar, A.; Murava, R.T.; Norgbey, E.; Zhu, X. Spatial Distribution, Risk Index, and Correlation of Heavy Metals in the Chuhe River (Yangtze Tributary): Preliminary Research Analysis of Surface Water and Sediment Contamination. Appl. Sci. 2024, 14, 904. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Q.; Sun, L.; Sun, Y.; Qin, Q.; Song, K.; Zhu, Z.; Liu, X.; Xue, Y. A prospective health risks analysis of regulatory limits for heavy metals in rice from representative organizations and countries worldwide: Are they protective? Sci. Total Environ. 2023, 904, 167130. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, H.; Deng, X.; Liu, J.; Chen, H. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci. Rep. 2017, 7, 41245. [Google Scholar] [CrossRef] [PubMed]
- Prajitha, V.; Thoppil, J.E. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes. Cytotechnology 2017, 69, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Reape, T.J.; Molony, E.M.; McCabe, P.F. Programmed cell death in plants: Distinguishing between different modes. J. Exp. Bot. 2008, 59, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.R.; Achary, V.M.M.; Panda, B.B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul. 2013, 71, 157–170. [Google Scholar] [CrossRef]
Source | Df | Sum Sq | Mean Sq | F Value | Pr(>F) |
---|---|---|---|---|---|
Dose | 4 | 344.3 | 86.09 | 86.41 | <2 × 10−16 *** |
Time | 2 | 48.4 | 24.22 | 24.31 | 1.85 × 10−8 *** |
Dose–Time | 8 | 5.70 | 0.71 | 0.71 | 0.68 |
Residuals | 60 | 59.8 | 1.00 |
Dose | Time | Mitotic_Index (%) | IC * | Abnormalities_Index (%) | Interphase (%) | Prophase (%) | Metaphase (%) | Anaphase (%) | Telophase (%) |
---|---|---|---|---|---|---|---|---|---|
Control | 24 | 11.82 ± 0.42 a | - | 0 ± 0 b | 88.18 ± 0.42 | 5.62 ± 0.71 | 2.28 ± 1.04 | 1.31 ± 0.53 | 1.51 ± 0.34 |
Control | 48 | 11.35 ± 0.59 a | - | 0 ± 0 b | 88.65 ± 0.59 | 6.24 ± 0.8 | 1.7 ± 0.41 | 1.58 ± 0.48 | 1.83 ± 0.7 |
Control | 72 | 10.99 ± 0.49 ab | - | 0 ± 0 b | 89.01 ± 0.49 | 6.02 ± 0.82 | 2.25 ± 0.7 | 1.12 ± 0.42 | 1.6 ± 0.49 |
0.25 Mm | 24 | 11.52 ± 1.05 a | 2.54 | 0 ± 0 b | 88.48 ± 1.05 | 6.1 ± 0.81 | 1.96 ± 0.72 | 1.51 ± 0.68 | 1.96 ± 0.46 |
0.25 Mm | 48 | 10.97 ± 1.45 ab | 7.19 | 0 ± 0 b | 89.03 ± 1.45 | 6.17 ± 1.03 | 1.85 ± 0.74 | 1.5 ± 0.63 | 1.44 ± 0.48 |
0.25 Mm | 72 | 9.59 ± 1.2 abc | 18.87 | 0 ± 0 b | 90.41 ± 1.2 | 5.66 ± 1.18 | 0.99 ± 0.33 | 1.46 ± 0.3 | 1.48 ± 0.35 |
0.5 mM | 24 | 10.32 ± 1.34 ab | 12.69 | 0 ± 0 b | 89.68 ± 1.34 | 7.31 ± 1.16 | 0.72 ± 0.1 | 0.72 ± 0.45 | 1.56 ± 0.46 |
