Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production
Abstract
:1. Introduction
2. Pasta
3. Incorporation of By-Products
3.1. By-Products Treatments
3.2. Culinary Quality
3.2.1. Cooking Time
3.2.2. Swelling, Water Absorption, and Weight Loss Index
3.2.3. Texture
3.2.4. Color
3.3. Nutritional Quality
3.4. Antimicrobial Activity
3.5. Acceptability
4. Challenges in the Industrial Application of By-Product Enriched Pasta
5. Conclusions and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Definitional Framework of Food Losses and Waste; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Vilariño, M.V.; Franco, C.; Quarrington, C. Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 2017, 5, 21. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howella, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Ritika; Rizwana; Shukla, S.; Sondhi, A.; Tripathi, A.D.; Lee, J.-K.; Patel, S.K.S.; Agarwal, A. Valorisation of fruit waste for harnessing the bioactive compounds and its therapeutic application. Trends Food Sci. Technol. 2024, 144, 104302. [Google Scholar] [CrossRef]
- Russ, W.; Meyer-Pittroff, R. Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 2004, 44, 57–62. [Google Scholar] [CrossRef]
- Gómez, M.; Martínez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Subiria-Cueto, R.; Coria-Oliveros, A.J.; Wall-Medrano, A.; Rodrigo-Garcia, J.; González-Aguilar, G.A.; Martinez-Ruiz, N.D.R.; Alvarez-Parrilla, E. Antioxidant dietary fiber-based bakery products: A new alternative for using plant-by-products. Food Sci. Technol. 2021, 42, e57520. [Google Scholar] [CrossRef]
- Zarzycki, P.; Wirkijowska, A.; Teterycz, D.; Łysakowska, P. Innovations in wheat bread: Using food industry by-products for better quality and nutrition. Appl. Sci. 2024, 14, 3976. [Google Scholar] [CrossRef]
- Bianchi, F.; Tolve, R.; Rainero, G.; Bordiga, M.; Brennan, C.S.; Simonato, B. Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. Int. J. Food Sci. Technol. 2021, 56, 4356–4366. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Sandhu, S.K. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar] [CrossRef]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [PubMed]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Sahena, F.; Omar, A.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Okino Delgado, C.H.; Fleuri, L.F. Orange and mango by-products: Agro-industrial waste as source of bioactive compounds and botanical versus commercial description—A review. Food Rev. Int. 2016, 32, 1–14. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Contreras-Esquivel, J.C.; Serna-Cock, L.; Belmares-Cerda, R.E.; Aguilar, C.N. Mango seed: Functional and nutritional properties. Trends Food Sci. Technol. 2016, 55, 109–117. [Google Scholar] [CrossRef]
- Ledesma-Escobar, C.A.; de Castro, M.D.L. Towards a comprehensive exploitation of citrus. Trends Food Sci. Technol. 2014, 39, 63–75. [Google Scholar] [CrossRef]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace–a review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Saberian, H.; Yazdi, A.P.G.; Nejatian, M.; Bazsefidpar, N.; Mohammadian, A.H.; Rahmati, M.; Assadpour, E.; Jafari, S.M. Brewers’ spent grain as a functional ingredient in bakery, pasta, and cereal-based products. Future Foods 2024, 10, 100479. [Google Scholar] [CrossRef]
- Umego, E.C.; Barry-Ryan, C. Review of the valorization initiatives of brewing and distilling by-products. Crit. Rev. Food Sci. Nutr. 2023, 64, 8231–8247. [Google Scholar] [CrossRef] [PubMed]
- Betrouche, A.; Estivi, L.; Colombo, D.; Pasini, G.; Benatallah, L.; Brandolini, A.; Hidalgo, A. Antioxidant properties of gluten-free pasta enriched with vegetable by-products. Molecules 2022, 27, 8993. [Google Scholar] [CrossRef] [PubMed]
- Petitot, M.; Abecassis, J.; Micard, V. Structuring of pasta components during processing: Impact on starch and protein digestibility and allergenicity. Trends Food Sci. Technol. 2009, 20, 521–532. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Kendall, C.W.C.; Braunstein, C.R.; Mejia, S.B.; Leiter, L.A.; Jenkins, D.J.A.; Sievenpiper, J.L. Effect of pasta in the context of low-glycaemic index dietary patterns on body weight and markers of adiposity: A systematic review and meta-analysis of randomised controlled trials in adults. BMJ Open 2018, 8, e019438. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-making process: A narrative review on the relation between process variables and pasta quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Spinelli, S.; Contò, F.; Del Nobile, M.A. Effect of durum wheat cultivars on physicochemical and sensory properties of spaghetti. J. Sci. Food Agric. 2014, 94, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M. Role of durum wheat composition on the quality of pasta and bread. Food 2008, 2, 75–90. [Google Scholar]
- Mastrangelo, A.M.; Cattivelli, L. What makes bread and durum wheat different? Trends Plant Sci. 2021, 26, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Chiremba, C.; Pozniak, C.J.; Fu, B.X. Changes in semolina yellow pigment content and carotenoid composition during pasta processing. Cereal Chem. 2015, 92, 551–556. [Google Scholar] [CrossRef]
