Sphingolipidoses and Retinal Involvement: A Comprehensive Review
Abstract
:1. Introduction
2. Methods
3. Ophthalmological Examination: A Key Tool in the Diagnosis and Management of Sphingolipidoses
3.1. Fundus Photography
3.2. Spectral-Domain Optical Coherence Tomography
3.3. OCT Angiography
3.4. Fundus Autofluorescence (FAF)
3.5. Fluorescein Angiography
3.6. Adaptive Optics (AO)
3.7. Electroretinography
3.8. Visual Evoked Potentials
4. Subtypes of Sphingolipidoses
4.1. Niemann–Pick Disease
4.1.1. Disease Pathogenesis and Systemic Symptoms
4.1.2. Retinal Manifestations
4.2. Gaucher Disease
4.2.1. Disease Pathogenesis and Systemic Symptoms
4.2.2. Retinal Manifestations
4.3. GM1 Gangliosidosis
4.3.1. Disease Pathogenesis and Systemic Symptoms
4.3.2. Retinal Manifestations
4.4. GM2 Gangliosidosis: Tay Sachs Disease and Sandhoff Disease
4.4.1. Disease Pathogenesis and Systemic Symptoms
4.4.2. Retinal Manifestations
4.5. Farber Disease
4.5.1. Disease Pathogenesis and Systemic Symptoms
4.5.2. Retinal Manifestations
4.6. Metachromatic Leukodystrophy
4.6.1. Disease Pathogenesis and Systemic Symptoms
4.6.2. Retinal Manifestations
4.7. Fabry Disease
4.7.1. Disease Pathogenesis and Systemic Symptoms
4.7.2. Retinal Manifestations
4.8. Krabbe Disease
4.8.1. Disease Pathogenesis and Systemic Symptoms
4.8.2. Retinal Manifestations
4.9. Sialidosis
4.9.1. Disease Pathogenesis and Systemic Symptoms
4.9.2. Retinal Manifestations
5. Current Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaimardanova, A.A.; Solovyeva, V.V.; Issa, S.S.; Rizvanov, A.A. Gene Therapy of Sphingolipid Metabolic Disorders. Int. J. Mol. Sci. 2023, 24, 3627. [Google Scholar] [CrossRef] [PubMed]
- Abed Rabbo, M.; Khodour, Y.; Kaguni, L.S.; Stiban, J. Sphingolipid Lysosomal Storage Diseases: From Bench to Bedside. Lipids Health Dis. 2021, 20, 44. [Google Scholar] [CrossRef]
- Chen, H.; Chan, A.Y.; Stone, D.U.; Mandal, N.A. Beyond the Cherry-Red Spot: Ocular Manifestations of Sphingolipid-Mediated Neurodegenerative and Inflammatory Disorders. Surv. Ophthalmol. 2013, 59, 64–76. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, J.M.; Kim, M.S.; Kim, M.J.; Seong, M.-W.; Yoo, T.; Lim, B.C.; Chae, J.-H. Novel HEXA Variants in Korean Children with Tay-Sachs Disease with Regression of Neurodevelopment from Infancy. Mol. Genet. Genom. Med. 2021, 9, e1677. [Google Scholar] [CrossRef]
- Sawicka-Gutaj, N.; Machaczka, M.; Kulińska-Niedziela, I.; Bernardczyk-Meller, J.; Gutaj, P.; Sowiński, J.; Ruchała, M. The Appearance of Newly Identified Intraocular Lesions in Gaucher Disease Type 3 despite Long-Term Glucocerebrosidase Replacement Therapy. Ups. J. Med. Sci. 2016, 121, 192–195. [Google Scholar] [CrossRef]
- Tripathy, K.; Patel, B.C. Cherry Red Spot. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cujbă, L.; Banc, A.; Stan, C.; Drugan, T.; Nicula, C. Macular OCT’s Proficiency in Identifying Retrochiasmal Visual Pathway Lesions in Multiple Sclerosis—A Pilot Study. Diagnostics 2024, 14, 1221. [Google Scholar] [CrossRef]
- Rani, P.K.; Prabha, D.; Jakati, S.; Nalawade, R. Seeing beyond Gaucher Disease: Early Detection and Treatment of Ocular Complications. Indian J. Ophthalmol. 2023, 71, 3424–3425. [Google Scholar] [CrossRef]
