Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Methodology
3. Prospects for the Development of Electronic Sensors as an Alternative to Traditional Instrumental Methods
4. e-Nose
5. e-Tongue
6. e-Eye
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AI | artificial intelligence |
2BuOH | 2-butanol |
a* | color parameter—green/red component |
ADC | analog to digital converter |
AHS | e-tongue sensors sensitive to sour taste |
ANN | artificial neural network |
ANS | e-tongue sensors sensitive to sweet |
b* | color parameter—yellow/blue component |
BMP | meat peptide |
BuOH | 1-butanol |
C* | color parameter—chrominance |
CNT | carbon nanotube |
CTS | e-tongue sensors sensitive to salty |
DAQ | data acquisition |
EtOH | ethanol |
FI-PAD | pulsed amperometric detection in flow injection system |
GBC | gradient boosting classifier |
h | color parameter—hue |
H2S | hydrogen sulfide |
IDE | interdigital electrode |
IDMAP | interactive document map |
IMP | inosine-5′-monophosphate |
IPA | 2-proponal |
K-NN | K-nearest neighbor |
L* | color parameter—lightness |
LDA | linear discriminant analysis |
MeOH | methanol |
ML | machine learning |
MOS | metal oxide semi-conductor |
MOX | metal oxide |
MQ135 | sensor detecting gases present in the environment and determines the quality of the air in the surroundings |
MQ4 | sensor detecting released methane |
MQ5 | sensor detecting released isobutane and propane |
MQ9 | sensor detecting flammable gases |
MSG | sodium L-glutamate |
NMS | e-tongue sensors sensitive to umami |
PCA | principal component analysis |
PEI | polyethylene imine |
PKS and CPS | e-tongue sensors responsible for all-round taste |
PLS-DA | partial least squares discrimination analysis |
PLSR | partial least squares regression |
PPy | polypyrrole |
PPy/AQDS | anthraquinone-2,6-disulfonic acid disodium salt |
PPy/DBS | sodium dodecylbenzenesulfonate |
PPy/FCN | potassium ferrocyanide |
PPy/PC | lithium perchlorate |
PPy/SF | ammonium persulfate |
PPy/SO4 | sodium sulfate |
PPy/TSA | p-toluenesulfonic acid |
PrOH | 1-proponal |
rGO | reduced graphene oxide |
SCS | e-tongue sensors sensitive to bitter |
SO2 | sulfur dioxide |
SVM | support vector machine |
T1R1 | umami taste receptor protein |
TGS 2602 | gas sensor detects air contaminants |
TGS 815 | gas sensor detects released hydrocarbon |
TGS 822 | gas sensor detects released alcohol |
TGS 824 | gas sensor detects released ammonia |
TGS 842 | gas sensor detects released methane |
VFT | a ligand called the Venus flytrap domain |
VOC | volatile organic compound |
WSA | sodium succinate |
β-CD | β-cyclodextrin |
References
- Metilli, L.; Francis, M.; Povey, M.; Lazidis, A.; Marty-Terrade, S.; Ray, J.; Simone, E. Latest Advances in Imaging Techniques for Characterizing Soft, Multiphasic Food Materials. Adv. Colloid Interface Sci. 2020, 279, 102154. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y. Electronic Nose and Its Application in the Food Industry: A Review. Eur. Food Res. Technol. 2024, 250, 21–67. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic Tongue and Electronic Nose for Food Quality and Safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef] [PubMed]
- Class, L.-C.; Kuhnen, G.; Rohn, S.; Kuballa, J. Diving Deep into the Data: A Review of Deep Learning Approaches and Potential Applications in Foodomics. Foods 2021, 10, 1803. [Google Scholar] [CrossRef] [PubMed]
- Dubourg, G.; Pavlović, Z.; Bajac, B.; Kukkar, M.; Finčur, N.; Novaković, Z.; Radović, M. Advancement of Metal Oxide Nanomaterials on Agri-Food Fronts. Sci. Total Environ. 2024, 928, 172048. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Benedetti, S.; Casiraghi, E.; Buratti, S. E-Sensing Systems for Shelf Life Evaluation: A Review on Applications to Fresh Food of Animal Origin. Food Packag. Shelf Life 2023, 40, 101221. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic Noses for Food Quality: A Review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Z.; Li, Q. Precise Identification of Food Smells to Enable Human–Computer Interface for Digital Smells. Electronics 2023, 12, 418. [Google Scholar] [CrossRef]
- Sridhar, A.; Kapoor, A.; Kumar, P.S.; Ponnuchamy, M.; Sivasamy, B.; Vo, D.-V.N. Lab-on-a-Chip Technologies for Food Safety, Processing, and Packaging Applications: A Review. Environ. Chem. Lett. 2022, 20, 901–927. [Google Scholar] [CrossRef]
- Chhetri, K.B. Applications of Artificial Intelligence and Machine Learning in Food Quality Control and Safety Assessment. Food Eng. Rev. 2024, 16, 1–21. [Google Scholar] [CrossRef]
- Chaudhary, V.; Gaur, P.; Rustagi, S. Sensors, Society, and Sustainability. Sustain. Mater. Technol. 2024, 40, e00952. [Google Scholar] [CrossRef]
- Huang, W.; Yin, M.; Xia, J.; Zhang, X. A Review of Cross-Scale and Cross-Modal Intelligent Sensing and Detection Technology for Food Quality: Mechanism Analysis, Decoupling Strategy and Integrated Applications. Trends Food Sci. Technol. 2024, 151. [Google Scholar] [CrossRef]
- Yan, L.; Yin-He, S.; Qian, Y.; Zhi-Yu, S.; Chun-Zi, W.; Zi-Yun, L. Method of Reaching Consensus on Probability of Food Safety Based on the Integration of Finite Credible Data on Block Chain. IEEE Access 2021, 9, 123764–123776. [Google Scholar] [CrossRef]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Xu, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Li, A.J.; Pal, V.K.; Kannan, K. A Review of Environmental Occurrence, Toxicity, Biotransformation and Biomonitoring of Volatile Organic Compounds. Environ. Chem. Ecotoxicol. 2021, 3, 91–116. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Beykal, B.; Qiao, M.; Xiao, Z.; Luo, Y. A Mechanistic Review on Machine Learning-Supported Detection and Analysis of Volatile Organic Compounds for Food Quality and Safety. Trends Food Sci. Technol. 2024, 143, 104297. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D.-W. Novel Techniques for Evaluating Freshness Quality Attributes of Fish: A Review of Recent Developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Ince, C.; Condict, L.; Ashton, J.; Stockmann, R.; Kasapis, S. Molecular Characterisation of Interactions between β-Lactoglobulin and Hexanal—An off Flavour Compound. Food Hydrocoll. 2024, 146, 109260. [Google Scholar] [CrossRef]
- Bi, S.; Lao, F.; Pan, X.; Shen, Q.; Liu, Y.; Wu, J. Flavor Formation and Regulation of Peas (Pisum sativum L.) Seed Milk via Enzyme Activity Inhibition and off-Flavor Compounds Control Release. Food Chem. 2022, 380, 132203. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nam, Y.; Choi, D.; Choi, Y.; Lee, S.-E.; Oh, H.; Wang, G.; Lee, S.H.; Liu, Y.; Hong, S. MXene/Hydrogel-Based Bioelectronic Nose for the Direct Evaluation of Food Spoilage in Both Liquid and Gas-Phase Environments. Biosens. Bioelectron. 2024, 256, 116260. [Google Scholar] [CrossRef]
- Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M. Neural-Network-Integrated Electronic Nose System for Identification of Spoiled Beef. LWT-Food Sci. Technol. 2006, 39, 135–145. [Google Scholar] [CrossRef]
- Tibaduiza, D.; Anaya, M.; Gómez, J.; Sarmiento, J.; Perez, M.; Lara, C.; Ruiz, J.; Osorio, N.; Rodriguez, K.; Hernandez, I.; et al. Electronic Tongues and Noses: A General Overview. Biosensors 2024, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Liu, X.; Xie, P.; Lei, Y.; Yu, H.; Han, A.; Xie, L.; Jia, H.; Lin, S.; Bai, Y.; et al. Characterization of Volatile Profiles and Correlated Contributing Compounds in Pan-Fried Steaks from Different Chinese Yellow Cattle Breeds through GC-Q-Orbitrap, E-Nose, and Sensory Evaluation. Molecules 2022, 27, 3593. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors 2022, 10, 159. [Google Scholar] [CrossRef]