- De Noni, I.; Pagani, M.A. Cooking properties and heat damage of dried pasta as influenced by raw material characteristics and processing conditions. Crit. Rev. Food Sci. Nutr. 2010, 50, 465–472. [Google Scholar] [CrossRef]
- Mercier, S.; Mondor, M.; Moresoli, C.; Villeneuve, S.; Marcos, B. Drying of durum wheat pasta and enriched pasta: A review of modeling approaches. Crit. Rev. Food Sci. Nutr. 2016, 56, 1146–1168. [Google Scholar] [CrossRef]
- Nilusha, R.A.T.; Jayasinghe, J.M.J.K.; Perera, O.D.A.N.; Perera, P.I.P. Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. Int. J. Food Sci. 2019, 2019, 6750726. [Google Scholar] [CrossRef] [PubMed]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Structure and quality of pasta enriched with functional ingredients. RSC Adv. 2015, 5, 30780–30792. [Google Scholar] [CrossRef]
- Mercier, S.; Moresoli, C.; Mondor, M.; Villeneuve, S.; Marcos, B. A meta-analysis of enriched pasta: What are the effects of enrichment and process specifications on the quality attributes of pasta? Compr. Rev. Food Sci. Food Saf. 2016, 15, 685–704. [Google Scholar] [CrossRef]
- Dziki, D. Current trends in enrichment of wheat pasta: Quality, nutritional value and antioxidant properties. Processes 2021, 9, 1280. [Google Scholar] [CrossRef]
- Oliviero, T.; Fogliano, V. Food design strategies to increase vegetable intake: The case of vegetable enriched pasta. Trends Food Sci. Technol. 2016, 51, 58–64. [Google Scholar] [CrossRef]
- Gałkowska, D.; Witczak, T.; Pycia, K. Quality characteristics of novel pasta enriched with non-extruded and extruded blackcurrant pomace. Molecules 2022, 27, 8616. [Google Scholar] [CrossRef]
- Panza, O.; Conte, A.; Del Nobile, M.A. Recycling of fig peels to enhance the quality of handmade pasta. LWT—Food Sci. Technol. 2022, 168, 113872. [Google Scholar] [CrossRef]
- Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rollea, L.; et al. The effect of hazelnut roasted skin from different cultivars on the quality attributes, polyphenol content and texture of fresh egg pasta. J. Sci. Food Agric. 2015, 95, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Dhaliwa, M.; Kaur, H.; Singh, M.; Bangar, S.P.; Kumar, M.; Pandiselvam, R. Preparation of antioxidant-rich tricolor pasta using microwave processed orange pomace and cucumber peel powder: A study on nutraceutical, textural, color, and sensory attributes. J. Texture Stud. 2022, 53, 834–843. [Google Scholar] [CrossRef]
- Namir, M.; Iskander, A.; Alyamani, A.; Sayed-Ahmed, E.T.A.; Saad, A.M.; Elsahy, K.; El-Tarabily, K.A.; Conte-Junior, C.A. Upgrading common wheat pasta by fiber-rich fraction of potato peel byproduct at different particle sizes: Effects on physicochemical, thermal, and sensory properties. Molecules 2022, 27, 2868. [Google Scholar] [CrossRef]
- Long, D.Q.; Trieu, T.M.; Tran, T.T.T.; Ton, N.M.N.; Man Le, V.V. Quality of high-fibre pasta supplemented with watermelon rind powder with different particle sizes. Food Technol. Biotech. 2024, 62, 59–71. [Google Scholar] [CrossRef]
- Gumul, D.; Kruczek, M.; Ivanišová, E.; Słupski, J.; Kowalski, S. Apple pomace as an ingredient enriching wheat pasta with health-promoting compounds. Foods 2023, 12, 804. [Google Scholar] [CrossRef]
- Lončarić, A.; Kosović, I.; Jukić, M.; Ugarčić, Z.; Piližota, V. Effect of apple by-product as a supplement on antioxidant activity and quality parameters of pasta. Croat. J. Food Sci. Technol. 2014, 6, 97–103. [Google Scholar] [CrossRef]
- Segura-Badilla, O.; Kammar-García, A.; Mosso-Vázquez, J.; Ávila-Sosa Sánchez, R.; Ochoa-Velasco, C.; Hernández-Carranza, P.; Navarro-Cruz, A.R. Potential use of banana peel (Musa cavendish) as ingredient for pasta and bakery products. Heliyon 2022, 8, e11044. [Google Scholar] [CrossRef]
- Puraikalan, Y. Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat/cook product made with banana peels. Curr. Res. Nutr. Food Sci. 2018, 6, 382–391. [Google Scholar] [CrossRef]
- Gattuso, A.; De Bruno, A.; Piscopo, A.; Santacaterina, S.; Frutos, M.J.; Poiana, M. Bergamot pomace flour: From byproduct to bioactive ingredient for pasta production. Sustainability 2024, 16, 7784. [Google Scholar] [CrossRef]
- Kultys, E.; Moczkowska-Wyrwisz, M. Effect of using carrot pomace and beetroot-apple pomace on physicochemical and sensory properties of pasta. LWT—Food Sci. Technol. 2022, 168, 113858. [Google Scholar] [CrossRef]
- Bchir, B.; Karoui, R.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Date, apple, and pear by-products as functional ingredients in pasta: Cooking quality attributes and physicochemical, rheological, and sensorial properties. Foods 2022, 11, 1393. [Google Scholar] [CrossRef]