- Shiga, Y.; Nishida, T.; Jeoung, J.W.; Di Polo, A.; Fortune, B. Optical Coherence Tomography and Optical Coherence Tomography Angiography: Essential Tools for Detecting Glaucoma and Disease Progression. Front. Ophthalmol. 2023, 3, 1217125. [Google Scholar] [CrossRef]
- Cakmak, A.I.; Atalay, E.; Cankurtaran, V.; Yaşar, E.; Turgut, F.H. Optical Coherence Tomography Angiography Analysis of Fabry Disease. Int. Ophthalmol. 2020, 40, 3023–3032. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Yao, X.; Song, W.; Zhao, Y.; Yuan, Y.; Zhang, W. Investigation of Ocular Involvement in Patients with Fabry Disease. Ann. Med. 2023, 55, 2226909. [Google Scholar] [CrossRef]
- Atiskova, Y.; Wildner, J.; Spitzer, M.S.; Aries, C.; Muschol, N.; Dulz, S. Retinal Vessel Tortuosity as a Prognostic Marker for Disease Severity in Fabry Disease. Orphanet J. Rare Dis. 2021, 16, 485. [Google Scholar] [CrossRef] [PubMed]
- Pampiglione, G.; Harden, A. Neurophysiological Investigations in GM1 and GM2 Gangliosidoses. Neuropediatrics 1984, 15 (Suppl. S1), 74–84. [Google Scholar] [CrossRef] [PubMed]
- Kulyabin, M.; Zhdanov, A.; Dolganov, A.; Ronkin, M.; Borisov, V.; Maier, A. Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors 2023, 23, 8727. [Google Scholar] [CrossRef] [PubMed]
- Seidova, S.-F.; Kotliar, K.; Foerger, F.; Klopfer, M.; Lanzl, I. Functional Retinal Changes in Gaucher Disease. Doc. Ophthalmol. 2009, 118, 151–154. [Google Scholar] [CrossRef]
- Kim, C.; Jeong, J.; Yu, H.G. Diagnostic and Predictive Methods for a Niemann-Pick Disease Type B Patient with Ocular Involvement. J. Inherit. Metab. Dis. 2010, 33, 633–634. [Google Scholar] [CrossRef]
- Creel, D.J. Visually Evoked Potentials. Handb. Clin. Neurol. 2019, 160, 501–522. [Google Scholar] [CrossRef]
- Bettinger, C.M.; Dulz, S.; Atiskova, Y.; Guerreiro, H.; Schön, G.; Guder, P.; Maier, S.L.; Denecke, J.; Bley, A.E. Overview of Neuro-Ophthalmic Findings in Leukodystrophies. J. Clin. Med. 2024, 13, 5114. [Google Scholar] [CrossRef]
- Denny, C.A.; Alroy, J.; Pawlyk, B.S.; Sandberg, M.A.; d’Azzo, A.; Seyfried, T.N. Neurochemical, Morphological, and Neurophysiological Abnormalities in Retinas of Sandhoff and GM1 Gangliosidosis Mice. J. Neurochem. 2007, 101, 1294–1302. [Google Scholar] [CrossRef]
- Ghasemi Falavarjani, K.; Tsui, I.; Sadda, S.R. Ultra-Wide-Field Imaging in Diabetic Retinopathy. Vis. Res. 2017, 139, 187–190. [Google Scholar] [CrossRef]
- Li, Y.; Foo, L.-L.; Wong, C.W.; Li, J.; Hoang, Q.V.; Schmetterer, L.; Ting, D.S.W.; Ang, M. Pathologic Myopia: Advances in Imaging and the Potential Role of Artificial Intelligence. Br. J. Ophthalmol. 2023, 107, 600–606. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.-L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, M.; d’Agostino, S.; Ruggeri, F.; Carrozzi, C.; Fasciolo, D.; Abdolrahimzadeh, S. Parkinson’s Disease: What Can Retinal Imaging Tell Us? J. Integr. Neurosci. 2024, 23, 23. [Google Scholar] [CrossRef]
- Snyder, P.J.; Alber, J.; Alt, C.; Bain, L.J.; Bouma, B.E.; Bouwman, F.H.; DeBuc, D.C.; Campbell, M.C.W.; Carrillo, M.C.; Chew, E.Y.; et al. Retinal Imaging in Alzheimer’s and Neurodegenerative Diseases. Alzheimers Dement. 2021, 17, 103–111. [Google Scholar] [CrossRef]