- Wang, L.; Tan, S.; Wang, P.; Yan, H.; Tian, H.; Zhan, P. Effects of Zanthoxylum Bungeanum M. and Capsicum Annuum L. Oil on the Formation of Aroma Characteristics of Jiao-Ma Chicken as Evaluated by GC-MS and E-Nose. Food Sci. Technol. 2022, 42, e56022. [Google Scholar] [CrossRef]
- Yang, C.; Ye, Z.; Mao, L.; Zhang, L.; Zhang, J.; Ding, W.; Han, J.; Mao, K. Analysis of Volatile Organic Compounds and Metabolites of Three Cultivars of Asparagus (Asparagus officinalis L.) Using E-Nose, GC-IMS, and LC-MS/MS. Bioengineered 2022, 13, 8866–8880. [Google Scholar] [CrossRef] [PubMed]
- Tsiasioti, A.; Tzanavaras, P.D. High Performance Liquid Chromatography Coupled with Post—Column Derivatization Methods in Food Analysis: Chemistries and Applications in the Last Two Decades. Food Chem. 2024, 443, 138577. [Google Scholar] [CrossRef]
- Brandi, J.; Siragusa, G.; Robotti, E.; Marengo, E.; Cecconi, D. Analysis of Veterinary Drugs and Pesticides in Food Using Liquid Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2024, 179, 117888. [Google Scholar] [CrossRef]
- Pan, W.; Benjakul, S.; Sanmartin, C.; Guidi, A.; Ying, X.; Ma, L.; Weng, X.; Yu, J.; Deng, S. Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS. Fishes 2022, 7, 13. [Google Scholar] [CrossRef]
- Wu, H.; Viejo, C.G.; Fuentes, S.; Dunshea, F.R.; Suleria, H.A.R. The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. Fermentation 2023, 9, 68. [Google Scholar] [CrossRef]
- Demarigny, Y.; Legrand, E.; Sanchez, J.; Hallier, A.; Laurent, N.; Slimani, S.; Livache, T.; Picque, D. Utilisation of a Portable Electronic Nose, NeOse Pro, to Follow the Microbial Fermentation of a Yoghurt. Food Nutr. Sci. 2021, 12, 90–105. [Google Scholar] [CrossRef]
- Hanif, M.; Xie, B.; Wei, S.; Li, J.; Gao, C.; Wang, R.; Ali, S.; Xiao, X.; Yu, J.; Al-Hashimi, A.; et al. Characterization of the Volatile Profile from Six Different Varieties of Chinese Chives by HS-SPME/GC–MS Coupled with E. NOSE. J. King Saud Univ.-Sci. 2022, 34, 101971. [Google Scholar] [CrossRef]
- Ninh, D.K.; Phan, K.D.; Nguyen, T.T.A.; Dang, M.N.; Le Thanh, N.; Ferrero, F. Classification of Urea Content in Fish Using Absorbance Near-Infrared Spectroscopy and Machine Learning. Appl. Sci. 2024, 14, 8586. [Google Scholar] [CrossRef]
- Cappelli, A.; Cividino, S.; Redaelli, V.; Tripodi, G.; Aiello, G.; Velotto, S.; Zaninelli, M. Applying Spectroscopies, Imaging Analyses, and Other Non-Destructive Techniques to Olives and Extra Virgin Olive Oil: A Systematic Review of Current Knowledge and Future Applications. Agriculture 2024, 14, 1160. [Google Scholar] [CrossRef]
- She, X.; Huang, J.; Cao, X.; Wu, M.; Yang, Y. Rapid Measurement of Total Saponins, Mannitol, and Naringenin in Dendrobium Officinale by Near-Infrared Spectroscopy and Chemometrics. Foods 2024, 13, 1199. [Google Scholar] [CrossRef]
- Qu, Q.; Jin, L. Application of Nuclear Magnetic Resonance in Food Analysis. Food Sci. Technol. 2022, 42, e43622. [Google Scholar] [CrossRef]
- Parlak, Y. Nuclear Magnetic Resonance Spectroscopy Applications in the Food Industry. In Spectroscopic Tools for Food Analysis; Shukla, A.K., Ed.; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 3, pp. 3–11. [Google Scholar] [CrossRef]
- Sacchi, R.; Paolillo, L. NMR for Food Quality and Traceability. In Advances in Food Diagnostics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 101–117. ISBN 978-0-470-27780-5. [Google Scholar]
- Lanubile, A.; Stagnati, L.; Marocco, A.; Busconi, M. DNA-Based Techniques to Check Quality and Authenticity of Food, Feed and Medicinal Products of Plant Origin: A Review. Trends Food Sci. Technol. 2024, 149, 104568. [Google Scholar] [CrossRef]
- Nasiru, M.M.; Umair, M.; Boateng, E.F.; Alnadari, F.; Khan, K.R.; Wang, Z.; Luo, J.; Yan, W.; Zhuang, H.; Majrashi, A.; et al. Characterisation of Flavour Attributes in Egg White Protein Using HS-GC-IMS Combined with E-Nose and E-Tongue: Effect of High-Voltage Cold Plasma Treatment Time. Molecules 2022, 27, 601. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, H.G.; Kovacs, Z.; Toth, T.; Bazar, G. Trends in Artificial Aroma Sensing by Means of Electronic Nose Technologies to Advance Dairy Production—A Review. Crit. Rev. Food Sci. Nutr. 2022, 63, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Mirhoseini-Moghaddam, S.M.; Yamaghani, M.R.; Bakhshipour, A. Application of Electronic Nose and Eye Systems for Detection of Adulteration in Olive Oil Based on Chemometrics and Optimization Approaches. JUCS-J. Univers. Comput. Sci. 2023, 29, 300–325. [Google Scholar] [CrossRef]
- Jiang, C.; Ning, J.; Mei, Z.; Chen, J.; Gao, Y.; Yi, X.; Wu, P. Development of Food Electronic Nose for Prawn (Macrobrachium Rosenbergii) Quality Rapid Assessment and Their Relationship with the Physicochemical Index. Int. J. Food Prop. 2021, 24, 346–353. [Google Scholar] [CrossRef]
- Minami, K.; Kobayashi, H.; Matoba, M.; Kamiya, Y.; Maji, S.; Nemoto, T.; Tohno, M.; Nakakubo, R.; Yoshikawa, G. Measurement of Volatile Fatty Acids in Silage through Odors with Nanomechanical Sensors. Biosensors 2023, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Sharmilan, T.; Premarathne, I.; Wanniarachchi, I.; Kumari, S.; Wanniarachchi, D. Application of Electronic Nose to Predict the Optimum Fermentation Time for Low-Country Sri Lankan Tea. J. Food Qual. 2022, 2022, 7703352. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. Sensors 2022, 22, 2303. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Harris, N.M.; Fuentes, S. Quality Traits of Sourdough Bread Obtained by Novel Digital Technologies and Machine Learning Modelling. Fermentation 2022, 8, 516. [Google Scholar] [CrossRef]
- Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Prediction of Residual NPK Levels in Crop Fruits by Electronic-Nose VOC Analysis Following Application of Multiple Fertilizer Rates. Appl. Sci. 2022, 12, 11263. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic Noses: Powerful Tools in Meat Quality Assessment. Meat Sci. 2017, 131, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of Electronic Tongue for Fresh Foods Quality Evaluation: A Review. Food Rev. Int. 2018, 34, 746–769. [Google Scholar] [CrossRef]
- Palumbo, M.; Attolico, G.; Capozzi, V.; Cozzolino, R.; Corvino, A.; de Chiara, M.L.V.; Pace, B.; Pelosi, S.; Ricci, I.; Romaniello, R.; et al. Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview. Foods 2022, 11, 3925. [Google Scholar] [CrossRef]
- Tufvesson, L.M.; Tufvesson, P.; Woodley, J.M.; Börjesson, P. Life Cycle Assessment in Green Chemistry: Overview of Key Parameters and Methodological Concerns. Int. J. Life Cycle Assess. 2013, 18, 431–444. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Anchidin-Norocel, L.; Gutt, G.; Tătăranu, E.; Amariei, S. Electrochemical Sensors and Biosensors: Effective Tools for Detecting Heavy Metals in Water and Food with Possible Implications for Children’s Health. Int. J. Electrochem. Sci. 2024, 19, 100643. [Google Scholar] [CrossRef]
- Modesti, M.; Tonacci, A.; Sansone, F.; Billeci, L.; Bellincontro, A.; Cacopardo, G.; Sanmartin, C.; Taglieri, I.; Venturi, F. E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. Chemosensors 2022, 10, 244. [Google Scholar] [CrossRef]
