Driving Continuous Improvement with Industry 4.0 Technologies: Lessons from Multiple Use Case Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Continuous Improvement in Lean Management
2.2. Industry 4.0
2.3. Lean Management and Industry 4.0
2.3.1. Current Trends in Lean Management and Industry 4.0 Research
2.3.2. Lean Industry 4.0: An Analysis of Interactions
2.3.3. Digitalization and Continuous Improvement
2.4. Research Gap
3. Research Methodology
3.1. Approach and Objective
3.2. Cases
3.3. Data Collection and Analysis
4. Results
4.1. We Summarized the Answers as Follows—Plan
4.2. Do
4.3. Check
4.4. Act
5. Findings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Singh, H. Continuous improvement philosophy—Literature review and directions. Benchmarking Int. J. 2015, 22, 75–119. [Google Scholar] [CrossRef]
- Christopher, M. Logistics & Supply Chain Management, 5th ed.; Always Learning, FT Publishing International: Harlow, UK, 2016. [Google Scholar]
- Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies; McGraw Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of things and supply chain management: A literature review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef]
- Wellner, P.; Hardin, K. 2023 Manufacturing Industry Outlook; Deloitte: Tirana, Albania, 2023. [Google Scholar]
- Aktar, M.A.; Alam, M.M.; Al-Amin, A.Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 2021, 26, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Black, J.T. The Design of the Factory with a Future; Mcgraw-Hill College: New York, NY, USA, 1991. [Google Scholar]
- Shingo, S. Non-Stock Production the Shingo System of Continuous Improvement; Routledge: London, UK, 2000. [Google Scholar]
- Leyh, C.; Martin, S.; Schäffer, T. Industry 4.0 and Lean Production—A Matching Relationship? An analysis of selected Industry 4.0 models. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, Prague, Czech Republic, 3–6 September 2017; Annals of Computer Science and Information Systems. IEEE: New York, NY, USA, 2017; pp. 989–993. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. Understanding the Internet of Things: Definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw. 2017, 56, 122–140. [Google Scholar] [CrossRef]
- Bortolini, M.; Faccio, M.; Galizia, F.G.; Gamberi, M.; Pilati, F. Design, engineering and testing of an innovative adaptive automation assembly system. Assem. Autom. 2020, 40, 531–540. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Dombrowski, U.; Richter, T.; Krenkel, P. Interdependencies of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manuf. 2017, 11, 1061–1068. [Google Scholar] [CrossRef]
- Gupta, S.; Jain, S.K. A literature review of lean manufacturing. Int. J. Manag. Sci. Eng. Manag. 2013, 8, 241–249. [Google Scholar] [CrossRef]
- Hoellthaler, G.; Braunreuther, S.; Reinhart, G. Digital Lean Production—An Approach to Identify Potentials for the Migration to a Digitalized Production System in SMEs from a Lean Perspective. Procedia CIRP 2018, 67, 522–527. [Google Scholar] [CrossRef]
- Khanchanapong, T.; Prajogo, D.; Sohal, A.S.; Cooper, B.K.; Yeung, A.C.; Cheng, T. The unique and complementary effects of manufacturing technologies and lean practices on manufacturing operational performance. Int. J. Prod. Econ. 2014, 153, 191–203. [Google Scholar] [CrossRef]
- Netland, T.H. Critical success factors for implementing lean production: The effect of contingencies. Int. J. Prod. Res. 2016, 54, 2433–2448. [Google Scholar] [CrossRef]
- Netland, T.; Ferdows, K. What to Expect from a Corporate Lean Program; Massachusetts Institute of Technology: Cambridge, MA, USA, 2016. [Google Scholar]
- Scherrer-Rathje, M.; Boyle, T.A.; Deflorin, P. Lean, take two! Reflections from the second attempt at lean implementation. Bus. Horiz. 2009, 52, 79–88. [Google Scholar] [CrossRef]