- Cipollini, V.; Abdolrahimzadeh, S.; Troili, F.; De Carolis, A.; Calafiore, S.; Scuderi, L.; Giubilei, F.; Scuderi, G. Neurocognitive Assessment and Retinal Thickness Alterations in Alzheimer Disease: Is There a Correlation? J. Neuroophthalmol. 2020, 40, 370–377. [Google Scholar] [CrossRef]
- Kashani, A.H.; Asanad, S.; Chen, J.; Singer, M.B.; Zhang, J.; Sharifi, M.; Khansari, M.M.; Abdolahi, F.; Shi, Y.; Biffi, A.; et al. Past, Present and Future Role of Retinal Imaging in Neurodegenerative Disease. Prog. Retin. Eye Res. 2021, 83, 100938. [Google Scholar] [CrossRef]
- Brownstein, S.; Carpenter, S.; Polomeno, R.C.; Little, J.M. Sandhoff’s Disease (GM2 Gangliosidosis Type 2). Histopathology and Ultrastructure of the Eye. Arch. Ophthalmol. 1980, 98, 1089–1097. [Google Scholar] [CrossRef]
- Weill, Y.; Zimran, A.; Zadok, D.; Wasser, L.M.; Revel-Vilk, S.; Hanhart, J.; Dinur, T.; Arkadir, D.; Becker-Cohen, M. Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer Thinning in Patients with Type-1 Gaucher Disease. Int. J. Mol. Sci. 2020, 21, 7027. [Google Scholar] [CrossRef]
- McNeill, A.; Roberti, G.; Lascaratos, G.; Hughes, D.; Mehta, A.; Garway-Heath, D.F.; Schapira, A.H.V. Retinal Thinning in Gaucher Disease Patients and Carriers: Results of a Pilot Study. Mol. Genet. Metab. 2013, 109, 221–223. [Google Scholar] [CrossRef]
- Sivley, M.D. Fabry Disease: A Review of Ophthalmic and Systemic Manifestations. Optom. Vis. Sci. 2013, 90, e63–e78. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Sobral, I.; Cachulo, M.d.L.; Figueira, J.; Silva, R. Sialidosis Type I: Ophthalmological Findings. BMJ Case Rep. 2014, 2014, bcr2014205871. [Google Scholar] [CrossRef] [PubMed]
- Hm, K.; Rh, R.; Hv, D.-M.; Do, H. Optical Coherence Tomography Findings in a Patient with Type 1 Sialidosis. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2016, 31, 199–201. [Google Scholar] [CrossRef]
- Kern, J.; Böhringer, J.; Timmann, D.; Trollmann, R.; Stendel, C.; Kamm, C.; Röbl, M.; Santhanakumaran, V.; Groeschel, S.; Beck-Wödl, S.; et al. Clinical, Imaging, Genetic, and Disease Course Characteristics in Patients with GM2 Gangliosidosis: Beyond Age of Onset. Neurology 2024, 102, e207898. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.P.S.; Amintas, S.; Levade, T.; Medin, J.A. Acid Ceramidase Deficiency: Farber Disease and SMA-PME. Orphanet J. Rare Dis. 2018, 13, 121. [Google Scholar] [CrossRef]
- Khan, A.; Sergi, C. Sialidosis: A Review of Morphology and Molecular Biology of a Rare Pediatric Disorder. Diagnostics 2018, 8, 29. [Google Scholar] [CrossRef]
- Bolukbasi, S.; Dogan, C.; Kiykim, E.; Cakir, A.; Erden, B.; Bayat, A.H.; Elcioglu, M.N.; Aktuglu Zeybek, A.C. Multimodal Imaging Including Optical Coherence Tomography Angiography in Patients with Type B Niemann-Pick Disease. Int. Ophthalmol. 2019, 39, 2545–2552. [Google Scholar] [CrossRef]