- Cho, S.; Moazzem, M.S. Recent Applications of Potentiometric Electronic Tongue and Electronic Nose in Sensory Evaluation. Prev. Nutr. Food Sci. 2022, 27, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Jiang, Q.; Mujumdar, A.S. Intelligent System/Equipment for Quality Deterioration Detection of Fresh Food: Recent Advances and Application. Foods 2024, 13, 1662. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal Source Food Authentication and Quality Assessment—A Review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New Data Preprocessing Trends Based on Ensemble of Multiple Preprocessing Techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of Electronic Nose as a Non-Invasive Technique for Odor Fingerprinting and Detection of Bacterial Foodborne Pathogens: A Review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, H.; Ali, A.; Bibi, S.; Mehmood, S.; Altabey, W.A.; Noori, M.; Kouritem, S.A. Piezoelectric Materials: Advanced Applications in Electro-Chemical Processes. Energy Rep. 2023, 9, 4306–4324. [Google Scholar] [CrossRef]
- Titova, T.; Nachev, V. “Electronic Tongue” in the Food Industry. Food Sci. Appl. Biotechnol. 2020, 3, 71–76. [Google Scholar] [CrossRef]
- Min, J.; Lee, J.-W.; Bae, G.-S.; Moon, B. Evaluation of Umami Taste in Hanwoo with Different Feed Sources by Chemical Analysis, Electronic Tongue Analysis, and Sensory Evaluation. Food Chem. X 2023, 20, 100889. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, S.; Hagi, T.; Kobayashi, M.; Kusumoto, K.-I.; Ohmori, H.; Tomita, S.; Suzuki, S.; Yamashita, H.; Sato, K.; Miura, T.; et al. Comparison of Taste Characteristics between Koji Mold–Ripened Cheese and Camembert Cheese Using an Electronic Tongue System. J. Dairy Sci. 2023, 106, 6701–6709. [Google Scholar] [CrossRef] [PubMed]
- Escriche, I.; Kadar, M.; Domenech, E.; Gil-Sanchez, L. A Potentiometric Electronic Tongue for the Discrimination of Honey According to the Botanical Origin. Comparison with Traditional Methodologies: Physicochemical Parameters and Volatile Profile. J. Food Eng. 2012, 109, 449–456. [Google Scholar] [CrossRef]
- Blanco, C.A.; de la Fuente, R.; Caballero, I.; Rodríguez-Méndez, M.L. Beer Discrimination Using a Portable Electronic Tongue Based on Screen-Printed Electrodes. J. Food Eng. 2015, 157, 57–62. [Google Scholar] [CrossRef]
- Braunger, M.L.; Shimizu, F.M.; Jimenez, M.J.; Amaral, L.R.; Piazzetta, M.H.d.O.; Gobbi, Â.L.; Magalhães, P.S.; Rodrigues, V.; Oliveira, O.N., Jr.; Riul, A., Jr. Microfluidic Electronic Tongue Applied to Soil Analysis. Chemosensors 2017, 5, 14. [Google Scholar] [CrossRef]
- Liang, Z.; Tian, F.; Yang, S.X.; Zhang, C.; Sun, H.; Liu, T. Study on Interference Suppression Algorithms for Electronic Noses: A Review. Sensors 2018, 18, 1179. [Google Scholar] [CrossRef] [PubMed]
- Al-Attabi, Z.; Al-Habsi, N.; Rahman, M.S. Use of Electronic Tongue to Determine Quality and Safety of Fresh Produce. In Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables; Springer: Berlin/Heidelberg, Germany, 2022; pp. 375–390. [Google Scholar]
- Yashaswini, N.; Suraj, L.; Nayak, S.; Khosla, A.; Manjunatha, C. Construction, Working, and Applications of E-Tongue: A Versatile Tool for All Tastes? ECS Trans. 2022, 107, 20193. [Google Scholar]
- Weerakkody, J.S.; El Kazzy, M.; Jacquier, E.; Elchinger, P.-H.; Mathey, R.; Ling, W.L.; Herrier, C.; Livache, T.; Buhot, A.; Hou, Y. Surfactant-like Peptide Self-Assembled into Hybrid Nanostructures for Electronic Nose Applications. ACS Nano 2022, 16, 4444–4457. [Google Scholar] [CrossRef] [PubMed]
- Röck, F.; Barsan, N.; Weimar, U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wan, L.; Jian, Y.; Ren, C.; Jin, K.; Su, X.; Bai, X.; Haick, H.; Yao, M.; Wu, W. Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. Adv. Mater. Technol. 2019, 4, 1800488. [Google Scholar] [CrossRef]
- Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of Electronic Nose for Industrial Odors and Gaseous Emissions Measurement and Monitoring—An Overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Finardi, S.; de Souza, C.K.; Meinert, C.; Pateiro, M.; Hoffmann, T.G.; Domínguez, R.; Bertoli, S.L.; Kumar, M.; Lorenzo, J.M. Applications of Electronic Nose, Electronic Eye and Electronic Tongue in Quality, Safety and Shelf Life of Meat and Meat Products: A Review. Sensors 2023, 23, 672. [Google Scholar] [CrossRef]
- Abu-Khalaf, N.; Masoud, W. [Retracted] Electronic Nose for Differentiation and Quantification of Yeast Species in White Fresh Soft Cheese. Appl. Bionics Biomech. 2022, 2022, 8472661. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Gómez, J.K.; Acevedo, C.M.D.; García-Rico, R.O. Detection of the Bacteria Concentration Level in Pasteurized Milk by Using Two Different Artificial Multisensory Methods. Sens. Bio-Sens. Res. 2021, 33, 100428. [Google Scholar] [CrossRef]
- Cui, S.; Cao, L.; Acosta, N.; Zhu, H.; Ling, P.P. Development of Portable E-Nose System for Fast Diagnosis of Whitefly Infestation in Tomato Plant in Greenhouse. Chemosensors 2021, 9, 297. [Google Scholar] [CrossRef]
- Khorramifar, A.; Rasekh, M.; Karami, H.; Covington, J.A.; Derakhshani, S.M.; Ramos, J.; Gancarz, M. Application of MOS Gas Sensors Coupled with Chemometrics Methods to Predict the Amount of Sugar and Carbohydrates in Potatoes. Molecules 2022, 27, 3508. [Google Scholar] [CrossRef] [PubMed]
- Aouadi, B.; Zaukuu, J.-L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose Discrimination of Abnormal Fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Estakhroueiyeh, H.R.; Rashedi, E. Detecting Moldy Bread Using an E-Nose and the KNN Classifier. In Proceedings of the 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2015; pp. 251–255. [Google Scholar]
- Dai, Y.; Zhi, R.; Zhao, L.; Gao, H.; Shi, B.; Wang, H. Longjing Tea Quality Classification by Fusion of Features Collected from E-Nose. Chemom. Intell. Lab. Syst. 2015, 144, 63–70. [Google Scholar] [CrossRef]
- Zarezadeh, M.R.; Aboonajmi, M.; Varnamkhasti, M.G.; Azarikia, F. Olive Oil Classification and Fraud Detection Using E-Nose and Ultrasonic System. Food Anal. Methods 2021, 14, 2199–2210. [Google Scholar] [CrossRef]
- Ma, R.; Shen, H.; Cheng, H.; Zhang, G.; Zheng, J. Combining E-Nose and e-Tongue for Improved Recognition of Instant Starch Noodles Seasonings. Front. Nutr. 2023, 9, 1074958. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gaur, S. Development of Rapid and Non-Destructive Electric Nose (E-Nose) System for Shelf Life Evaluation of Different Edible Seeds. Food Chem. 2023, 426, 136562. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fei, C.; Mao, C.; Ji, D.; Gong, J.; Qin, Y.; Qu, L.; Zhang, W.; Bian, Z.; Su, L.; et al. Physicochemical Parameters Combined Flash GC E-Nose and Artificial Neural Network for Quality and Volatile Characterization of Vinegar with Different Brewing Techniques. Food Chem. 2022, 374, 131658. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Lv, Z.; Zeng, Q.; Fu, X.; Chen, Q.; Luo, Z.; Luo, C.; Wang, D.; Zhang, W. Analysis of the Volatile Profiles of Kiwifruits Experiencing Soft Rot Using E-Nose and HS-SPME/GC–MS. LWT 2023, 173, 114405. [Google Scholar] [CrossRef]