0.5 mM | 48 | 8.83 ± 1.47 bcd | 25.3 | 0 ± 0 b | 91.17 ± 1.47 | 6.23 ± 1.74 | 0.8 ± 0.51 | 0.51 ± 0.42 | 1.28 ± 0.74 |
0.5 mM | 72 | 7.64 ± 1.04 cde | 35.36 | 0.69 ± 0.85 ab | 92.36 ± 1.04 | 4.42 ± 0.7 | 1.01 ± 0.45 | 0.95 ± 0.53 | 1.26 ± 0.28 |
0.75 mM | 24 | 7.60 ± 0.4 de | 35.70 | 0 ± 0 b | 92.40 ± 0.4 | 5.13 ± 1.11 | 1.08 ± 0.7 | 0.88 ± 0.53 | 0.51 ± 0.42 |
0.75 mM | 48 | 6.81 ± 0.62 def | 42.39 | 0.62 ± 0.94 ab | 93.19 ± 0.62 | 3.32 ± 0.54 | 1.22 ± 0.57 | 0.97 ± 0.54 | 1.29 ± 0.29 |
0.75 mM | 72 | 5.45 ± 0.51 ef | 53.89 | 0.97 ± 0.67 ab | 94.55 ± 0.51 | 3.19 ± 0.52 | 0.46 ± 0.39 | 0.86 ± 0.53 | 0.94 ± 0.51 |
1 mM | 24 | 6.94 ± 0.55 def | 41.29 | 0.67 ± 1.35 ab | 93.06 ± 0.55 | 4.11 ± 0.56 | 1.04 ± 0.77 | 0.28 ± 0.35 | 1.51 ± 0.54 |
1 mM | 48 | 6.26 ± 0.55 ef | 47.04 | 1.37 ± 1.31 ab | 93.74 ± 0.55 | 3.18 ± 0.81 | 1.42 ± 0.8 | 0.43 ± 0.54 | 1.23 ± 0.73 |
1 mM | 72 | 4.74 ± 0.33 f | 59.89 | 1.81 ± 1.06 a | 95.26 ± 0.33 | 3.47 ± 0.49 | 0.3 ± 0.37 | 0.4 ± 0.52 | 0.57 ± 0.47 |
Source | Df | Sum Sq | Mean Sq | F Value | Pr(>F) |
---|---|---|---|---|---|
Dose | 4 | 511.50 | 127.88 | 164.01 | <2 × 10−16 *** |
Time | 2 | 106.10 | 53.04 | 68.02 | 3.75 × 10−16 *** |
Dose–Time | 8 | 25.2 | 3.15 | 4.05 | 6.78 × 10−4 *** |
Residuals | 60 | 46.80 | 0.78 |
Dose | Time | Mitotic_Index (%) | IC * | Abnormalities_Index (%) | Interphase (%) | Prophase (%) | Metaphase (%) | Anaphase (%) | Telophase (%) |
---|---|---|---|---|---|---|---|---|---|
Control | 24 | 11.82 ± 0.42 a | - | 0 ± 0 c | 88.18 ± 0.42 | 5.62 ± 0.71 | 2.28 ± 1.04 | 1.31 ± 0.53 | 1.51 ± 0.34 |
Control | 48 | 11.35 ± 0.59 a | - | 0 ± 0 c | 88.65 ± 0.59 | 6.24 ± 0.8 | 1.7 ± 0.41 | 1.58 ± 0.48 | 1.83 ± 0.7 |
Control | 72 | 10.99 ± 0.49 ab | - | 0 ± 0 c | 89.01 ± 0.49 | 6.02 ± 0.82 | 2.25 ± 0.7 | 1.12 ± 0.42 | 1.6 ± 0.49 |
0.25 Mm | 24 | 11.04 ± 0.84 ab | 6.6 | 0 ± 0 c | 88.96 ± 0.84 | 7.02 ± 0.14 | 1.33 ± 0.48 | 1.13 ± 0.32 | 1.55 ± 0.81 |
0.25 Mm | 48 | 9.21 ± 1.51 bc | 22.08 | 0 ± 0 c | 90.79 ± 1.51 | 6.1 ± 1.06 | 1.51 ± 0.44 | 0.87 ± 0.78 | 0.73 ± 0.37 |
0.25 Mm | 72 | 8.55 ± 0.96 c | 27.66 | 0.49 ± 0.4 c | 91.45 ± 0.96 | 5.35 ± 0.34 | 1.01 ± 0.59 | 1.4 ± 0.87 | 0.79 ± 0.48 |
0.5 mM | 24 | 9.24 ± 1.18 bc | 21.83 | 0.91 ± 1.02 bc | 90.76 ± 1.18 | 6.45 ± 0.95 | 0.86 ± 0.52 | 1.22 ± 0.45 | 0.7 ± 0.35 |
0.5 mM | 48 | 6.29 ± 0.62 de | 46.79 | 1.74 ± 0.64 bc | 93.71 ± 0.62 | 3.5 ± 1.07 | 1.23 ± 0.66 | 0.69 ± 0.35 | 0.87 ± 0.58 |