- Hufendiek, K.; Lindziute, M.; Kaufeld, J.; Volkmann, I.; Brockmann, D.; Hosari, S.; Hohberger, B.; Mardin, C.; Framme, C.; Tode, J.; et al. Investigation of OCTA Biomarkers in Fabry Disease: A Long Term Follow-Up of Macular Vessel Area Density and Foveal Avascular Zone Metrics. Ophthalmol. Ther. 2023, 12, 2713–2727. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. Fundus Autofluorescence. In Atlas of Inherited Retinal Diseases; Tsang, S.H., Sharma, T., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1085, pp. 15–16. ISBN 978-3-319-95045-7. [Google Scholar]
- Xu, A.; Chen, C. Clinical Application of Ultra-Widefield Fundus Autofluorescence. Int. Ophthalmol. 2021, 41, 727–741. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. Fluorescein Angiography. In Atlas of Inherited Retinal Diseases; Tsang, S.H., Sharma, T., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1085, pp. 7–10. ISBN 978-3-319-95045-7. [Google Scholar]
- Cavallerano, A.A. Ophthalmic Fluorescein Angiography. Optom. Clin. 1996, 5, 1–23. [Google Scholar]
- Szewczuk, A.; Zaleska-Żmijewska, A.; Dziedziak, J.; Szaflik, J.P. Clinical Application of Adaptive Optics Imaging in Diagnosis, Management, and Monitoring of Ophthalmological Diseases: A Narrative Review. Med. Sci. Monit. 2023, 29, e941926. [Google Scholar] [CrossRef]
- Akyol, E.; Hagag, A.M.; Sivaprasad, S.; Lotery, A.J. Adaptive Optics: Principles and Applications in Ophthalmology. Eye 2021, 35, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Sodi, A.; Germain, D.P.; Bacherini, D.; Finocchio, L.; Pacini, B.; Marziali, E.; Lenzetti, C.; Tanini, I.; Koraichi, F.; Coriat, C.; et al. In Vivo Observation of Retinal Vascular Deposits Using Adaptive Optics Imaging in Fabry Disease. Retina 2020, 40, 1623–1629. [Google Scholar] [CrossRef]
- Lombardo, M.; Serrao, S.; Devaney, N.; Parravano, M.; Lombardo, G. Adaptive Optics Technology for High-Resolution Retinal Imaging. Sensors 2012, 13, 334–366. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J. Blood Vessel Tail Artifacts Suppression in Optical Coherence Tomography Angiography. Neurophotonics 2022, 9, 021906. [Google Scholar] [CrossRef]
- Creel, D.J. Electroretinograms. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 481–493. ISBN 978-0-444-64032-1. [Google Scholar]
- Bhatt, Y.; Hunt, D.M.; Carvalho, L.S. The Origins of the Full-Field Flash Electroretinogram b-Wave. Front. Mol. Neurosci. 2023, 16, 1153934. [Google Scholar] [CrossRef]
- Hood, D.C.; Odel, J.G.; Chen, C.S.; Winn, B.J. The Multifocal Electroretinogram. J. Neuro-Ophthalmol. 2003, 23, 225–235. [Google Scholar] [CrossRef]
- Baiano, C.; Zeppieri, M. Visual Evoked Potential. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- International Society for Clinical Electrophysiology of Vision; Odom, J.V.; Bach, M.; Brigell, M.; Holder, G.E.; McCulloch, D.L.; Mizota, A.; Tormene, A.P. ISCEV Standard for Clinical Visual Evoked Potentials: (2016 Update). Doc. Ophthalmol. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Marmoy, O.R.; Tekavčič Pompe, M.; Kremers, J. Chromatic Visual Evoked Potentials: A Review of Physiology, Methods and Clinical Applications. Prog. Retin. Eye Res. 2024, 101, 101272. [Google Scholar] [CrossRef]
- A Case Refort of Sandhoff Disease—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/15929490/ (accessed on 25 January 2025).