- Russo, M.; Serra, D.; Suraci, F.; Sanzo, R.D.; Fuda, S.; Postorino, S. The Potential of E-Nose Aroma Profiling for Identifying the Geographical Origin of Licorice (Glycyrrhiza glabra L.) Roots. Food Chem. 2014, 165, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Cevoli, C.; Casadei, E.; Valli, E.; Fabbri, A.; Toschi, T.G.; Bendini, A. Storage Time of Nut Spreads Using Flash Gas Chromatography E-Nose Combined with Multivariate Data Analysis. LWT 2022, 159, 113217. [Google Scholar] [CrossRef]
- Zhou, Q.; Dai, Z.; Song, F.; Li, Z.; Song, C.; Ling, C. Monitoring Black Tea Fermentation Quality by Intelligent Sensors: Comparison of Image, e-Nose and Data Fusion. Food Biosci. 2023, 52, 102454. [Google Scholar] [CrossRef]
- Oates, M.J.; González-Teruel, J.D.; Ruiz-Abellon, M.C.; Guillamon-Frutos, A.; Ramos, J.A.; Torres-Sánchez, R. Using a Low-Cost Components e-Nose for Basic Detection of Different Foodstuffs. IEEE Sens. J. 2022, 22, 13872–13881. [Google Scholar] [CrossRef]
- Littarru, E.; Modesti, M.; Alfieri, G.; Pettinelli, S.; Floridia, G.; Bellincontro, A.; Sanmartin, C.; Brizzolara, S. Optimizing the Winemaking Process: NIR Spectroscopy and e-Nose Analysis for the Online Monitoring of Fermentation. J. Sci. Food Agric. 2025, 105, 1465–1475. [Google Scholar] [CrossRef]
- Baskar, C.; Nesakumar, N.; Rayappan, J.B.B.; Doraipandian, M. A Framework for Analysing E-Nose Data Based on Fuzzy Set Multiple Linear Regression: Paddy Quality Assessment. Sens. Actuators Phys. 2017, 267, 200–209. [Google Scholar] [CrossRef]
- Wu, C.; Li, J. Portable FBAR Based E-Nose for Cold Chain Real-Time Bananas Shelf Time Detection. Nanotechnol. Precis. Eng. 2023, 6, 013004. [Google Scholar] [CrossRef]
- Huang, G.-L.; Liu, T.-T.; Mao, X.-M.; Quan, X.-Y.; Sui, S.-Y.; Ma, J.-J.; Sun, L.-X.; Li, H.-C.; Shao, Q.-S.; Wang, Y.-N. Insights into the Volatile Flavor and Quality Profiles of Loquat (Eriobotrya japonica Lindl.) during Shelf-Life via HS-GC-IMS, E-Nose, and E-Tongue. Food Chem. X 2023, 20, 100886. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xie, J.; Wang, Q.; Hu, J.; Jiang, Y.; Wang, J.; Tong, H.; Yuan, H.; Yang, Y. Evaluation of the Quality Grade of Congou Black Tea by the Fusion of GC-E-Nose, E-Tongue, and E-Eye. Food Chem. X 2024, 23, 101519. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K. Comparison of Cheese Aroma Intensity Measured Using an Electronic Nose (E-Nose) Non-Destructively with the Aroma Intensity Scores of a Sensory Evaluation: A Pilot Study. Sensors 2021, 21, 8368. [Google Scholar] [CrossRef]
- Bu, N.; Yang, Q.; Chen, J.; Li, Y.; Liu, D. Characterization and Discrimination of Volatile Compounds in Chilled Tan Mutton Meat during Storage Using HiSorb-TD-GC-MS and E-Nose. Molecules 2023, 28, 4993. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, E.; Zhu, Y.; Li, Q.; Wu, L. Flavor Chemical Research on Different Bee Pollen Varieties Using Fast E-Nose and E-Tongue Technology. Foods 2024, 13, 1022. [Google Scholar] [CrossRef]
- Makarichian, A.; Chayjan, R.A.; Ahmadi, E.; Mohtasebi, S.S.; Zafari, D. Use of E-Nose in Inspecting the Effect of Processing Type on the Aroma of Garlic (Allium sativum L.): A Critical Hint in the Quality Assessment. Food Prod. Process. Nutr. 2024, 6, 52. [Google Scholar] [CrossRef]
- Gholami, R.; Aghili Nategh, N.; Rabbani, H. Evaluation the Effects of Temperature and Packaging Conditions on the Quality of Button Mushroom during Storage Using E-Nose System. J. Food Sci. Technol. 2023, 60, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Bougrini, M.; Tahri, K.; Haddi, Z.; Bari, N.E.; Llobet, E.; Jaffrezic-Renault, N.; Bouchikhi, B. Aging Time and Brand Determination of Pasteurized Milk Using a Multisensor E-Nose Combined with a Voltammetric e-Tongue. Mater. Sci. Eng. C 2014, 45, 348–358. [Google Scholar] [CrossRef]
- Stevan, S.L.; Siqueira, H.V.; Menegotto, B.A.; Schroeder, L.C.; Pessenti, I.L.; Ayub, R.A. Discrimination Analysis of Wines Made from Four Species of Blueberry through Their Olfactory Signatures Using an E-Nose. LWT 2023, 187, 115320. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J. Effects of Storage Temperature and Time on Internal Quality of Satsuma Mandarin (Citrus unshiu Marc.) by Means of E-Nose and E-Tongue Based on Two-Way MANOVA Analysis and Random Forest. Innov. Food Sci. Emerg. Technol. 2015, 31, 139–150. [Google Scholar] [CrossRef]
- Liu, W.; Fan, Y.; Liu, Q.; Xu, F.; Zhang, L.; Hu, H. Identification of the Flavor Profiles of Chinese Pancakes from Various Areas Using Smart Instruments Combined with E-Noses and E-Tongues. Int. J. Agric. Biol. Eng. 2023, 16, 283–290. [Google Scholar] [CrossRef]
- Anwar, H.; Anwar, T.; Murtaza, S. Review on Food Quality Assessment Using Machine Learning and Electronic Nose System. Biosens. Bioelectron. X 2023, 14, 100365. [Google Scholar] [CrossRef]
- Balivo, A.; Cipolletta, S.; Tudisco, R.; Iommelli, P.; Sacchi, R.; Genovese, A. Electronic Nose Analysis to Detect Milk Obtained from Pasture-Raised Goats. Appl. Sci. 2023, 13, 861. [Google Scholar] [CrossRef]
- Claus, P.; Cattenoz, T.; Landaud, S.; Chaillou, S.; Peron, A.-C.; Coeuret, G.; Slimani, S.; Livache, T.; Demarigny, Y.; Picque, D. Discrimination of Spoiled Beef and Salmon Stored under Different Atmospheres by an Optoelectronic Nose. Comparison with GC-MS Measurements. Future Foods 2022, 5, 100106. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Pang, A.; Torrico, D.D.; Fuentes, S. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Molecules 2021, 26, 5108. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Santos, J.P.; Horrillo, M.C. Chapter 14—Wine Applications With Electronic Noses. In Electronic Noses and Tongues in Food Science; Méndez, M.L.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 137–148. ISBN 978-0-12-800243-8. [Google Scholar]
- Guo, L.; Wang, T.; Wu, Z.; Wang, J.; Wang, M.; Cui, Z.; Ji, S.; Cai, J.; Xu, C.; Chen, X. Portable Food-freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv. Mater. 2020, 32, 2004805. [Google Scholar] [CrossRef]
- Dang, Y.; Reddy, Y.V.M.; Cheffena, M. Facile E-Nose Based on Single Antenna and Graphene Oxide for Sensing Volatile Organic Compound Gases with Ultrahigh Selectivity and Accuracy. Sens. Actuators B Chem. 2024, 419, 136409. [Google Scholar] [CrossRef]
- Rodríguez, S.D.; Barletta, D.A.; Wilderjans, T.F.; Bernik, D.L. Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection. Food Anal. Methods 2014, 7, 2042–2050. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. [Google Scholar] [CrossRef]
- Rabehi, A.; Helal, H.; Zappa, D.; Comini, E. Advancements and Prospects of Electronic Nose in Various Applications: A Comprehensive Review. Appl. Sci. 2024, 14, 4506. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, F.; Zhang, Z.; Hou, Q.; Guo, Z. Characterization of Bacterial Community and Flavor Differences of Different Types of Douchi. Food Sci. Nutr. 2021, 9, 3460–3469. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wang, C.; Luo, M.; Ren, Q.; Liu, Y.; Zhang, S.; Bai, Y.; Meng, J.; Zhang, W.; Su, S.W. Design of Electronic Nose Detection System for Apple Quality Grading Based on Computational Fluid Dynamics Simulation and K-Nearest Neighbor Support Vector Machine. Sensors 2022, 22, 2997. [Google Scholar] [CrossRef]
- Ardani, M.; Sarno, R.; Khosasih, M.M.; Malikhah, M.; Purbawa, D.P.; Fatichah, C.; Sunaryono, D.; Susilo, R.I.; Sabilla, S.I.; Sungkono, K.R. Electronic Nose Signals for Analysing Similarity of Male and Female Axillary Odour to Food Material Aroma. Int. J. Intell. Eng. Syst. 2022, 15, 601–611. [Google Scholar]