- Singla, G.; Panesar, P.S.; Sangwan, R.S.; Krishania, M. Enzymatic processing of Citrus reticulata (Kinnow) pomace using naringinase and its valorization through preparation of nutritionally enriched pasta. J. Food Sci. Technol. 2021, 58, 3853–3860. [Google Scholar] [CrossRef] [PubMed]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food by-products valorisation: Grape pomace and olive pomace (pate) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, V.; Padalino, L.; Nardiello, D.; Del Nobile, M.A.; Conte, A. New approach to enrich pasta with polyphenols from grape marc. J. Chem. 2015, 2015, 734578. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT—Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of grape pomace addition on the technological, sensory, and nutritional properties of durum wheat pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Liberatore, M.T.; Dilucia, F.; Rutigliano, M.; Viscecchia, R.; Spano, G.; Capozzi, V.; Bimbo, F.; Di Luccia, A.; la Gatta, B. Polyphenolic characterization, nutritional and microbiological assessment of newly formulated semolina fresh pasta fortified with grape pomace. Food Chem. 2025, 463, 141531. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Simultaneous optimization of wheat heat moisture treatment and grape peels addition for pasta making. LWT—Food Sci. Technol. 2021, 150, 112011. [Google Scholar] [CrossRef]
- Iuga, M.; Batariuc, A.; Mironeasa, S. Synergistic effects of heat-moisture treatment regime and grape peels addition on wheat dough and pasta features. Appl. Sci. 2021, 11, 5403. [Google Scholar] [CrossRef]
- Ungureanu-Iuga, M.; Mironeasa, S. Advance on the capitalization of grape peels by-product in common wheat pasta. Appl. Sci. 2021, 11, 11129. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Use of grape peels by-product for wheat pasta manufacturing. Plants 2021, 10, 926. [Google Scholar] [CrossRef] [PubMed]
- Padalino, L.; D’Antuono, I.; Durante, M.; Conte, A.; Cardinali, A.; Linsalata, V.; Mita, G.; Logrieco, A.F.; Del Nobile, M.A. Use of olive oil industrial by-product for pasta enrichment. Antioxidants 2018, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta fortification with olive pomace: Effects on the technological characteristics and nutritional properties. LWT—Food Sci. Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Oliveira, B.C.C.; Barbosa, C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P.; Alves, R.C. Pasta incorporating olive pomace: Impact on nutritional composition and consumer acceptance of a prototype. Foods 2024, 13, 2933. [Google Scholar] [CrossRef]
- Crizel, T.D.; Rios, A.D.; Thys, R.C.S.; Flôres, S.H. Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Sci. Technol. Campinas 2015, 35, 546–551. [Google Scholar] [CrossRef]
- De Santis, D.; Ferri, S.; Rossi, A.; Frisoni, R.; Turchetti, G. By-product of raspberry juice as a functional ingredient: Effects on the properties and qualitative characteristics of enriched pasta. Int. J. Food Sci. Technol. 2022, 57, 7720–7730. [Google Scholar] [CrossRef]
- Ho, L.-H.; Dahri, N.C. Effect of watermelon rind powder on physicochemical, textural, and sensory properties of wet yellow noodles. CyTA-J. Food 2016, 14, 465–472. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Ruggeri, S.; Ciorba, R.; Ceccarelli, D.; Ciccoritti, R. artichoke by-products valorization for phenols-enriched fresh egg pasta: A sustainable food design project. Sustainability 2022, 14, 14778. [Google Scholar] [CrossRef]
- Krawecka, A.; Sobota, A.; Ivanišová, E.; Harangozo, L’.; Valková, V.; Zielinska, E.; Blicharz-Kania, A.; Zdybel, B.; Mildner-Szkudlarz, S. Effect of black cumin cake addition on the chemical composition, glycemic index, antioxidant activity, and cooking quality of durum wheat pasta. Molecules 2022, 27, 6342. [Google Scholar] [CrossRef] [PubMed]
- Lordi, A.; Panza, O.; Conte, A.; Del Nobile, M.A. Best combination of vegetable by-products for the shelf-life extension of fresh pasta. Foods 2024, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Drabinska, N.; Nogueira, M.; Szmatowicz, B. Valorisation of broccoli by-products: Technological, sensory and flavour properties of durum pasta fortified with broccoli leaf powder. Molecules 2022, 27, 4672. [Google Scholar] [CrossRef] [PubMed]
- Gull, A.; Prasad, K.; Kumar, P. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT—Food Sci. Technol. 2015, 63, 470–474. [Google Scholar] [CrossRef]
- Dalla Costa, A.P.; Thys, R.C.S.; Rios, A.D.; Flôres, S.H. Carrot flour from minimally processed residue as substitute of β-carotene commercial in dry pasta prepared with common wheat (Triticum aestivum). J. Food Qual. 2016, 39, 590–598. [Google Scholar] [CrossRef]
- Nguyen, T.P.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Use of cashew apple pomace powder in pasta making: Effects of powder ratio on the product quality. Pol. J. Food Nutr. Sci. 2023, 73, 50–58. [Google Scholar] [CrossRef]
- Minarovičová, L.; Lauková, M.; Kohajdová, Z.; Karovičová, J.; Dobrovická, D.; Kuchtová, V. Qualitative properties of pasta enriched with celery root and sugar beet by-products. Czech J. Food Sci. 2018, 36, 66–72. [Google Scholar] [CrossRef]
- Saad, A.M.; El-Saadony, M.T.; Mohamed, A.S.; Ahmed, A.I.; Sitohy, M.Z. Impact of cucumber pomace fortification on the nutritional, sensorial and technological quality of soft wheat flour-based noodles. Int. J. Food Sci. Technol. 2021, 56, 3255–3268. [Google Scholar] [CrossRef]
- Baigts-Allende, D.K.; Pérez-Alva, A.; Metri-Ojeda, J.C.; Estrada-Beristain, C.; Ramírez-Rodrigues, M.A.; Arroyo-Silva, A.; Ramírez-Rodrigues, M.M. Use of Hibiscus sabdariffa by-product to enhance the nutritional quality of pasta. Waste Biomass Valor. 2023, 14, 1267–1279. [Google Scholar] [CrossRef]