- Larsen, H.W.; Ehler, N. Ocular Manifestations in Tay-Sachs’ and Niemann-Pick’s Diseases. (A Clinical, Pathological, Histochemical and Biochemical Investigation). Acta Ophthalmol. 1965, 43, 285–293. [Google Scholar] [CrossRef]
- Graziano, A.C.E.; Cardile, V. History, Genetic, and Recent Advances on Krabbe Disease. Gene 2015, 555, 2–13. [Google Scholar] [CrossRef]
- Goebel, H.H.; Busch-Hettwer, H.; Bohl, J. Ultrastructural Study of the Retina in Late Infantile Metachromatic Leukodystrophy. Ophthalmic Res. 1992, 24, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Green, W.R. Clinical and Ultrastructural Ocular Histopathologic Studies of Adult-Onset Metachromatic Leukodystrophy. Am. J. Ophthalmol. 1976, 82, 472–479. [Google Scholar] [CrossRef]
- Pfrieger, F.W. The Niemann-Pick Type Diseases—A Synopsis of Inborn Errors in Sphingolipid and Cholesterol Metabolism. Prog. Lipid Res. 2023, 90, 101225. [Google Scholar] [CrossRef] [PubMed]
- Vanier, M.T. Niemann-Pick Diseases. Handb. Clin. Neurol. 2013, 113, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Escobar, B.; Solano, M.H.; Zarabanda, L.; Casas, C.P.; Castro, C. Niemann-Pick Disease: An Approach for Diagnosis in Adulthood. Cureus 2019, 11, e4767. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Schuchman, E.H. Acid Sphingomyelinase Deficiency. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Onur, İ.U.; Aşula, M.F.; Ekinci, C.; Mert, M. Macula Halo Syndrome. Int. Ophthalmol. 2019, 39, 1391–1395. [Google Scholar] [CrossRef]
- Servín Muñoz, I.V.; Ortuño-Sahagún, D.; Griñán-Ferré, C.; Pallàs, M.; González-Castillo, C. Alterations in Proteostasis Mechanisms in Niemann-Pick Type C Disease. Int. J. Mol. Sci. 2024, 25, 3806. [Google Scholar] [CrossRef]
- Wassif, C.A.; Cross, J.L.; Iben, J.; Sanchez-Pulido, L.; Cougnoux, A.; Platt, F.M.; Ory, D.S.; Ponting, C.P.; Bailey-Wilson, J.E.; Biesecker, L.G.; et al. High Incidence of Unrecognized Visceral/Neurological Late-Onset Niemann-Pick Disease, Type C1, Predicted by Analysis of Massively Parallel Sequencing Data Sets. Genet. Med. 2016, 18, 41–48. [Google Scholar] [CrossRef]
- Platt, F.M. The Expanding Boundaries of Sphingolipid Lysosomal Storage Diseases; Insights from Niemann-Pick Disease Type C. Biochem. Soc. Trans. 2023, 51, 1777–1787. [Google Scholar] [CrossRef]
- Li, Y.; Cherepanoff, S.; Fung, A.T. Bilateral Macular Halo and Full-Thickness Macular Hole Repair in Niemann-Pick Disease Type B. J. Vitr. Dis. 2024, 8, 462–465. [Google Scholar] [CrossRef]
- Rudich, D.S.; Curcio, C.A.; Wasserstein, M.; Brodie, S.E. Inner Macular Hyperreflectivity Demonstrated by Optical Coherence Tomography in Niemann-Pick Disease. JAMA Ophthalmol. 2013, 131, 1244–1246. [Google Scholar] [CrossRef] [PubMed]