- Astuti, S.D.; Tamimi, M.H.; Pradhana, A.A.S.; Alamsyah, K.A.; Purnobasuki, H.; Khasanah, M.; Susilo, Y.; Triyana, K.; Kashif, M.; Syahrom, A. Gas Sensor Array to Classify the Chicken Meat with E. Coli Contaminant by Using Random Forest and Support Vector Machine. Biosens. Bioelectron. X 2021, 9, 100083. [Google Scholar] [CrossRef]
- Bai, S.; Wang, Y.; Luo, R.; Ding, D.; Bai, H.; Shen, F. Characterization of Flavor Volatile Compounds in Industrial Stir-Frying Mutton Sao Zi by GC-MS, E-Nose, and Physicochemical Analysis. Food Sci. Nutr. 2021, 9, 499–513. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Xie, J. Characterization of Metabolite, Genome and Volatile Organic Compound Changes Provides Insights into the Spoilage and Cold Adaptive Markers of Acinetobacter Johnsonii XY27. LWT 2022, 162, 113453. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Cheng, Z.; Ma, L.; Zhao, L.; Li, J. A Comparison of Electronic Nose and Gas Chromatography–Mass Spectrometry on Discrimination and Prediction of Ochratoxin A Content in Aspergillus Carbonarius Cultured Grape-Based Medium. Food Chem. 2019, 297, 124850. [Google Scholar] [CrossRef]
- Martínez, A.; Hernández, A.; Arroyo, P.; Lozano, J.S.; de Guía Córdoba, M.; Martín, A. E-Nose Detection of Changes in Volatile Profile Associated with Early Decay of ‘Golden Delicious’ Apple by Penicillium Expansum. Food Control 2025, 168, 110907. [Google Scholar] [CrossRef]
- Barea-Ramos, J.D.; Cascos, G.; Mesías, M.; Lozano, J.; Martín-Vertedor, D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. Sensors 2022, 22, 8654. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Ghosh, T.K.; Das, S.; Ray, H.; Mohapatra, D.; Modhera, B.; Ghosh, D.; Parua, S.; Pal, S.; Tiwari, S. Development of Electronic Nose for Early Spoilage Detection of Potato and Onion during Post-Harvest Storage. J. Mater. Nanosci. 2022, 9, 101–114. [Google Scholar]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, R.; Zhang, Y.; Li, X.; Gooneratne, R.; Li, J. Comparative Analysis of Flavor, Taste, and Volatile Organic Compounds in Opossum Shrimp Paste during Long-Term Natural Fermentation Using E-Nose, E-Tongue, and HS-SPME-GC-MS. Foods 2022, 11, 1938. [Google Scholar] [CrossRef] [PubMed]
- Marinoni, L.; Buccheri, M.; Bianchi, G.; Cattaneo, T.M.P. Aquaphotomic, E-Nose and Electrolyte Leakage to Monitor Quality Changes during the Storage of Ready-to-Eat Rocket. Molecules 2022, 27, 2252. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, T.; Szulczyński, B.; Wojciechowski, M.; Kamysz, W.; Gębicki, J. Determination of Long-Chain Aldehydes Using a Novel Quartz Crystal Microbalance Sensor Based on a Biomimetic Peptide. Microchem. J. 2020, 154, 104509. [Google Scholar] [CrossRef]
- Romani, S.; Cevoli, C.; Fabbri, A.; Alessandrini, L.; Dalla Rosa, M. Evaluation of Coffee Roasting Degree by Using Electronic Nose and Artificial Neural Network for Off-line Quality Control. J. Food Sci. 2012, 77, C960–C965. [Google Scholar] [CrossRef] [PubMed]
- Capman, N.S.; Zhen, X.V.; Nelson, J.T.; Chaganti, V.S.K.; Finc, R.C.; Lyden, M.J.; Williams, T.L.; Freking, M.; Sherwood, G.J.; Bühlmann, P. Machine Learning-Based Rapid Detection of Volatile Organic Compounds in a Graphene Electronic Nose. ACS Nano 2022, 16, 19567–19583. [Google Scholar] [CrossRef] [PubMed]
- Kybert, N.J.; Han, G.H.; Lerner, M.B.; Dattoli, E.N.; Esfandiar, A.; Charlie Johnson, A. Scalable Arrays of Chemical Vapor Sensors Based on DNA-Decorated Graphene. Nano Res. 2014, 7, 95–103. [Google Scholar] [CrossRef]
- Wang, T.; Ma, H.; Jiang, W.; Zhang, H.; Zeng, M.; Yang, J.; Wang, X.; Liu, K.; Huang, R.; Yang, Z. Type Discrimination and Concentration Prediction towards Ethanol Using a Machine Learning–Enhanced Gas Sensor Array with Different Morphology-Tuning Characteristics. Phys. Chem. Chem. Phys. 2021, 23, 23933–23944. [Google Scholar] [CrossRef] [PubMed]
- Mahanti, N.K.; Shivashankar, S.; Chhetri, K.B.; Kumar, A.; Rao, B.B.; Aravind, J.; Swami, D.V. Enhancing Food Authentication through E-Nose and E-Tongue Technologies: Current Trends and Future Directions. Trends Food Sci. Technol. 2024, 150, 104574. [Google Scholar] [CrossRef]
- Kang, M.; Cho, I.; Park, J.; Jeong, J.; Lee, K.; Lee, B.; Del Orbe Henriquez, D.; Yoon, K.; Park, I. High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm. ACS Sens. 2022, 7, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Cho, I.; Kang, M.; Jeong, J.; Choi, M.; Woo, K.Y.; Yoon, K.-J.; Cho, Y.-H.; Park, I. Ultra-Low-Power e-Nose System Based on Multi-Micro-Led-Integrated, Nanostructured Gas Sensors and Deep Learning. ACS Nano 2022, 17, 539–551. [Google Scholar] [CrossRef]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A Review on Combined Odor and Taste Sensor Systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Imam, M.; Nagpal, K. The Electronic Tongue: An Advanced Taste-Sensing Multichannel Sensory Tool with Global Selectivity for Application in the Pharmaceutical and Food Industry. Pharm. Dev. Technol. 2023, 28, 318–332. [Google Scholar] [CrossRef]
- Kaya, Z.; Koca, İ. Electronic Tongue Applications in Food Engineering. Turk. J. Agric.—Food Sci. Technol. 2020, 8, 1463–1471. [Google Scholar]
- Tahara, Y.; Toko, K. Electronic Tongues—A Review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Kongwong, P.; Morozova, K.; Ferrentino, G.; Poonlarp, P.; Scampicchio, M. Rapid Determination of the Antioxidant Capacity of Lettuce by an E-Tongue Based on Flow Injection Coulometry. Electroanalysis 2018, 30, 230–237. [Google Scholar] [CrossRef]
- Yu, S.; Huang, X.; Wang, L.; Ren, Y.; Zhang, X.; Wang, Y. Characterization of Selected Chinese Soybean Paste Based on Flavor Profiles Using HS-SPME-GC/MS, E-Nose and E-Tongue Combined with Chemometrics. Food Chem. 2022, 375, 131840. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wang, J.; Ma, Z.; Li, M.; Wei, Z. Combination of an E-Nose and an E-Tongue for Adulteration Detection of Minced Mutton Mixed with Pork. J. Food Qual. 2019, 2019, 4342509. [Google Scholar] [CrossRef]
- Zhai, H.; Dong, W.; Fu, X.; Li, G.; Hu, F. Integration of Widely Targeted Metabolomics and the E-Tongue Reveals the Chemical Variation and Taste Quality of Yunnan Arabica Coffee Prepared Using Different Primary Processing Methods. Food Chem. X 2024, 22, 101286. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, A.R.; Marino, A.M.F.; Leone, F.; Corpina, G.G.; Giunta, R.P.; Chiofalo, V. Characterization of Sicilian Honeys Pollen Profiles Using a Commercial E-Tongue and Melissopalynological Analysis for Rapid Screening: A Pilot Study. Sensors 2018, 18, 4065. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, A.R.; Leone, F.; Chiofalo, V. Electronic Noses and Tongues. In Chemical Analysis of Food; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–389. [Google Scholar]
- Do, J.-S.; Chen, Y.-Y.; Tsai, M.-L. Planar Solid-State Amperometric Hydrogen Gas Sensor Based on Nafion®/Pt/Nano-Structured Polyaniline/Au/Al2O3 Electrode. Int. J. Hydrogen Energy 2018, 43, 14848–14858. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Yang, B.; Xia, F.; Zhu, Y.; Xiao, J. Effect of MgO Doping on the BiVO4 Sensing Electrode Performance for YSZ-Based Potentiometric Ammonia Sensor. Solid-State Electron. 2018, 147, 19–25. [Google Scholar] [CrossRef]