- Sanders, A.; Elangeswaran, C.; Wulfsberg, J. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. J. Ind. Eng. Manag. 2016, 9, 811. [Google Scholar] [CrossRef]
- Cifone, F.D.; Hoberg, K.; Holweg, M.; Staudacher, A.P. ‘Lean 4.0’: How can digital technologies support lean practices? Int. J. Prod. Econ. 2021, 241, 108258. [Google Scholar] [CrossRef]
- Hambach, J.; Kümmel, K.; Metternich, J. Development of a Digital Continuous Improvement System for Production. Procedia CIRP 2017, 63, 330–335. [Google Scholar] [CrossRef]
- Kumar, M.; Vaishya, R.; Parag. Real-Time Monitoring System to Lean Manufacturing. Procedia Manuf. 2018, 20, 135–140. [Google Scholar] [CrossRef]
- Frank, A.G.; Marodin, G.A.; Filho, M.G.; Thürer, M. Beyond Industry 4.0—Integrating Lean, Digital Technologies and People. Int. J. Oper. Prod. Manag. 2024, 44, 1109–1126. [Google Scholar] [CrossRef]
- Hines, P.; Tortorella, G.L.; Antony, J.; Romero, D. Lean Industry 4.0: Past, present, and future. Qual. Manag. J. 2023, 30, 64–88. [Google Scholar] [CrossRef]
- Alsadi, J.; Antony, J.; Mezher, T.; Jayaraman, R.; Maalouf, M. Lean and Industry 4.0: A Bibliometric Analysis, Opportunities for Future Research Directions. Qual. Manag. J. 2023, 30, 41–63. [Google Scholar] [CrossRef]
- Buer, S.V.; Fragapane, G.I.; Strandhagen, J.O. The Data-Driven Process Improvement Cycle: Using Digitalization for Continuous Improvement. IFAC-PapersOnLine 2018, 51, 1035–1040. [Google Scholar] [CrossRef]
- Buer, S.V.; Strandhagen, J.O.; Chan, F.T.S. The link between Industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. Int. J. Prod. Res. 2018, 56, 2924–2940. [Google Scholar] [CrossRef]
- Hicks, B.J. Lean information management: Understanding and eliminating waste. Int. J. Inf. Manag. 2007, 27, 233–249. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0—A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Impacts of Industry 4.0 technologies on Lean principles. Int. J. Prod. Res. 2020, 58, 1644–1661. [Google Scholar] [CrossRef]
- Chiarini, A. Improvement of OEE performance using a Lean Six Sigma approach: An Italian manufacturing case study. Int. J. Product. Qual. Manag. 2015, 16, 416. [Google Scholar] [CrossRef]
- Muchiri, P.; Pintelon, L. Performance measurement using overall equipment effectiveness (OEE): Literature review and practical application discussion. Int. J. Prod. Res. 2008, 46, 3517–3535. [Google Scholar] [CrossRef]
- Buchmeister, B.; Friscic, D.; Lalic, B.; Palcic, I. Analysis of a three-stage supply chain with level constraints. Int. J. Simul. Model. 2012, 11, 196–210. [Google Scholar] [CrossRef]
- Singh, B.J.; Khanduja, D. DMAICT: A road map to quick changeovers. Int. J. Six Sigma Compet. Advant. 2010, 6, 31. [Google Scholar] [CrossRef]
- Rossini, M.; Costa, F.; Tortorella, G.L.; Portioli-Staudacher, A. The interrelation between Industry 4.0 and lean production: An empirical study on European manufacturers. Int. J. Adv. Manuf. Technol. 2019, 102, 3963–3976. [Google Scholar] [CrossRef]
- Womack, J.P.; Jones, D.T.; Roos, D. The Machine That Changed the World: Based on the Massachusetts Institute of Technology 5-Million Dollar 5-Year Study on the Future of the Automobile; Rawson Associates: Calgary, AB, Canada; Collier Macmillan Canada: Toronto, ON, Canada; Maxwell Macmillan Interanational: New York, NY, USA, 1990. [Google Scholar]
- Holweg, M. The genealogy of lean production. J. Oper. Manag. 2007, 25, 420–437. [Google Scholar] [CrossRef]
- Tennant, C.; Roberts, P.A. Hoshin Kanri: A technique for strategic quality management. Qual. Assur. 2000, 8, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Witcher, B.J. Policy management of strategy (hoshin kanri). Strateg. Change 2003, 12, 83–94. [Google Scholar] [CrossRef]