- Angeli, O.; Nagy, Z.; Schneider, M. Ocular manifestation of an adult Niemann-Pick disease type B. Orv. Hetil. 2023, 164, 1838–1844. [Google Scholar] [CrossRef]
- Bagdonaite-Bejarano, L.; Hansen, R.M.; Fulton, A.B. Microperimetry in Three Inherited Retinal Disorders. Semin. Ophthalmol. 2019, 34, 334–339. [Google Scholar] [CrossRef]
- Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef]
- Mikosch, P.; Hughes, D. An Overview on Bone Manifestations in Gaucher Disease. Wien. Med. Wochenschr. 2010, 160, 609–624. [Google Scholar] [CrossRef]
- Stirnemann, J.; Vigan, M.; Hamroun, D.; Heraoui, D.; Rossi-Semerano, L.; Berger, M.G.; Rose, C.; Camou, F.; de Roux-Serratrice, C.; Grosbois, B.; et al. The French Gaucher’s Disease Registry: Clinical Characteristics, Complications and Treatment of 562 Patients. Orphanet J. Rare Dis. 2012, 7, 77. [Google Scholar] [CrossRef]
- Alaei, M.R.; Tabrizi, A.; Jafari, N.; Mozafari, H. Gaucher Disease: New Expanded Classification Emphasizing Neurological Features. Iran. J. Child. Neurol. 2019, 13, 7–24. [Google Scholar]
- Sidransky, E. Gaucher Disease: Complexity in a “Simple” Disorder. Mol. Genet. Metab. 2004, 83, 6–15. [Google Scholar] [CrossRef]
- Donald, A.; Tan, C.Y.; Chakrapani, A.; Hughes, D.A.; Sharma, R.; Cole, D.; Bardins, S.; Gorges, M.; Jones, S.A.; Schneider, E. Eye Movement Biomarkers Allow for the Definition of Phenotypes in Gaucher Disease. Orphanet J. Rare Dis. 2020, 15, 349. [Google Scholar] [CrossRef]
- Eghbali, A.; Hassan, S.; Seehra, G.; FitzGibbon, E.; Sidransky, E. Ophthalmological Findings in Gaucher Disease. Mol. Genet. Metab. 2019, 127, 23–27. [Google Scholar] [CrossRef]
- Abu-Asab, M.S.; Yeung, I.Y.L.; Ardeljan, C.; Gonzalez, A.N.; Sidransky, E.; Chan, C.-C. Ocular Implications of Gaucher Disease. In Advances in Vision Research, Volume I: Genetic Eye Research in Asia and the Pacific; Prakash, G., Iwata, T., Eds.; Springer: Tokyo, Japan, 2017; pp. 413–423. ISBN 978-4-431-56511-6. [Google Scholar]
- Gupta, N.; Oppenheim, I.; Kauvar, E.; Tayebi, N.; Sidransky, E. Type 2 Gaucher Disease: Phenotypic Variation and Genotypic Heterogeneity. Blood Cells Mol. Dis. 2011, 46, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Shrier, E.M.; Barr, C.C.; Grabowski, G.A. Vitreous Opacities and Retinal Vascular Abnormalities in Gaucher Disease. Arch. Ophthalmol. 2004, 122, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Fujiwaki, T.; Yamaguchi, S.; Tasaka, M.; Takayanagi, M.; Isobe, M.; Taketomi, T. Evaluation of Sphingolipids in Vitreous Bodies from a Patient with Gaucher Disease, Using Delayed Extraction Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 806, 47–51. [Google Scholar] [CrossRef]