- Gu, Q.; Chen, X.; Lu, C.; Wang, Z.; Xu, B. A Highly Sensitive Electrochemical Sensor for Detecting the Content of Capsaicinoids Based on the Synergistic Catalysis of rGO/PEI-CNTs/β-CD. Food Chem. 2023, 426, 136650. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chu, B.; Xi, H.; Xu, J.; Lai, L.; Peng, H.; Deng, D.; Huang, G. Determination of Chlorine Ions in Raw Milk by Pulsed Amperometric Detection in a Flow Injection System. J. Dairy Sci. 2018, 101, 9647–9658. [Google Scholar] [CrossRef] [PubMed]
- Almario, A.A.; Calabokis, O.P.; Barrera, E.A. Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties. Foods 2024, 13, 3586. [Google Scholar] [CrossRef]
- Khan, A.; Ahmed, S.; Sun, B.-Y.; Chen, Y.-C.; Chuang, W.-T.; Chan, Y.-H.; Gupta, D.; Wu, P.-W.; Lin, H.-C. Self-Healable and Anti-Freezing Ion Conducting Hydrogel-Based Artificial Bioelectronic Tongue Sensing toward Astringent and Bitter Tastes. Biosens. Bioelectron. 2022, 198, 113811. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Liu, J.; Li, H.; Zhang, N.; Yang, F.; Dong, H.; Sun, X.; Chen, G.; Fan, Y.; et al. Human-like Performance Umami Electrochemical Biosensor by Utilizing Co-Electrodeposition of Ligand Binding Domain T1R1-VFT and Prussian Blue. Biosens. Bioelectron. 2021, 193, 113627. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.H.; Braunger, M.L.; de Barros, A.; Hensel, R.C.; Dalafini, J.G.; Mazali, I.O.; Corrêa, L.M.; Ugarte, D.; Riul Jr, A.; Rodrigues, V. Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue. Chemosensors 2024, 12, 87. [Google Scholar] [CrossRef]
- Wadehra, A.; Patil, P.S. Application of Electronic Tongues in Food Processing. Anal Methods 2016, 8, 474–480. [Google Scholar] [CrossRef]
- Jackman, P.; Sun, D.-W. Recent Advances in Image Processing Using Image Texture Features for Food Quality Assessment. Trends Food Sci. Technol. 2013, 29, 35–43. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Colour Measurements by Computer Vision for Food Quality Control—A Review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat Quality Evaluation Based on Computer Vision Technique: A Review. Meat Sci. 2019, 156, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Q.; Liu, C.; Wang, Z.; Gao, J.; Yang, X.; Lan, Y. Synergetic Application of an E-Tongue, E-Nose and E-Eye Combined with CNN Models and an Attention Mechanism to Detect the Origin of Black Pepper. Sens. Actuators Phys. 2023, 357, 114417. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Z.; Jiang, K.; Yang, A.; Wang, T.; Xu, L.; Li, X.; Zhang, X.; Meng, F.; Wang, B. Elucidating the Effect of Different Processing Methods on the Sensory Quality of Chestnuts Based on Multi-Scale Molecular Sensory Science. Food Chem. 2024, 431, 136989. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gao, J.; Wang, S.; Wang, Z.; Li, C.; Lan, Y.; Sun, X.; Li, S. Synergetic Application of E-Tongue and E-Eye Based on Deep Learning to Discrimination of Pu-Erh Tea Storage Time. Comput. Electron. Agric. 2021, 187, 106297. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Ge, Q.; Huo, X.; Ma, T.; Fang, Y.; Sun, X. Geographical Characterization of Wines from Seven Regions of China by Chemical Composition Combined with Chemometrics: Quality Characteristics of Chinese ‘Marselan’ Wines. Food Chem. X 2024, 23, 101606. [Google Scholar] [CrossRef] [PubMed]
- Buratti, S.; Benedetti, S.; Giovanelli, G. Application of Electronic Senses to Characterize Espresso Coffees Brewed with Different Thermal Profiles. Eur. Food Res. Technol. 2017, 243, 511–520. [Google Scholar] [CrossRef]
- Wang, R.; Chen, N.; Li, J.; Qian, D.; Huang, X.; Yang, B. Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolomics to Clarify the Mechanism of Color Change of Saffron Floral Bio-Residues. J. Food Sci. 2023, 88, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Xiao, T.; Jia, H.; Xiao, Y.; Liu, Z.; Wang, K.; Zhu, M. Integration of Non-Targeted/Targeted Metabolomics and Electronic Sensor Technology Reveals the Chemical and Sensor Variation in 12 Representative Yellow Teas. Food Chem. X 2024, 21, 101093. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wang, J.; Han, L.; Guo, S.; Cui, Q. Application of Machine Vision System in Food Detection. Front. Nutr. 2022, 9, 888245. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, D.-W.; Qu, J.-H.; Liu, D.; Pu, H.; Gao, W.-H.; Zeng, X.-A. Applications of Computer Vision for Assessing Quality of Agri-Food Products: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2016, 56, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep Learning and Machine Vision for Food Processing: A Survey. Curr. Res. Food Sci. 2021, 4, 233–249. [Google Scholar] [CrossRef]
Device Type/Sensors Used | Application | Quantitative Metrics | References |
---|---|---|---|
BME680 from Bosch, SGP30 from Sensirion, and CCS811 and iAQ-Core from ScioSense/4 digital gas sensors with integrated MOX sensors | Abnormal fermentations occurring in table olives | Consistency with the results obtained by the tasting panel | [82] |
MOS | Moldy bread detection | 100% accuracy | [83] |
E-nose equipped with a space automation system above the surface and 18 MOS sensors | Longjing tea quality classification | 100% recognition rate was achieved using the KLDA-KNN model | [84] |
8 MOS gas sensors: (1) two types of Taguchi (Figaro Engineering Inc., Osaka, Japan) sensors (TGS813 and TGS822); (2) five types of MQ sensors (MQ3, MQ4, MQ8, MQ135, and MQ136) (Hanwei Electronics Group Corporation, China); and (3) one FIS sensor (NISSHA FIS, Inc., Tagawa, Yodogawa-ku, Osaka, Japan) | Olive oil classification and fraud detection | Among the seven classification models mentioned, GBC with 97.75% accuracy in the test result had the highest accuracy; linear SVM and Naive Bayes had 95.51% accuracy | [85] |
10 MOS sensors with different sensitivities | Identification of instant starch noodle spices based on different flavor profiles | Explained 86.96%, 98.09%, and 94.38% of the total variance, and the CA results were consistent with the PCA results | [86] |
MOS sensors: MQ4, MQ5, MQ9, and MQ135 | Evaluation of the shelf life of various edible seeds | Exceeding the threshold value on the 120th day of storage | [87] |
Heracles Analyzer Neo (Alpha Mos, Toulouse, France) | Characteristics of vinegar quality and volatility | Rapid detection, low sample requirement, and no pre-treatment required; disadvantages include difficulty in absolute quantification of components and inability to determine inorganic flavor components | [88] |
E-nose (PEN3, Air-sense Analytics GmbH, Schwerin, Germany)/10 MOS sensors | Analysis of volatile profiles of kiwifruit experiencing soft rot | Combining e-nose and GC–MS to differentiate intact and diseased kiwifruit is feasible | [89] |
ISE Nose 2000 (ISE, Pisa, Italy)/12 SnO2-based MOS sensors (TGS type by Figaro Engineering Inc., Osaka, Japan) | Licorice roots (Glycyrrhiza glabra L.) identification | Usefulness in identifying licorice root | [90] |
FGC Electronic Nose Heracles II (Alpha MOS, Toulouse, France) | Storage time of peanut butter | A promising method for applications in industrial food quality control | [91] |
PEN 3 MOS (Airsense Analytics, Germany) | Detection of the degree of black tea fermentation | e-Nose and computer vision technologies proved that the effect of the multi-source sensor model was better than that of a single sensor | [92] |