- Wang, J.; Brennan, M.A.; Brennan, C.S.; Serventi, L. Predictive glycaemic response of pasta enriched with juice, puree, and pomace from red cabbage and spinach. Nutrients 2022, 14, 4575. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Brennan, M.A.; Brennan, C.S.; Serventi, L. Effect of vegetable juice, puree, and pomace on chemical and technological quality of fresh pasta. Foods 2021, 10, 1931. [Google Scholar] [CrossRef] [PubMed]
- Michalak-Majewska, M.; Teterycz, D.; Muszyński, S.; Radzki, W.; Sykut-Domańska, E. Influence of onion skin powder on nutritional and quality attributes of wheat pasta. PLoS ONE 2020, 15, e0227942. [Google Scholar] [CrossRef]
- Le, N.P.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Use of pennywort pomace and tyrosinase in making of fibre-rich pasta: Effects on proximate composition, textural profile, cooking quality and overall acceptability of the product. Int. J. Food Sci. Technol. 2023, 58, 1970–1978. [Google Scholar] [CrossRef]
- Bianchi, F.; Santoro, V.; Pasqualoni, I.; Bruttomesso, M.; Rizzi, C.; Piccinelli, A.L.; Simonato, B. Fortification of durum wheat fresh pasta with red chicory by-product powder: Effects on technological, nutritional, and sensory properties. LWT—Food Sci. Technol. 2024, 203, 116358. [Google Scholar] [CrossRef]
- Gumul, D.; Ivanišová, E.; Oracz, J.; Sabat, R.; Wywrocka-Gurgul, A.; Ziobro, R. Red potato pulp and cherry pomace for pasta enrichment: Health-promoting compounds, physical properties and quality. Appl. Sci. 2024, 14, 4873. [Google Scholar] [CrossRef]
- Al-Khamaiseh, A.; Saleh, M.I. Impact of Sesame (Sesamum indicum L.) Oil cake on pasta physicochemical properties. Pol. J. Food Nutr. Sci. 2024, 74, 210–220. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Lecce, L.; Likyova, D.; Sicari, V.; Pellicanò, T.M.; Poiana, M.; Del Nobile, M.A. Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. Czech J. Food Sci. 2017, 35, 48–56. [Google Scholar] [CrossRef]
- Lomuscio, E.; Bianchi, F.; Cervini, M.; Giuberti, G.; Simonato, B.; Rizzi, C. Durum wheat fresh pasta fortification with trub, a beer industry by-product. Foods 2022, 11, 2496. [Google Scholar] [CrossRef] [PubMed]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT—Food Sci. Technol. 2019, 114, 108421. [Google Scholar] [CrossRef]
- Cappa, C.; Alamprese, C. Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. LWT 2017, 82, 464–470. [Google Scholar] [CrossRef]
- Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using einkorn and tritordeum brewers’ spent grain to increase the nutritional potential of durum wheat pasta. Foods 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, F.; Trivisonno, M.C.; Iacovino, S.; Messia, M.C.; Marconi, E. Sustainable re-use of brewer’s spent grain for the production of high protein and fibre pasta. Foods 2022, 11, 642. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Padalino, L.; Costa, C.; Del Nobile, M.A.; Conte, A. Food by-products to fortified pasta: A new approach for optimization. J. Clean. Prod. 2019, 215, 985–991. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Valorisation of spent grain from malt whisky in the spelt pasta formulation: Modelling and optimization study. Appl. Sci. 2022, 12, 1441. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Sensory and nutritional attributes of fibre-enriched pasta. LWT—Food Sci. Technol. 2011, 44, 1429–1434. [Google Scholar] [CrossRef]
- Atzler, J.J.; Crofton, E.C.; Sahin, A.W.; Ispiryan, L.; Gallagher, E.; Zannini, E.; Arendt, E.K. Effect of fibre fortification of low FODMAP pasta. Int. J. Food Sci. Nutr. 2024, 75, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. Synergistic effect of different dietary fibres in pasta on in vitro starch digestion? Food Chem. 2015, 172, 245–250. [Google Scholar] [CrossRef]
- Tudorică, C.M.; Kuri, V.; Brennan, C.S. Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J. Agric. Food Chem. 2002, 50, 347–356. [Google Scholar] [CrossRef]
- Peressini, D.; Sensidoni, A.; Pollini, C.M.; De Cindio, B. Rheology of wheat doughs for fresh pasta production: Influence of semolina-flour blends and salt content. J. Texture Stud. 2000, 31, 163–182. [Google Scholar] [CrossRef]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Spinelli, S.; Contò, F.; Del Nobile, M.A. Chemical composition, sensory, and cooking quality evaluation of durum wheat spaghetti enriched with pea flour. Int. J. Food Sci. Technol. 2014, 49, 1544–1556. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products: Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Galanakis, C.M.; Brncic, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, by-products, and algae assisted by ultrasounds processing: Modeling approaches to optimize processing conditions. Trends Food Sci. Technol. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- Sun, L.J.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Jiang, K.; Shi, B.; Liu, L.; Hou, R.; Chen, G.; Farag, M.A.; Yan, N.; Liu, L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem. 2024, 446, 138739. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Hong, Y. Effect of hydrocolloids on starch digestion: A review. Food Chem. 2024, 444, 138636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, D.; Ding, Y.; Zhang, J.; Ding, Y.; Lyu, F. Effect and mechanism of insoluble dietary fiber on post-prandial blood sugar regulation. Trends Food Sci. Technol. 2024, 146, 104354. [Google Scholar] [CrossRef]