- Hopf, S.; Pfeiffer, N.; Liesenfeld, M.; Mengel, K.-E.; Hennermann, J.B.; Schmidtmann, I.; Pitz, S. A Comprehensive Monocentric Ophthalmic Study with Gaucher Disease Type 3 Patients: Vitreoretinal Lesions, Retinal Atrophy and Characterization of Abnormal Saccades. Orphanet J. Rare Dis. 2019, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Seehra, G.K.; Eghbali, A.; Sidransky, E.; FitzGibbon, E. White Vitreous Opacities in Five Patients with Gaucher Disease Type. Am. J. Med. Genet. A 2020, 182, 808–812. [Google Scholar] [CrossRef]
- Anand, S.; Kidd, D.; Hughes, D. Photo Essay: Retinal Changes in Type 3 Gaucher Disease. Neuroophthalmology 2018, 42, 402–403. [Google Scholar] [CrossRef]
- Grabowski, G.A. Phenotype, Diagnosis, and Treatment of Gaucher’s Disease. Lancet 2008, 372, 1263–1271. [Google Scholar] [CrossRef]
- Patterson, M.C.; Horowitz, M.; Abel, R.B.; Currie, J.N.; Yu, K.T.; Kaneski, C.; Higgins, J.J.; O’Neill, R.R.; Fedio, P.; Pikus, A. Isolated Horizontal Supranuclear Gaze Palsy as a Marker of Severe Systemic Involvement in Gaucher’s Disease. Neurology 1993, 43, 1993–1997. [Google Scholar] [CrossRef]
- Wang, J.S.; Koch, R.L.; Kenney-Jung, D.; Huggins, E.; Sodhi, S.S.; Landstrom, A.P.; Grewal, D.S.; Kishnani, P.S. Gaucher Disease Type 3c: Expanding the Clinical Spectrum of an Ultra-Rare Disease. JIMD Rep. 2024, 65, 313–322. [Google Scholar] [CrossRef]
- Kurolap, A.; Del Toro, M.; Spiegel, R.; Gutstein, A.; Shafir, G.; Cohen, I.J.; Barrabés, J.A.; Feldman, H.B. Gaucher Disease Type 3c: New Patients with Unique Presentations and Review of the Literature. Mol. Genet. Metab. 2019, 127, 138–146. [Google Scholar] [CrossRef]
- Wollstein, G.; Elstein, D.; Strassman, I.; Seelenfreund, M.; Zylbermann, R.; Zimran, A. Preretinal White Dots in Adult-Type Gaucher Disease. Retina 1999, 19, 570. [Google Scholar] [CrossRef]
- Hsing, Y.E.; Foster, A. Preretinal and Posterior Vitreous Deposits in Gaucher Disease. JAMA Ophthalmol. 2014, 132, 992. [Google Scholar] [CrossRef]
- Hua, H.-U.; Haghighi, A.; Shillingford, N.; Lee, T.C.; Nagiel, A. Vitreous Hemorrhage in Type 3 Gaucher Disease: An Angiographic and Pathologic Analysis. Retin. Cases Brief. Rep. 2022, 16, 414–418. [Google Scholar] [CrossRef]
- Sheck, L.H.N.; Wilson, C.J.; Vincent, A.L. Analysis of the Pre-Retinal Opacities in Gaucher Disease Using Spectral Domain Optical Coherent Tomography. Ophthalmic Genet. 2012, 33, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Gekka, T.; Arai, K.; Tsuneoka, H. A Case of Traction Retinal Detachment in a Patient with Gaucher Disease. Ophthalmic Genet. 2017, 38, 273–276. [Google Scholar] [CrossRef]
- Caciotti, A.; Garman, S.C.; Rivera-Colón, Y.; Procopio, E.; Catarzi, S.; Ferri, L.; Guido, C.; Martelli, P.; Parini, R.; Antuzzi, D.; et al. GM1 Gangliosidosis and Morquio B Disease: An Update on Genetic Alterations and Clinical Findings. Biochim. Biophys. Acta 2011, 1812, 782–790. [Google Scholar] [CrossRef]