8 MQ series tin dioxide sensors (MQ135, MQ2, MQ3, MQ4, MQ5, MQ9, MQ7, and MQ8) | Basic detection of various food products | The ability to detect damaged products has been confirmed | [93] |
5 MOX Taguchi gas sensors (TGS), including two H2S and three SO2 sensors | On-line wine fermentation monitoring | Good ability to distinguish different phases of wine fermentation in real time | [94] |
TGS Sensors (Figaro Engineering Inc., Osaka, Japan) for alcohol, alcohol, ammonia, ammonia, alcohol, hydrogen, and carbon monoxide | Rice quality assessment | Suitability for classifying and estimating rice quality during storage under different temperature and humidity conditions | [95] |
Portable acoustic resonator (FBAR) | Real-time detection of banana cold chain storage time | Effectively distinguishes yellow bananas with green necks from completely yellow bananas | [96] |
e-Nose (WinMuster Airsense Analytics Inc., Schwerin, Germany)/10 MOS sensors | Detection of volatile components of loquat fruit during the post-harvest shelf life (18 days) | Loquat fruit during different storage periods | [97] |
Heracles II GC-E-Nose (Alpha MOS, Toulouse, France) | Characterization of the different quality levels of Congolese black tea | A 44-dimensional characterization data set was obtained to characterize the aroma quality | [98] |
Araki Sangyo Co., Ltd. (Osaka, Japan) | Comparison with sensory evaluation of cheese aroma intensity | convergence with the results of sensory evaluation | [99] |
PEN3 Portable Electronic Nose, Airsense Analytics GmbH, Schwerin, Germany/10 MOS sensors | Identification of volatile substances dependent on the storage time of lamb | The usefulness of rapid identification of sheep storage stages | [100] |
Ultrafast gas chromatography HERACLES NEO e-nose | Identifying differences in odor profiles in different varieties of bee pollen | Usefulness of quality control of bee pollen products | [101] |
e-Nose designed and manufactured by PHT laboratory, MOS sensors | Investigation of garlic aroma as a quality control factor | Processing methods and pathogen contamination make it difficult to assess quality | [102] |
e-Nose/10 MOS sensors | Evaluation of the quality of mushrooms during storage | The usefulness of assessing storage conditions on the quality of mushrooms | [103] |
Two sensor arrays: (1) 4 micromachined gas sensors; the microsensor substrates consisted of a SiO2/Si3N4/SiO2 membrane with insulated platinum heaters and platinum electrodes (2) 4 SnO2 sensors: TGS 8xx (with xx = 15, 22, 24 and 42) Figaro Engineering Inc. (Osaka, Japan) | Distinguishing between different brands of pasteurized milk | Combined use with an electronic voltammeter increases the accuracy of identification and suitability for on-line control | [104] |
6 MQ sensors (MQ-3; MQ-4; MQ-7; MQ-8; MQ-9; MQ-135) (Hanwei Electronics Group Corporation, Zhengzhou, China) 2 × TGS Figaro family sensors (TGS 822; TGS 2602) (Figaro Engineering Inc., Osaka, Japan) | Carrying out preliminary and quick quality assessments of wines | Analysis of the set of components of the blueberry wine bouquet to identify adulteration in the distribution process | [105] |
e-Nose (PEN2, WMA Airsense Analysentechnik GmbH, Schwerin, Germany)/10 MOS sensors | Quality assessment of satsuma mandarin (Citrus unshiu Marc.) depending on storage conditions | In terms of identifying storage conditions, the e-nose system showed 100% accuracy; the e-nose and e-tongue fusion system achieved a performance index of 100% in the identification of tangerines and a significantly higher correlation with tangerine quality | [106] |
Electronic nose PEN3 (Airsense, Analysentechnik GmbH, Schwerin, Germany)/10 MOS sensors | Identifying the aromatic and flavor compounds of seven traditional Chinese pancakes | e-Nose using PCA effectively distinguishes the odor profiles of seven Chinese pancakes | [107] |
The Use of | LZO Marker | Accuracy | References |
---|---|---|---|
Acinetobacter johnsonii XY27 in cold stored stock (Thunnus obese) | Benzaldehyde 1-Hexanol 2,4-Di-tert-butylphenol | [123] | |
Ochratoxin A in grape-based food from Aspergillus carbonarius breeding | 1-Octen-3-one and 2-octen-1-ol biomarkers for detecting A. carbonarius strains with low OTA production | Accuracy, R2, and Q2: 91.7%, 0.882, and 0.790 | [124] |
Ant-nose | Four VOCs: MeOH, PrOH, BuOH, and EtOH | 100% | [114] |
Six VOCs with isomers: MeOH, PrOH, IPA, 2-BuOH, BuOH, and EtOH | 96.7% | ||
Detection of Penicillium expansum in ‘Golden Delicious’ apples | 3-Methyl butan-1-ol and methyl acetate | Diagnosis rates over 87%; 97% for samples with early stage fungal infection | [125] |
Device Type/Sensors Used | Application | Quantitative Metrics | References |
---|---|---|---|
The sensor set consists of seven different chemical sensors and a reference electrode (Ag/AgCl) | Development of an effective method for identifying spices for instant noodles | In combination with the e-nose, it provides fast, objective, highly automated, and inexpensive food odor analysis | [86] |
SA-402B Electronic Tongue (E-tongue) (Intelligent Sensor Technology, Inc., Atsugi, Japan) Sensor array: 6 taste sensors for bitter, umami, sour, astringent, salty, and sweet; and two reference electrodes | Detection of flavor characteristics of loquat fruit during the post-harvest shelf life (18 days) | Shows changes in sensory taste indices typical of loquats | [97] |
ASTREE E-tongue (Alpha M.O.S., Toulouse, France); sensor array consists of 7 sensors (AHS, ANS, SCS, CTS, NMS, PKS, and CPS) and a standard reference electrode (Ag/AgCl) | Characterization of the different quality levels of Congolese black tea | A 7-dimensional feature data set (AHS, ANS, SCS, CTS, NMS, PKS, and CPS) was obtained to characterize the flavor quality of the tea infusion | [98] |
Tongue system, a 6th generation sensor system consisting of AHS, ANS, SCS, CTS, NMS, PKS, and CPS sensors together with a standard reference electrode (Ag/AgCl), giving a total of 7 sensors | Identifying differences in flavor profiles in different varieties of bee pollen | The basis for comprehensive processing and quality control of bee pollen products | [101] |
The voltametric e-tongue used in this study consisted of 4 working electrodes (platinum, gold, crystalline carbon, and silver), a reference electrode (Ag/AgCl), and a platinum auxiliary electrode | Distinguishing between different brands of pasteurized milk | Clear differentiation of milk brands on the first day of storage, combined use with e-nose very promising for monitoring milk quality in the dairy industry, mainly where on-line control is needed | [104] |
ASTREE e-tongue (Alpha MOS Co., Toulouse, France)/7 chemical sensors and reference electrode (Ag/AgCl) | Identification of instant starch noodle spices based on different flavor profiles | e-Tongue correctly evaluates different brands of instant noodle seasonings; fusion with e-nose increases the speed and accuracy of food odor analysis, allows for its auto-aromatization, and reduces costs | [86] |
E-tongue (α-Astree, Alpha MOS Company, France)/7 potentiometric chemical sensors, Ag/AgCl reference electrode | Assessment of the quality of satsuma mandarin (Citrus unshiu Marc.) under different storage conditions | Combined use with e-nose provided 100% tangerine identification and significantly higher correlation with tangerine quality compared to the single system | [106] |