- Hines, P.; Butterworth, C. The Essence of Excellence: Creating a Culture of Continuous Improvement; foreword by Jeffrey K. Liker; S A Partners: Caerphilly, UK, 2019. [Google Scholar]
- Ballé, M.; Chaize, J.; Fiancette, F.; Prévot, E. The Lean Leap: Lean as a Learning Accelerator. Reflections 2010, 10, 1–16. [Google Scholar]
- Hines, P.; Found, P.; Harrison, R.T.; Griffiths, G. Staying Lean: Thriving, Not Just Surviving; Lean Enterprise Research Centre: Cardiff, UK, 2008. [Google Scholar]
- Shah, R.; Ward, P.T. Defining and developing measures of lean production. J. Oper. Manag. 2007, 25, 785–805. [Google Scholar] [CrossRef]
- Kolberg, D.; Zühlke, D. Lean Automation enabled by Industry 4.0 Technologies. IFAC-PapersOnLine 2015, 48, 1870–1875. [Google Scholar] [CrossRef]
- Schumacher, S.; Bildstein, A.; Bauernhansl, T. The Impact of the Digital Transformation on Lean Production Systems. Procedia CIRP 2020, 93, 783–788. [Google Scholar] [CrossRef]
- Liker, J.K. The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer; McGraw-Hill: New York, NY, USA; London, UK, 2004. [Google Scholar]
- Gibbons, P.M.; Burgess, S.C. Introducing OEE as a measure of lean Six Sigma capability. Int. J. Lean Six Sigma 2010, 1, 134–156. [Google Scholar] [CrossRef]
- Dal, B.; Tugwell, P.; Greatbanks, R. Overall equipment effectiveness as a measure of operational improvement—A practical analysis. Int. J. Oper. Prod. Manag. 2000, 20, 1488–1502. [Google Scholar] [CrossRef]
- Nakajima, S. Introduction to TPM: Total Productive Maintenance; foreword by Norman Bodek; Productivity Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Hartmann, E.H. Successfully Installing TPM in a Non-Japanese Plant; Total productive maintenance; TPM Press: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Mrugalska, B.; Wyrwicka, M.K. Towards Lean Production in Industry 4.0. Procedia Eng. 2017, 182, 466–473. [Google Scholar] [CrossRef]
- Erol, S.; Jäger, A.; Hold, P.; Ott, K.; Sihn, W. Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP 2016, 54, 13–18. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Küsters, D.; Praß, N.; Gloy, Y.S. Textile Learning Factory 4.0—Preparing Germany’s Textile Industry for the Digital Future. Procedia Manuf. 2017, 9, 214–221. [Google Scholar] [CrossRef]
- Dutta, G.; Kumar, R.; Sindhwani, R.; Singh, R.K. Digital transformation priorities of India’s discrete manufacturing SMEs –a conceptual study in perspective of Industry 4.0. Compet. Rev. Int. Bus. J. 2020, 30, 289–314. [Google Scholar] [CrossRef]
- Schumacher, S.; Schmid, F.A.; Bildstein, A.; Bauernhansl, T. Lean Production Systems 4.0: The Impact of the Digital Transformation on Production System Levels. Procedia CIRP 2021, 104, 259–264. [Google Scholar] [CrossRef]
- Müller, J.M.; Kiel, D.; Voigt, K.I. What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [Google Scholar] [CrossRef]
- Neumann, W.P.; Winkelhaus, S.; Grosse, E.H.; Glock, C.H. Industry 4.0 and the human factor—A systems framework and analysis methodology for successful development. Int. J. Prod. Econ. 2021, 233, 107992. [Google Scholar] [CrossRef]
- Pagliosa, M.; Tortorella, G.; Ferreira, J.C.E. Industry 4.0 and Lean Manufacturing. J. Manuf. Technol. Manag. 2021, 32, 543–569. [Google Scholar] [CrossRef]
- Arey, D.; Le, C.H.; Gao, J. Lean industry 4.0: A digital value stream approach to process improvement. Procedia Manuf. 2021, 54, 19–24. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Change 2019, 146, 119–132. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Fettermann, D. Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies. Int. J. Prod. Res. 2018, 56, 2975–2987. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. J. Manuf. Technol. Manag. 2020, 31, 1–30. [Google Scholar] [CrossRef]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M. Internet of Things (IoT) for Integrating Environmental and Localization Data in Building Information Modeling (BIM). In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Taipei, Taiwan, 28 June–1 July 2017; Cheng, M.Y., Chen, H.M., Chiu, K.C., Eds.; Tribun EU, s.r.o.: Brno, Czech Republic, 2017. [Google Scholar] [CrossRef]