- Qian, M.Y.; Ismail, B.B.; He, Q.; Zhang, X.H.; Yang, Z.H.; Ding, T.; Ye, X.Q.; Liu, D.H.; Guo, M.M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2523–2590. [Google Scholar] [CrossRef]
- Nardella, S.; Conte, A.; Del Nobile, M.A. State-of-Art on the recycling of by-products from fruits and vegetables of mediterranean countries to prolong food shelf life. Foods 2022, 11, 665. [Google Scholar] [CrossRef]
- Hough, G.; Wakeling, I.; Mucci, A.; Chambers, E.; Gallardo, I.M.; Alves, L.R. Number of consumers necessary for sensory acceptability tests. Food Qual. Prefer. 2006, 17, 522–526. [Google Scholar] [CrossRef]
- Li, H.; Li, L.F.; Zhang, Z.J.; Wu, C.J.; Yu, S.J. Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2277–2317. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory nutrition and bitterness and astringency of polyphenols. Biomolecules 2024, 14, 234. [Google Scholar] [CrossRef]
- Ley, J.P. Masking bitter taste by molecules. Chemosens. Percept. 2008, 1, 58–77. [Google Scholar] [CrossRef]
- Coupland, J.N.; Hayes, J.E. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharm. Res. 2014, 31, 2921–2939. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.M.S.; Bao, Y.W.; Zhang, B.Y.; Le, T.M.; Huang, J.Y. Life cycle assessment on environmental sustainability of food processing. Annu. Rev. Food Sci. Technol. 2022, 13, 217–237. [Google Scholar] [CrossRef]
By-Product | By-Product Particle Size | Substitution or Addition (%) | Pasta Treatment | Major Ingredient | Type of Pasta | Technological Quality | Nutritional Quality | Sensory Quality | Ref. |
---|---|---|---|---|---|---|---|---|---|
Apple pomace | N.R. | Substitution: 10 to 50% | Extrusion. Drying: 40 °C for 8 h Final moisture: 12.5% | Wheat flour and eggs | Spaghetti | Color: N.R. OCT: N.R. Cooking quality: ↑WA Texture: ↓Hardness | ↑Polyphenols, ↑Flavonoids, ↑Ash, ↓Protein, ↓Fat, ↑Dietary fiber (S and I) | N.R. | [52] |
Apple peel powder | N.R. | Substitution: 10 and 15% | Extrusion. Drying: room T°—24 h | Durum wheat semolina | Fettuccine | Color: ↓L ↑b OCT: ↓Time (only in 15%) Cooking quality: ↑CL, ↑WA Texture: ↓Hardness, ↓Adhesiveness | ↑Polyphenols ↑Antioxidant Capacity | Reduction of sensory quality (Panel: N = N.R.—Trained) | [53] |
Banana peel | N.R. | Substitution: 5 and 10% | Lamination. Drying: 60 °C—1.5 h | Wheat flour and eggs | Fettuccini | Color: N.R. OCT: N.R. Cooking quality: ↑CL, =WA Texture: N.R. | ↑Fat | No differences (Panel: N.R.) | [54] |
Banana peel | N.R. | Substitution: 5% | Lamination. Drying: 50 °C—4 h | Corn and rice flour | N.R. | Color: No differences OCT: N.R. Cooking quality: N.R. Texture: No differences | N.R. | N.R. | [55] |
Bergamot pomace flour | <0.8 mm | Substitution: 1.5 to 5% | Fresh. | Durum wheat flour | N.R. | Color: ↑L ↓a ↓b OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols, ↑Flavonoids | Less acceptability (Panel: N = 18—Training: N.R.) | [56] |
Blackcurrant pomace (two types: extruded and non- extruded) | N.R. | Substitution: 5 and 10% | Extruded. Pre-drying: 80 °C—30 min Drying: 40 °C—19.5 h | Durum wheat semolina | Tagliatelle | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↓WA, ↓SI (only in non-extruded type) Texture: ↑Hardness, ↑Work of cutting | ↑Fat, ↑Ash, ↑Dietary fiber (S and I), ↑Antiradical activity | N.R. | [46] |
Carrot and beetroot- apple pomace | 340 µm | Substitution: 10 to 30% | Extrusion. Drying: N.R. Final moisture: 12% | Durum wheat semolina | Penne | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑CL, ↑WA, ↑SI Texture: ↓Hardness (only in 30%) | ↑Fiber (S, I and total) | Reduction of sensory quality, more in beetroot-apple pasta (Panel: N.R.) | [57] |
Date, apple and pear by-products | 1 mm | Substitution 2.5 to 10% | Lamination. Drying: 45 °C—Time: N.R. Final moisture: 13% | Wheat semolina | Pappardelle | Color: ↓L ↓a ↓b OCT: ↓Time Cooking quality: ↑CL, ↑WA Texture: N.R. | ↑Fiber, ↑Ash, =Protein | Reduction of sensory quality (Panel: N.R.) | [58] |
Enzyme treated kinnow pomace | <100 µm | Addition: 10 and 20% | Extrusion. Drying: 60 °C—Time: N.R. Final moisture: 5–6% | Durum wheat semolina | N.R. | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | N.R. | Highly acceptable (Panel: N = 10—Training: N.R.) | [59] |
Fig peels | <500 µm | Substitution: 10 to 16% | Fresh | Durum wheat semolina | Tagliatelle | Color: N.R. OCT: N.R. Cooking quality: ↑CL, =WA, =SI Texture: N.R. | ↑Polyphenols, ↑Antioxidant Capacity. In both analysis, clear differences at day 0, converge by day 12. | Initially better sensory quality in control pasta, but pasta with the by-product improves after day 3 (arbitrary quality evaluation) (Panel: N = 5—Trained) | [47] |
Grape and olive pomace | N.R. | Addition: 3 to 7% | Extrusion. Drying: 40 °C—20 h | Durum wheat and eggs | Tagliatelle | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols | N.R. | [60] |
Grape marc extract | N.R. | Substitution of all the water | Extrusion. Pasteurization: 90 °C—3 min Drying: (1) 60 °C—20 min (2) 90 °C—130 min at 90 °C (3) 75 °C—50 min (4) 45 °C—160 min (5) 50 °C—1040 min | Durum wheat semolina | Spaghetti | Color: N.R. OCT: =Time Cooking quality: ↓CL, ↓WA, ↓SI Texture: =Hardness, ↑Adhesiveness | ↑Flavonoids, ↑Polyphenols, ↑Antioxidant Capacity | No differences (Panel: N = 15—Trained) | [61] |