ASTREE e-tongue system (Alpha MOS, France)/7 chemical sensors including AHS, NMS, CTS, ANS, SCS, PKS, and CPS and one Ag/AgCl reference electrode | Identification of aromatic and flavor compounds of 7 traditional Chinese pancakes | Enables proper identification of products | [107] |
Ultimate 3000 HPLC system coupled with a 16-channel coularray detector (Thermo Fisher Scientific Dionex, Sunnyvale, CA, USA) | Quick fresh lettuce | The e-tongue sensors showed similarity in evaluation with the traditional analytical method | [143] |
PEN3 E-nose (Airsense Analytics GmbH, Schwerin, Germany)/10 single-layer metal oxide thick-film sensors | Taste evaluation of traditional Chinese fermented soybean paste | Combining e-nose data and LDA analysis allowed for a clearer discrimination (with a discrimination accuracy of 97.22%) | [144] |
Astree flavor system consisting of 3 parts: a sensor array and Ag/AgC reference electrode; the sensors were made of silicon transistors with an organic coating | Detecting adulteration of ground lamb | Together with e-nose data, it is a promising perspective for the development of a rapid method for meat identification | [145] |
E-tongue (SA402B; Intelligent Sensor Technology, Inc., Tokyo, Japan) | e-Tongue was used to compare sensory differences in coffee quality depending on processing method | Makes it possible to identify taste sensations that are undetectable by humans | [146] |
e-Type tongue (α Astree, Alpha MOS, Toulouse, France), 7 potentiometric sensors marked by the manufacturer (Alpha MOS), Ag/AgCl reference electrode (Metrohm, Ltd., Herisau, Switzerland) | Development of a simple instrument, without the need for sample preparation and inexpensive analysis, which can be performed by manufacturers | The usefulness of the e-tongue for the construction of a fast and economical tool supporting melissopalynological analysis, which can be routinely used in the future | [147] |
Sensor Material | Detection Limit | Recovery Rate | Application | References |
---|---|---|---|---|
β-GICNT/rGO electrochemical sensor-based rGO/PEI—CNTs/β-CD | 0.01–100 μmol/L | 94.80–112.20% | Quantitative content of capsaicinoids in soy sauce and roasted meat products | [151] |
FI-PAD working electrode Au, auxiliary electrode platinum wire, reference electrode Ag/AgCl | 0.005 g/L | 93.00–109.5% | Detecting the concentration of chlorine ions in raw milk | [152] |
PPy-based voltametric sensors 7 electrodes: PPy/AQDS, PPy/SO4, PPy/DBS, PPy/PC, PPy/SF, PPy/FCN, and PPy/TSA | 91.3% | Coffee quality assessment and adulteration detection | [153] | |
Hydrogel containing mucin, NaCl as an ion-transporting electrolyte, and chitosan/poly(acrylamide—acrylic acid) as the main 3D structure maintaining the hydrogel network | Astringency 29.3 mM–0.59 μM at a sensitivity of 0.2 wt%−1 Bitterness 63.8 mM–6.38 μM at a sensitivity of 0.12 wt%−1 | Sensing an astringent and bitter taste | [154] | |
T1R1-VFT biosensor | The lower limits of detection (LOD) of IMP, MSG, BMP, and WSA were 0.1, 0.1, 0.1, and 0.01 pM, respectively | Over 90% first 4 days | Detecting umami flavors | [155] |
Silver nanoparticles (AgNPs) in multilayer structures (LbL) | Silhouette coefficient (SC) 91.2% | Increased ability to distinguish between basic tastes and samples that have an umami flavor | [156] |
Device Type/Sensors Used | Application | Quantitative Metrics | References |
---|---|---|---|
IRIS VA400 E-eye (Alpha MOS, Toulouse, France) | Characterization of the different quality levels of Congolese black tea | A total of 40 characteristic colors were distinguished, mainly reddish-brown, yellowish-brown, orange, and brown | [98] |
A system consisting of an electronic eyepiece (aperture: f/2.5) equipped with a 5 million-element CMOS (complementary metal oxide semiconductor) sensor, a holder, a light-emitting diode (LED) lamp, an LED lamp switch, and image processing software | A method for detecting the geographical origin of black pepper, which involves the synergistic use of ET, EN, and EE together with CNN and CAM incorporated into deep learning models | Relationships between sensory characteristics of black pepper and traceability of origin have been developed | [162] |
Combination of 3 intelligent sensory techniques (e-eye, e-nose, and e-tongue) with multivariate statistical methods | Understanding the impact of different processing methods on the sensory quality of chestnuts | Fast, non-destructive, and intelligent sensory technology introduced in the assessment of the sensory quality of chestnuts showed the inhibiting effect of N2 packaging on the browning of chestnuts after cooking | [163] |
The e-eye system consists of (1) a 5 million electronic eyepiece (RuiHoge), (2) a holder, (3) an LED lamp, and (4) an LED lamp adapter | Combined use of VE and EE to identify the storage time of Pu-erh tea | The detection efficiency of the intelligent sensor system has been improved compared to conventional pattern recognition methods using CNN | [164] |
W100 wine color analyzer (Hanon Advanced Technology Group Co., Ltd., Jinan, China) | L*, a*, b*, C*, and h of the samples | The results of the e-nose project showed that the aromatic profiles of the wines studied were mostly similar, but there were color differences between regions | [165] |
Color digital camera (Firewire Scion 1394 camera; Scion Corporation, Frederick, MD, USA) with maximum resolution (1600 × 1200 pixels) in jpeg format, illumination by two lamps (23 W/865, Philips MASTER PL-Electronic) placed at an angle of 45° | Use of electronic sensors to assess the effect of different thermal profiles of water during the percolation process on the sensory properties of 100% Arabica espresso coffees | Higher brewing temperatures resulted in greater foaming and greater foam stability | [166] |
Aparat E-eye (IRIS VA400, Alpha MOS, Francja) | Study of the color change of the Saffron floral bio-residues (SFB) sample under different storage conditions | It has been suggested that SFB should be stored at 25 °C with 23% relative humidity | [167] |
SC-80C colorimeter (Kangguang Instrument Co. Ltd., Beijing, China) in transmission mode under CIE D65/10°/observer illumination conditions | Used to reveal sensory characteristics of infusions of 12 representative yellow teas | Yellow large tea was significantly different from yellow bud teas and yellow small teas, but yellow bud teas could not be effectively distinguished from yellow small teas based on chemical components and electronic sensory characteristics | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R. Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review. Appl. Sci. 2025, 15, 1530. https://doi.org/10.3390/app15031530
Gil M, Rudy M, Duma-Kocan P, Stanisławczyk R. Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review. Applied Sciences. 2025; 15(3):1530. https://doi.org/10.3390/app15031530
Chicago/Turabian StyleGil, Marian, Mariusz Rudy, Paulina Duma-Kocan, and Renata Stanisławczyk. 2025. "Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review" Applied Sciences 15, no. 3: 1530. https://doi.org/10.3390/app15031530
APA StyleGil, M., Rudy, M., Duma-Kocan, P., & Stanisławczyk, R. (2025). Electronic Sensing Technologies in Food Quality Assessment: A Comprehensive Literature Review. Applied Sciences, 15(3), 1530. https://doi.org/10.3390/app15031530