- Romero, D.; Gaiardelli, P.; Powell, D.; Wuest, T.; Thürer, M. Rethinking Jidoka Systems under Automation & Learning Perspectives in the Digital Lean Manufacturing World. IFAC-PapersOnLine 2019, 52, 899–903. [Google Scholar] [CrossRef]
- Wagner, T.; Herrmann, C.; Thiede, S. Industry 4.0 Impacts on Lean Production Systems. Procedia CIRP 2017, 63, 125–131. [Google Scholar] [CrossRef]
- Gillani, F.; Chatha, K.A.; Sadiq Jajja, M.S.; Farooq, S. Implementation of digital manufacturing technologies: Antecedents and consequences. Int. J. Prod. Econ. 2020, 229, 107748. [Google Scholar] [CrossRef]
- Rossini, M.; Cifone, F.D.; Kassem, B.; Costa, F.; Portioli-Staudacher, A. Being lean: How to shape digital transformation in the manufacturing sector. J. Manuf. Technol. Manag. 2021, 32, 239–259. [Google Scholar] [CrossRef]
- Sanders, A.; Subramanian, K.R.K.; Redlich, T.; Wulfsberg, J.P. Industry 4.0 and Lean Management—Synergy or Contradiction? In Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing; IFIP Advances in Information and Communication, Technology; Lödding, H., Riedel, R., Thoben, K.D., von Cieminski, G., Kiritsis, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 514, pp. 341–349. [Google Scholar] [CrossRef]
- Rüttimann, B.G.; Stöckli, M.T. Lean and Industry 4.0—Twins, Partners, or Contenders? A Due Clarification Regarding the Supposed Clash of Two Production Systems. J. Serv. Sci. Manag. 2016, 09, 485–500. [Google Scholar] [CrossRef]
- Prinz, C.; Kreggenfeld, N.; Kuhlenkötter, B. Lean meets Industrie 4.0—A practical approach to interlink the method world and cyber-physical world. Procedia Manuf. 2018, 23, 21–26. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Dhone, N.C. Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. Int. J. Prod. Res. 2020, 58, 1319–1337. [Google Scholar] [CrossRef]
- Núñez-Merino, M.; Maqueira-Marín, J.M.; Moyano-Fuentes, J.; Martínez-Jurado, P.J. Information and digital technologies of Industry 4.0 and Lean supply chain management: A systematic literature review. Int. J. Prod. Res. 2020, 58, 5034–5061. [Google Scholar] [CrossRef]
- Hilton, R.J.; Sohal, A. A conceptual model for the successful deployment of Lean Six Sigma. Int. J. Qual. Reliab. Manag. 2012, 29, 54–70. [Google Scholar] [CrossRef]
- Assarlind, M.; Gremyr, I.; Bäckman, K. Multi–faceted views on a Lean Six Sigma application. Int. J. Qual. Reliab. Manag. 2013, 30, 387–402. [Google Scholar] [CrossRef]
- Doh, S.W.; Deschamps, F.; Pinheiro de Lima, E. Systems Integration in the Lean Manufacturing Systems Value Chain to Meet Industry 4.0 Requirements. In Transdisciplinary Engineering: Crossing Boundaries; IOS Press: Amsterdam, The Netherlands, 2016; pp. 642–650. [Google Scholar] [CrossRef]
- Tamás, P.; Illés, B.; Dobos, P. Waste reduction possibilities for manufacturing systems in the industry 4.0. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012074. [Google Scholar] [CrossRef]
- Tamás, P.; Illés, B. Process Improvement Trends for Manufacturing Systems in Industry 4.0. Acad. J. Manuf. Eng. 2016, 14, 7. [Google Scholar]
- Gallo, T.; Cagnetti, C.; Silvestri, C.; Ruggieri, A. Industry 4.0 tools in lean production: A systematic literature review. Procedia Comput. Sci. 2021, 180, 394–403. [Google Scholar] [CrossRef]
- Kolberg, D.; Knobloch, J.; Zühlke, D. Towards a lean automation interface for workstations. Int. J. Prod. Res. 2017, 55, 2845–2856. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Q.; Zhao, Z. SLAE-CPS: Smart Lean Automation Engine Enabled by Cyber-Physical Systems Technologies. Sensors 2017, 17, 1500. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 2016, 101, 158–168. [Google Scholar] [CrossRef]