Grape marc powder | 811 µm | Addition: 2.5 to 7.5% | Extrusion. Fresh. | Wheat flour | Fettuccini | Color:↓L ↑a ↓b OCT: =Time Cooking quality: ↑CL (only in 5% and 7.5%), =WA Texture: N.R. | ↑Polyphenols, ↑Antioxidant Capacity | Less acceptability (Panel: N.R.) | [62] |
Grape pomace | 200 μm | Substitution: 5 and 10% | Extrusion. Drying: 50 °C—TIME: N.R. Final moisture: 12% | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑CL, ↓SI Texture: ↑Hardness, ↓Adhesiveness | ↑Polyphenols, ↑Antioxidant Capacity, ↓pGI, ↑SDS, ↓RDS | Loss of sensory quality in aroma, color, flavor, astringency, and granularity (Panel: N = N.R.—Trained) | [63] |
Grape pomace | N.R. | Addition: 5 and 10% | Fresh. | Durum semolina | Tagliatelle | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols, ↑Flavonoids | N.R. | [64] |
Grape skins | N.R. | Substitution: 3 to 9% | Pasta processing: N.R. Pre-drying: 30–35 °C—TIME: N.R. Drying: 40–55 °C—TIME: N.R. Final moisture: 13% | Wheat flour and eggs | N.R | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Protein, ↑Antioxidant Capacity | Better sensory quality with substitution 3–6% (Panel: N = 10—Training N.R.) | [65] |
Grape skins | <180 μm | Addition: 0 to 6% | Extrusion. Pre-drying: room T°—30 min Drying: (1) 60 °C—40 min (2) 80 °C—120 min (3) 40 °C—120 min | Wheat flour | Rigatoni | Color: N.R. OCT: N.R. Cooking quality: ↑CL Texture: ↑Hardness | ↑Fiber, ↑Polyphenols, ↑Antioxidant Capacity, ↑RS | N.R. | [66] |
Grape skins | <180 μm | Addition: 0 to 6% | Extrusion. Drying: (1) 20 °C—30 min (2) 40 °C—60 min (3) 80 °C—120 min (4) 40 °C—120 min | Wheat flour | Rigatoni | Color: ↓L OCT: N.R. Cooking quality: N.R. Texture: =Hardness, ↓Gumminess | ↑Fiber, ↑Polyphenols, ↑RS | N.R. | [67] |
Grape skins | <180 μm | Addition: 0 to 6% | Extrusion. Drying: (1) room T°—30 min (2) 40 °C—60 min (3) 80 °C—120 min (4) 40 °C—120 min | Wheat flour | Rigatoni | Color: ↓L ↑a ↓b OCT: N.R. Cooking quality: ↑CL, =WA Texture: ↑Hardness | ↑Ash, ↑Fat, ↑Fiber, ↑Polyphenols, ↑RS | N.R. | [68] |
Grape skins | <180 μm | Addition: 0 to 6% | Extrusion. Drying: (1) room T°—30 min (2) 40 °C—60 min (3) 80 °C—120 min (4) 40 °C—120 min | Wheat flour | Rigatoni | Color: N.R. OCT: N.R. Cooking quality: ↑CL Texture: ↑Hardness | ↑Fiber, ↑Polyphenols, ↑RS | N.R. | [69] |
Olive oil by-product | N.R. | Addition: 10 and 15% (with transglutaminase (TG) tested only at 10%: 0, 0.3, 0.6%) | Extrusion. Pasteurization: 90 °C—3 min Drying: (1) 60 °C—20 min (2) 90 °C—130 min at 90 °C (3) 75 °C—50 min (4) 45 °C—160 min (5) 50 °C—1040 min | Durum wheat semolina | Spaghetti | Color: N.R. OCT: ↓Time, =Time (with TG) Cooking quality: ↑CL, ↓SI, ↑WA (=with TG) Texture: ↑Hardness (=with TG) | ↑Flavonoids, ↑Carotenoids, ↑Polyphenols | Reduction of sensory quality (improved by adding TG) (Panel: N = 15—Trained) | [70] |
Olive pomace | 200 μm | Substitution: 5 and 10% | Extrusion. Drying: 50 °C—TIME: N.R. Final moisture: 11% | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑CL, ↑WA, ↑SI Texture: ↑Hardness, ↑Adhesiveness | ↑Polyphenols, ↑Antioxidant Capacity, ↑Fiber, ↑RS, ↑RDS, ↑SDS | N.R. | [71] |
Olive pomace | N.R. | Substitution: 7.5% | Handmade. Drying: 50 °C—5 h | Wheat flour | Laces | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols, ↑Flavonoids, ↑Antioxidant Capacity, ↑Ash, =Protein, ↑Fat, ↑Dietary fiber (S and I), ↑Vitamin E | Less acceptability (Panel: N = 71—Untrained) | [72] |
Orange fibre | <125 µm | Addition: 2.5 to 7.5% | Fresh. | Wheat flour | Fettuccini | Color: No trend in L, a, b. OCT: N.R. Cooking quality: ↑CL, ↑WA Texture: N.R. | ↓Protein, ↑Fat, ↑Ash, ↑Fiber (Total and I), ↑Carotenoids, ↑Polyphenols | Reduction of the overall sensory quality with 5% (Panel: N = 50—Untrained) | [73] |
Orange pomace and cucumber peel powder | <0.250 mm | Addition: 5 to 20% | Extrusion. Drying: 50 °C—4 h | Durum wheat semolina | Tubular shape | Color: ↓L ↑a, ↑b with orange pomace ↓a, =b with cucumber peel OCT: ↑Time Cooking quality: ↑CL, ↑SI Texture: ↑Hardness | ↓Protein, ↓Fat, ↑Ash, ↑Fiber (S and I), ↑Carotenoids, ↑Chlorophyll, ↑Polyphenols, ↑Antioxidant Capacity | N.R. | [49] |
Raspberry pomace | 300 µm | Substitution: 3.7 to 12% | Extrusion. Drying: 42–55 °C—28 h. Final moisture 12.5%. | Durum wheat semolina | Tubular shape | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑CL, ↓WA, ↓SI (only in ≥10%). Texture: N.R. | N.R. | Lower hardness and less acceptability (Panel: N.R.) | [74] |
Watermelon rind powder | 250 µm | Addition: 5 to 15% | Fresh. | Wheat semolina | Noodles | Color: L no trend, ↓a ↑b OCT: N.R. Cooking quality: ↓CL, ↑WA Texture: ↓Hardness, ↓Adhesiveness | N.R. | No trend (Panel: N = 30—Semi-trained) | [75] |
Watermelon rind powder | <400, 210 and 149 μm | Substitution: 10% | Extrusion. Drying: 50 °C—5 h | Durum wheat semolina | N.R. | Color: ↓L ↑a ↑b OCT: ↓Time Cooking quality: ↓WA, ↓SI, ↑CL Texture: ↑Hardness, ↑Adhesivity | ↑Polyphenols, ↑Flavonoids, ↑Ash, = Protein, ↑Fat, ↑Dietary fiber (S and I), ↑Antioxidant Capacity, ↓pGI | No differences in acceptability. (Panel: N = 60—Untrained) | [51] |
Artichoke by-product extract | 400–500 μm | Addition: 10% | Fresh. | Wheat flour, durum wheat semolina and eggs | Fettuccine | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: N.R. Texture: N.R. | ↑Total Phenolics | N.R. | [76] |