0.5 mM | 72 | 4.84 ± 0.7 ef | 59.05 | 2.07 ± 0.87 bc | 95.16 ± 0.7 | 2.83 ± 0.43 | 0.95 ± 0.62 | 0.61 ± 0.31 | 0.45 ± 0.37 |
0.75 mM | 24 | 6.79 ± 0.74 de | 37.99 | 1.54 ± 1.39 bc | 92.67 ± 0.4 | 4.67 ± 0.63 | 0.63 ± 0.33 | 0.76 ± 0.41 | 1.27 ± 0.35 |
0.75 mM | 48 | 6.07 ± 0.6 de | 48.65 | 1.88 ± 0.63 abc | 83.78 ± 15.63 | 4.13 ± 0.9 | 0.63 ± 0.33 | 0.76 ± 0.41 | 1.27 ± 0.35 |
0.75 mM | 72 | 4.07 ± 0.75 ef | 65.57 | 2.45 ± 2.25 abc | 95.93 ± 0.75 | 2.34 ± 0.94 | 0.19 ± 0.38 | 0.64 ± 0.54 | 0.9 ± 0.47 |
1 mM | 24 | 6.54 ± 0.31 de | 44.67 | 1.14 ± 0.96 abc | 93.46 ± 0.31 | 3.53 ± 0.53 | 0.73 ± 0.7 | 1.13 ± 0.41 | 1.14 ± 0.46 |
1 mM | 48 | 3.64 ± 0.57 fg | 69.2 | 3.35 ± 1.31 ab | 96.36 ± 0.57 | 2.55 ± 1.08 | 0.37 ± 0.45 | 0.37 ± 0.45 | 0.37 ± 0.45 |
1 mM | 72 | 2.52 ± 0.72 g | 78.68 | 4.23 ± 1.27 a | 97.48 ± 0.72 | 1.3 ± 0.63 | 0.18 ± 0.36 | 0.3 ± 0.39 | 0.74 ± 0.44 |
Source | Df | Sum Sq | Mean Sq | F Value | Pr(>F) |
---|---|---|---|---|---|
Metal_Type | 1 | 53.20 | 53.2 | 6.863 | 0.01 ** |
Residuals | 148 | 1147.8 | 7.76 |
Source | Df | Sum Sq | Mean Sq | F Value | Pr(>F) |
---|---|---|---|---|---|
Metal_Type | 1 | 31.08 | 31.082 | 18.33 | 3.32 × 10−5 *** |
Residuals | 148 | 250.94 | 1.698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onisan, E.; Sarac, I.; Petolescu, C.; Horablaga, M.N.; Mate, C.; Simina, A.; Camen, D.; Ganea, M.; Ardelean, D.R.; Cãlugar, L.; et al. Application of the Allium Test in Toxicity Studies of Lead and Copper: A Cytological Perspective. Appl. Sci. 2025, 15, 1491. https://doi.org/10.3390/app15031491
Onisan E, Sarac I, Petolescu C, Horablaga MN, Mate C, Simina A, Camen D, Ganea M, Ardelean DR, Cãlugar L, et al. Application of the Allium Test in Toxicity Studies of Lead and Copper: A Cytological Perspective. Applied Sciences. 2025; 15(3):1491. https://doi.org/10.3390/app15031491
Chicago/Turabian StyleOnisan, Emilian, Ioan Sarac, Cerasela Petolescu, Marinel Nicolae Horablaga, Cristian Mate, Alina Simina, Dorin Camen, Mariana Ganea, Daniela Rebeca Ardelean, Lucian Cãlugar, and et al. 2025. "Application of the Allium Test in Toxicity Studies of Lead and Copper: A Cytological Perspective" Applied Sciences 15, no. 3: 1491. https://doi.org/10.3390/app15031491
APA StyleOnisan, E., Sarac, I., Petolescu, C., Horablaga, M. N., Mate, C., Simina, A., Camen, D., Ganea, M., Ardelean, D. R., Cãlugar, L., Petrescu, I., & Ștef, R. (2025). Application of the Allium Test in Toxicity Studies of Lead and Copper: A Cytological Perspective. Applied Sciences, 15(3), 1491. https://doi.org/10.3390/app15031491