- Tortorella, G.L.; de Castro Fettermann, D.; Frank, A.; Marodin, G. Lean manufacturing implementation: Leadership styles and contextual variables. Int. J. Oper. Prod. Manag. 2018, 38, 1205–1227. [Google Scholar] [CrossRef]
- Zarte, M.; Pechmann, A.; Wermann, J.; Gosewehr, F.; Colombo, A.W. Building an Industry 4.0-compliant lab environment to demonstrate connectivity between shop floor and IT levels of an enterprise. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 6590–6595. [Google Scholar] [CrossRef]
- Ghi, A.; Rossetti, F. 4D Printing: An Emerging Technology in Manufacturing? In Digitally Supported Innovation; Springer: Cham, Switzerland, 2016; pp. 171–178. [Google Scholar] [CrossRef]
- Jayaram, A. Lean six sigma approach for global supply chain management using industry 4.0 and IIoT. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 89–94. [Google Scholar] [CrossRef]
- Rauch, E.; Dallasega, P.; Matt, D.T. The Way from Lean Product Development (LPD) to Smart Product Development (SPD). Procedia CIRP 2016, 50, 26–31. [Google Scholar] [CrossRef]
- Zúñiga, E.R.; Moris, M.U.; Syberfeldt, A. Integrating simulation-based optimization, lean, and the concepts of industry 4.0. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; pp. 3828–3839. [Google Scholar] [CrossRef]
- Ramadan, M.; Salah, B. Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study. Int. J. Ind. Manuf. Eng. 2019, 13, 174–181. [Google Scholar]
- Saldivar, A.A.F.; Goh, C.; Chen, W.-N.; Li, Y. Self-organizing tool for smart design with predictive customer needs and wants to realize Industry 4.0. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5317–5324. [Google Scholar] [CrossRef]
- Tonelli, F.; Demartini, M.; Loleo, A.; Testa, C. A Novel Methodology for Manufacturing Firms Value Modeling and Mapping to Improve Operational Performance in the Industry 4.0 Era. Procedia CIRP 2016, 57, 122–127. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Giglio, R.; van Dun, D.H. Industry 4.0 adoption as a moderator of the impact of lean production practices on operational performance improvement. Int. J. Oper. Prod. Manag. 2019, 39, 860–886. [Google Scholar] [CrossRef]
- Yilmaz, A.; Dora, M.; Hezarkhani, B.; Kumar, M. Lean and industry 4.0: Mapping determinants and barriers from a social, environmental, and operational perspective. Technol. Forecast. Soc. Change 2022, 175, 121320. [Google Scholar] [CrossRef]
- Satoglu, S.; Ustundag, A.; Cevikcan, E.; Durmusoglu, M.B. Lean Transformation Integrated with Industry 4.0 Implementation Methodology. In Industrial Engineering in the Industry 4.0 Era; Springer: Cham, Switzerland, 2018; pp. 97–107. [Google Scholar] [CrossRef]
- Krishnaiyer, K.; Chen, F.F. A Cloud-based Kanban Decision Support System for Resource Scheduling & Management. Procedia Manuf. 2017, 11, 1489–1494. [Google Scholar] [CrossRef]
- Shahin, M.; Chen, F.F.; Bouzary, H.; Krishnaiyer, K. Integration of Lean practices and Industry 4.0 technologies: Smart manufacturing for next-generation enterprises. Int. J. Adv. Manuf. Technol. 2020, 107, 2927–2936. [Google Scholar] [CrossRef]
- Dave, B.; Kubler, S.; Främling, K.; Koskela, L. Opportunities for enhanced lean construction management using Internet of Things standards. Autom. Constr. 2016, 61, 86–97. [Google Scholar] [CrossRef]
- Meudt, T.; Metternich, J.; Abele, E. Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. CIRP Ann. 2017, 66, 413–416. [Google Scholar] [CrossRef]
- Karre, H.; Hammer, M.; Kleindienst, M.; Ramsauer, C. Transition towards an Industry 4.0 State of the LeanLab at Graz University of Technology. Procedia Manuf. 2017, 9, 206–213. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.; Gupta, S.; Kaswan, M.S.; Singh, M. Integration of Lean manufacturing and Industry 4.0: A bibliometric analysis. TQM J. 2024, 36, 244–264. [Google Scholar] [CrossRef]