Black cumin cake | N.R. | Substitution: 5 to 25% | Extrusion. Drying: 9 steps from 35 °C to 55 °C—Total time 7 h | Durum wheat semolina | Tagliatelle | Color: N.R. OCT: No trend Cooking quality: ↑CL, SI: No trend Texture: No trend | ↑Protein, ↑Fat, ↑Ash, ↑Fiber (S and I), ↑pGI, ↑Minerals, ↑Polyphenols, ↑Flavonoids, ↑Antioxidant Capacity | N.R. | [77] |
Broccoli roots and leaves, pomegranate peels and olive pomace | <500 µm | Addition: pomegranate peels and olive pomace 3 and 6%—broccoli roots 10% | Fresh. | Durum wheat semolina | Tagliatelle | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols,↑Flavonoids, ↑Antioxidant Capacity | Better acceptability (Panel: N = 7—Trained, Acceptability not valid) | [78] |
Brocoli leaf powder | ≤0.60 mm | Addition: 2.5 and 5% | Fresh. | Durum wheat semolina | Penne | Color: ↓L ↓a ↑b OCT: No trend Cooking quality: ↑SI Texture: ↓Hardness | ↑Ash, ↑Fat, =Protein | Changes in attributes and volatiles (Panel: N = N.R.—Trained) | [79] |
Carrot pomace | N.R. | Substitution: 2 to 10% | Extrusion. Drying: 60 °C—3 h Final moisture: 8% | Durum wheat semolina | Cut Ziti | Color: ↓L ↑a ↑b OCT: N.R. Cooking quality: ↑CL, ↓WA Texture: ↓Hardness | N.R. | N.R. | [80] |
Carrot pomace | ≤125 µm | Addition: 10 and 20% | Extrusion. Drying: 55 °C—2 h Final moisture: 12% | Wheat flour with and without eggs | Noodles | Color: N.R. OCT: N.R. Cooking quality: ↑CL, =WA Texture: N.R. | ↑Protein, ↑Fat, ↑Ash, ↑Fiber, ↑Carotenoids | High acceptability is indicated but no data is shown comparing the samples (Panel: N.R.) | [81] |
Cashew apple pomace | <210 µm | Substitution: 5 to 20% | Extrusion. Drying: 50 °C—8 h Final moisture: 13% | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↑b OCT: ↓Time Cooking quality: ↑CL, ↓SI, ↓WA Texture: ↑Hardness, ↑Adhesiveness, ↓Springiness, ↓Cohesiveness, ↓Gumminess, ↓Chewiness, ↓Elongation rate, ↑Tensile strength | ↓Protein, ↓Starch, ↑Fat, ↑Ash, ↑Fiber (S and I), ↑Polyphenols, ↑Antioxidant Capacity | Less acceptability (from 10%) (Panel: N = 60—Untrained) | [82] |
Celery root and sugar beet by-products | 270–500 µm | Substitution: 5 to 20% | Extrusion. Drying: 25 °C—3 days. | Wheat flour | N.R. | Color: N.R. OCT: ↓Time (particularly in celery root pasta) Cooking quality: ↑CL, ↑WA Texture: N.R. | N.R. | Reduction of sensory quality (Panel: N = 11—Trained) | [83] |
Cucumber pomace | N.R. | Substitution: 2 to 10% | Fresh. | Wheat flour and eggs | Noodle | Color: ↓L ↑a ↓b OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↓Protein, ↑Fat, ↑Fiber, ↑Ash, ↑Minerals, ↑Antioxidant Capacity | Minor changes (Panel: N.R.) | [84] |
Hazelnut skin (≠varieties) | 500 µm | Substitution: 5 to 15% | Fresh. | Wheat flour and eggs | Tagliatelle | Color: ↓L ↑a ↓b OCT: N.R. Cooking quality: N.R. Texture: Differences by variety | ↓Protein, ↑Fat, ↑Ash, ↑Fiber (S and I), ↑Polyphenols, ↑Antioxidant Capacity | Less acceptability (Panel: N = 82—Untrained) | [48] |
Hibiscus sabdariffa by-product | 270 µm | Substitution: 10 to 20% | Fresh. | Wheat flour and eggs | Fettuccine | Color: ↓L ↑a ↓b OCT: N.R. Cooking quality: N.R. Texture: ↓Hardness | ↓Protein, ↑Fiber (S and I), ↑Minerals, ↑ Vitamin C, ↑Polyphenols, ↓Vitamin B | N.R. | [85] |
Juice, puree, and pomace from red cabbage and spinach | N.R. | Substitution: 1 to 10% | Extrusion. Drying: N.R. | Durum wheat semolina | Spaghetti | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols, ↑Fiber (S and I), ↑Antioxidant Capacity, ↑β-Carotenoids (Spinach pasta), ↓pGI | N.R. | [86] |
Juice, puree, and pomace from red cabbage and spinach | N.R. | Substitution: 1 to 10% | Extrusion. Drying: N.R. | Semolina | Spaghetti | Color: ↓L ↓a ↓b (spinach pasta)—↓L ↑a ↓b (red cabbage pasta) OCT: ↓Time (only in 10%) Cooking quality: ↑CL, ↓WA (only in high %) Texture: ↑Hardness (spinach pasta), ↓Hardness (red cabbage pasta) | ↑Protein (Cysteine) (Spinach pasta), ↑Ash | N.R. | [87] |
Onion skin powder | <0.5 mm | Substitution: 2.5 to 7.5% | Extrusion. Drying: 35–55 °C—TIME: N.R.. | Durum wheat semolina | N.R. | Color: ↓L ↑a ↓b (in cooked pasta) OCT: ↓Time Cooking quality: ↑CL, ↑SI in 2.5–5% and ↓SI in 7.5% Texture: N.R. | ↓Fat, ↑Ash, ↑Fiber (S and I), ↑Flavonoids, ↑Polyphenols, ↑Antioxidant Capacity, =Protein | Reduction of sensory quality (Panel: N = N.R.—Trained) | [88] |
Pennywort pomace | 210 µm | Substitution: 5 to 20% | Extrusion. Drying: 50 °C—TIME: N.R. Final moisture: 9-11% | Durum wheat semolina | Spaghetti | Color: ↓L ↓a ↑b OCT: ↓Time Cooking quality: ↑CL, ↓SI, ↓WA Texture: ↑Hardness, ↓Cohesiveness, ↑Gumminess, ↑Chewiness, ↓Elongation rate, ↓Tensile strength | ↑Protein, ↑Fat, ↑Lipids, ↑Ash, ↑Fiber (S and I), ↑Polyphenols, ↑Antioxidant Capacity, ↓Starch | Less acceptability (Panel: N = 60—Untrained) | [89] |
Potato peel | 40, 70, 145, 219 and 250 µm | Substitution: 2 to 15% | Extrusion. Drying: 80 °C—2 h | Wholegrain wheat flour | Spaghetti | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑CL, ↓MII Texture: ↑Hardness | ↑Fiber (S and I) | Less acceptability (Panel: N.R.) | [50] |