- Narula, S.; Puppala, H.; Kumar, A.; Luthra, S.; Dwivedy, M.; Prakash, S.; Talwar, V. Are Industry 4.0 technologies enablers of lean? Evidence from manufacturing industries. Int. J. Lean Six Sigma 2022, 14, 115–138. [Google Scholar] [CrossRef]
- Pirrone, L.; Grothkopp, M.; Budde, L.; Friedli, T. Integrate or separate: Lean and digitalization programs through the lens of boundary work management. J. Manuf. Technol. Manag. 2024, 35, 1441–1463. [Google Scholar] [CrossRef]
- Schumacher, S.; Hall, R.; Bildstein, A.; Bauernhansl, T. Lean Production Systems 4.0: Systematic literature review and field study on the digital transformation of lean methods and tools. Int. J. Prod. Res. 2023, 61, 8751–8773. [Google Scholar] [CrossRef]
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar] [CrossRef]
- Barata, J.; Kayser, I. Industry 5.0—Past, Present, and Near Future. Procedia Comput. Sci. 2023, 219, 778–788. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Building Theories from Case Study Research. Acad. Manag. Rev. 1989, 14, 532. [Google Scholar] [CrossRef]
- Stake, R.E. Multiple Case Study Analysis; The Guilford Press: New York, 2006. [Google Scholar]
- Fueglistaller, U. Charakteristik und Entwicklung von Klein- und Mittelunternehmen (KMU); KMU Verlag HSG: St. Gallen, Switzerland, 2004. [Google Scholar]
Focus and Effects | References | |
---|---|---|
Benefits | Flexibility Productivity Performance Improvement Reduced Inventory Quality Reliability Real-Time Decision-Making Costs Achieve Lean Targets Efficient Communication Managing Customer Needs Identify Core Competencies Safety Delivery Service Level | Sanders et al. [21], Kolberg and Zühlke [46], Tamás et al. [79], Gallo et al. [81], Kolberg et al. [82], Ma et al. [83], Wang et al. [84] Dombrowski et al. [14], Sanders et al. [21], Tortorella and Fettermann [64], Gallo et al. [81], Wang et al. [84], M. Zarte et al. [86] Buer et al. [29], Tortorella and Fettermann [64], Gallo et al. [81], Rauch et al. [89], E. R. Zúñiga et al. [90] Kolberg and Zühlke [46], Tortorella and Fettermann [64], Wagner et al. [68], Kolberg et al. [82] Rossini et al. [37], Ghi and Rossetti [87], A. Jayaram [88], Wagner et al. [68], Ma et al. [83] Tamás et al. [79], Tamás and Illés [80], Sanders et al. [21], Ma et al. [83] Mayr et al. [31], Ramadan and Salah [91], Doh et al. [78] A. A. F. Saldivar et al. [92], Tonelli et al. [93], Tortorella et al. [94], Tortorella et al. [94] |
Challenges | Validation and Verification Internet Facility Framework Required Detailed Methodology Failure Human Factor Technological Readiness Cost | Dombrowski et al. [14], A. A. F. Saldivar et al. [92] Doh et al. [78] Kolberg and Zühlke [46] E. R. Zúñiga et al. [90] Mayr et al. [31] Gallo et al. [81] Yilmaz et al. [95] Yilmaz et al. [95] |
Lean Tools and I4.0 Technologies | Kanban Poka Yoke Jidoka TPM VSM SMED Andon 5s Kaizen Heijunka | Mrugalska and Wyrwicka [53], Satoglu et al. [96]—RFID; Krishnaiyer and Chen [97], Shahin et al. [98]—Cloud Computing; Mrugalska and Wyrwicka [53]—Real-Time Data; Dave et al. [99]—Wireless Networks; Mrugalska and Wyrwicka [53]—Big Data; Satoglu et al. [96]—RFID; Mrugalska and Wyrwicka [53]—Cloud Computing; Satoglu et al. [96]—Human–Machine Interface Ma et al. [83]—RFID; Ma et al. [83]—Real-Time Data; Ma et al. [83] –Wireless Networks; Ma et al. [83]—Human–Machine Interface; Wagner et al. [68]—Big Data; Hambach et al. [23]—Cloud Computing; Sanders et al. [21]—Human–Machine Interface Mrugalska and Wyrwicka [53], Meudt et al. [100]—Real-Time Data; Meudt et al. [100]—Wireless Networks Sanders et al. [21]—Big Data; Karre et al. [101]—RFID Ma et al. [83]—Real-Time Data Karre et al. [101]—Human–Machine Interface; Sanders et al. [21]—Human–Machine Interface; Kolberg et al. [82]—Human–Machine Interface |
Company 1 | Company 2 | Company 3 | Company 4 | Company 5 | |
---|---|---|---|---|---|
Industry/Product | Pharmaceutical | Powder Coatings | Machinery | Fastenings | Sensory |
Revenue | $2b | $200m | $4b | $3b | $4b |
# Employees | 2k | 0.5k | 20k | 15k | 15k |
Rev./Empl. | $1000k | $400k | $200k | $200k | $265k |
Location | Europe | Europe | Europe | Europe | Europe |
Company 1 | Global Head of Technical Development and Program Lead for Digital Manufacturing | 2 interviews (1 h), alignment workshop | 2 researchers present (1 h per interview), alignment workshop was 2 h (2 researchers present) |
Company 2 | Head of Quality Management and Digitalization, CEO | 2 interviews (1 h), alignment workshop (+ manufacturing head) | 2 researchers present (1 h per interview), alignment workshop was 2 h (1 researcher present) |
Company 3 | Director of Smart Operations and Director of Lean and Digital Operations | 2 interviews (1 h) | 2 researchers present (1 h per interview) |
Company 4 | Head of Kaizen | 1 interview (1 h), workshop on digitalization (2 h, + manufacturing dep. heads) | 2 researchers present (1 h per interview), alignment workshop was 2 h (1 researcher present) |
Company 5 | Senior Production Manager and Project Manager for Technical Engineering | 2 interviews (1 h) | 2 researchers present (1 h per interview) |
Company 1 | Company 2 | Company 3 | Company 4 | Company 5 | |
---|---|---|---|---|---|
Plan |
|
|
|
|
|
Do |
|
|
|
| |
Check |
|
|
|
|
|
Act |
|
|
|
|
|
Observed Improvement Factors | |
---|---|
Plan |
|
Do |
|
Check |
|
Act |
|
Continuous Improvement Without Digitalization | Continuous Improvement Reinforced by Digitalization | |
---|---|---|
Flexibility | manual, tedious, time-consuming data gathering/access | automated, fast, transparent, reproducible gathering of/access to data |
Transparency | unclear by who, how, when, and where data were collected process “black-boxes” unclear where process improvements are hidden | at any time, it is known where the data come from and by who, when, and how it was collected; improved process understanding better visibility of the potential for improvement. |
Reliability | error-prone due to human involvement, possibility of dressing up numbers, differences in OEE calculation | reproducible, low risk of falsification, automatic and consistent collection and calculation |
Decision-making | half-true and inconsistent OEE, instinct, gut feeling, interpretation | reflects facts, is verifiable, uniform decision base |
Acceptance of change | susceptibility to errors known, different data and calculation methods produce different results, poor visualization | transparency in data collection, demonstrable, verifiable, visualization of decision bases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, G.; Budde, L.; Hänggi, R.; Friedli, T. Driving Continuous Improvement with Industry 4.0 Technologies: Lessons from Multiple Use Case Analysis. Appl. Sci. 2025, 15, 2191. https://doi.org/10.3390/app15042191
Bernard G, Budde L, Hänggi R, Friedli T. Driving Continuous Improvement with Industry 4.0 Technologies: Lessons from Multiple Use Case Analysis. Applied Sciences. 2025; 15(4):2191. https://doi.org/10.3390/app15042191
Chicago/Turabian StyleBernard, Giuliano, Lukas Budde, Roman Hänggi, and Thomas Friedli. 2025. "Driving Continuous Improvement with Industry 4.0 Technologies: Lessons from Multiple Use Case Analysis" Applied Sciences 15, no. 4: 2191. https://doi.org/10.3390/app15042191
APA StyleBernard, G., Budde, L., Hänggi, R., & Friedli, T. (2025). Driving Continuous Improvement with Industry 4.0 Technologies: Lessons from Multiple Use Case Analysis. Applied Sciences, 15(4), 2191. https://doi.org/10.3390/app15042191