Red chicory by-product powder | <0.2 mm | Substitution: 5 to 15% | Fresh. | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT: ↑Time Cooking quality: ↑CL, ↓SI Texture: ↑Hardness ↑ Adhesivity | ↑Polyphenols, ↑Antioxidant Capacity | Descriptive analysis: More bitterness and less uniform color. (Panel: N = 12—Trained) | [90] |
Red potato pulp and cherry pomace | N.R. | Substitution: 10 to 30% | Extrusion. Drying: 40 °C—30 h Final moisture: 12.5% | Wheat flour and eggs | N.R. | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: ↑WA Texture: ↓Hardness (red potato pulp pasta), =Hardness (cherry pomace pasta) | ↑Polyphenols, ↑Ash, ↑Dietary fiber (S and I) | N.R. | [91] |
Sesame (Sesamum indicum L.) oil cake | N.R. | Addition: 5 and 15% | Lamination. Pre-drying: 56–59 °C—50 min Drying: (1) 70 °C—10 min (2) 30 °C—360 min. Final moisture: 12.5% | Wheat semolina | Lasagna | Color: N.R. OCT: N.R. Cooking quality: ↑WA, ↑CL (with lower %), =WA, =CL (with higher %) Texture: N.R. | ↑Ash, ↑Protein, ↑Fat, ↑Crude fiber | Less acceptability (Panel: 5—Trained, Acceptability not valid) | [92] |
Tomato by-product | N.R. | Substitution: 10 and 15% | Pasta processing: N.R. Pre-drying: 30–35 °C—TIME: N.R. Drying: 40–55 °C—TIME: N.R. Final moisture: 13% | Wholegrain durum wheat semolina | Spaghetti | Color: N.R. OCT: ↓Time Cooking quality: ↑CL, ↓WA Texture: ↑Hardness | ↓Protein, ↑Fiber (S and I), ↑Lycopene, ↑Carotenoids | Reduction of sensory quality (Panel: N = 15—Trained) | [93] |
Tomato by-product, linseed meal | N.R. | Substitution: 10 and 15% | Extrusion. Drying: 60 °C—17 h | Rice flour and fava bean flour | Gluten Free macaroni | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: ↓Fracturability (tomate pomace pasta), =Fracturability (linseed meal pasta) | ↑Polyphenols, ↑Flavonoids, ↑Antioxidant Capacity, ↑Tocols, ↑Carotenoids (Tomato pasta), ↓Carotenoids (Linseed Meal pasta), ↑Fiber, ↑Ash, ↑Lipids, ↑Protein (Linseed meal pasta) | N.R. | [31] |
Beer debittered trub | <200 µm | Substitution: 0 to 15% | Fresh. | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT: ↓Time (only in 15%) Cooking quality: ↑CL, ↓SI (=SI only in 15%) Texture: ↑Hardness, ↑Adhesiveness (=Adhesiveness only in 15%) | ↑Fat, ↑Protein, ↑Ash, ↑Fiber, ↓Starch, ↓In Vitro Starch Digestibility | Best sensory quality in 10%, worst in 15% (Panel: N = 20—Trained) | [94] |
Brewer’s spent grain | ≤700 µm | Substitution: 5 to 20% | Extrusion. Drying: 58 °C—18 h Final moisture: 12.5% | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT:↓Time (only in 20%) Cooking quality: ↓WA Texture: ↓Hardness | ↑Fiber, =Protein, ↑Ash, ↑β-Glucans, ↑Antioxidant Capacity, ↑RS | Lower sensory quality, less stickiness and hardness (Panel: N = 3—Trained) | [95] |
Brewer’s spent grain | <500 µm | Addition: 3 to 25% | Fresh. | Durum wheat semolina, wheat flour and eggs | Lasagna | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: ↓Hardness | N.R. | N.R. | [96] |
Brewer’s spent grain (two types: BSGE (einkorn)—BSGT (tritordeum)) | ≤700 µm | Substitution: 5 and 10% | Extrusion. Drying: 58 °C—18 h Final moisture: 12.5% | Durum wheat semolina | Macaroni | Color: N.R. OCT: ↑Time Cooking quality: ↑CL, ↑WA Texture: N.R. | ↑Protein, ↑Fiber, ↑Ash, ↑β-Glucans, ↑Antioxidant Capacity | Lower sensory quality, less stickiness and hardness (Panel: N = 3—Trained) | [97] |
Brewer’s spent grain (two types: EverVita Pro (EVP)— EverVita Fibra (EVF)) | EVP: 52 µm EVF: 320 µm | Addition: EVP 10 to 20% EVF 5 to 10% | Extrusion. Drying: <80 °C—22 h | Durum wheat semolina | Spaghetti | Color: ↓L ↑a ↓b OCT: ↓Time Cooking quality: N.R. Texture: No trend | ↑Protein, ↑Fiber, ↑Ash, ↑Fat, ↑Arabinoxylans | Slight improvement in appearance, color, and smell, but worsening of taste (Panel: N = 7—Trained) | [98] |
Grape marc, brewer’s spent grain and maize marc | ≤250 µm grape marc and brewer’s spent and ≤220 µm maize bran | Addition: 2.5–15% (plus 17.5 and 20% only for maize bran) | Extrusion. Drying: (1) 60 °C—20 min (2) 90 °C—130 min (3) 75 °C—150 min (4) 45 °C—160 min (5) 50 °C time—1040 min. | Durum wheat semolina | Spaghetti | Color: N.R. OCT: N.R. Cooking quality: N.R. Texture: N.R. | ↑Polyphenols, ↓ACH (Maize Bran pasta) | Reduction of the overall sensory quality (Panel: N = 10—Trained) | [99] |
Malt whisky spent grain | 200 µm | Addition: 5 to 20% | Extrusion. Drying: 40 °C—6 h | Spelt flour | Spelt macaroni | Color: ↑Color chroma OCT: N.R. Cooking quality: ↑CL Texture: ↑Hardness, ↓Cohesiveness, ↓Fracturability | ↑Protein, ↑Fiber, ↑Polyphenols, ↑Antioxidant Capacity | N.R. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, M.; Braojos, M.; Fernández, R.; Parle, F. Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production. Appl. Sci. 2025, 15, 2189. https://doi.org/10.3390/app15042189
Gómez M, Braojos M, Fernández R, Parle F. Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production. Applied Sciences. 2025; 15(4):2189. https://doi.org/10.3390/app15042189
Chicago/Turabian StyleGómez, Manuel, Marina Braojos, Raúl Fernández, and Florencia Parle. 2025. "Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production" Applied Sciences 15, no. 4: 2189. https://doi.org/10.3390/app15042189
APA StyleGómez, M., Braojos, M., Fernández, R., & Parle, F. (2025). Utilization of By-Products from the Fruit and Vegetable Processing Industry in Pasta Production. Applied Sciences, 15(4), 2189. https://doi.org/10.3390/app15042189