- Rha, A.K.; Maguire, A.S.; Martin, D.R. GM1 Gangliosidosis: Mechanisms and Management. Appl. Clin. Genet. 2021, 14, 209–233. [Google Scholar] [CrossRef]
- Brunetti-Pierri, N.; Scaglia, F. GM1 Gangliosidosis: Review of Clinical, Molecular, and Therapeutic Aspects. Mol. Genet. Metab. 2008, 94, 391–396. [Google Scholar] [CrossRef]
- Tanaka, R.; Momoi, T.; Yoshida, A.; Okumura, M.; Yamakura, S.; Takasaki, Y.; Kiyomasu, T.; Yamanaka, C. Type 3 GM1 Gangliosidosis: Clinical and Neuroradiological Findings in an 11-Year-Old Girl. J. Neurol. 1995, 242, 299–303. [Google Scholar] [CrossRef]
- Roze, E.; Paschke, E.; Lopez, N.; Eck, T.; Yoshida, K.; Maurel-Ollivier, A.; Doummar, D.; Caillaud, C.; Galanaud, D.; Billette de Villemeur, T.; et al. Dystonia and Parkinsonism in GM1 Type 3 Gangliosidosis. Mov. Disord. 2005, 20, 1366–1369. [Google Scholar] [CrossRef]
- Emery, J.M.; Green, W.R.; Wyllie, R.G.; Howell, R.R. GM1-Gangliosidosis. Ocular and Pathological Manifestations. Arch. Ophthalmol. 1971, 85, 177–187. [Google Scholar] [CrossRef]
- Sorcinelli, R.; Sitzia, A.; Loi, M. Cherry-Red Spot, Optic Atrophy and Corneal Cloudings in a Patient Suffering from GM1 Gangliosidosis Type I. Metab. Pediatr. Syst. Ophthalmol. 1987, 10, 62–63. [Google Scholar]
- Goebel, H.H.; Shimokawa, K.; Argyrakis, A.; Pilz, H. The Ultrastructure of the Retina in Adult Metachromatic Leukodystrophy. Am. J. Ophthalmol. 1978, 85, 841–849. [Google Scholar] [CrossRef]
- D’Souza, P.; Farmer, C.; Johnston, J.M.; Han, S.T.; Adams, D.; Hartman, A.L.; Zein, W.; Huryn, L.A.; Solomon, B.; King, K.; et al. GM1 Gangliosidosis Type II: Results of a 10-Year Prospective Study. Genet. Med. 2024, 26, 101144. [Google Scholar] [CrossRef]
- Norman, R.M.; Urich, H.; Tingey, A.H.; Goodbody, R.A. Tay-Sachs’ Disease with Visceral Involvement and Its Relationship to Niemann-Pick’s Disease. J. Pathol. Bacteriol. 1959, 78, 409–421. [Google Scholar] [CrossRef]
- Padhi, T.R.; Pattnaik, S.; Kesarwani, S.; Das, T. Macular Cherry-Red Spot Helps Diagnose Rare Storage Disorder in an Infant with Repeated Respiratory Tract Infections: Case Report. Semin. Ophthalmol. 2015, 30, 224–226. [Google Scholar] [CrossRef]
- Leal, A.F.; Benincore-Flórez, E.; Solano-Galarza, D.; Garzón Jaramillo, R.G.; Echeverri-Peña, O.Y.; Suarez, D.A.; Alméciga-Díaz, C.J.; Espejo-Mojica, A.J. GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies. Int. J. Mol. Sci. 2020, 21, 6213. [Google Scholar] [CrossRef]
- Gort, L.; de Olano, N.; Macías-Vidal, J.; Coll, M.A.J. Spanish GM2 Working Group GM2 Gangliosidoses in Spain: Analysis of the HEXA and HEXB Genes in 34 Tay-Sachs and 14 Sandhoff Patients. Gene 2012, 506, 25–30. [Google Scholar] [CrossRef]
- Tavasoli, A.R.; Parvaneh, N.; Ashrafi, M.R.; Rezaei, Z.; Zschocke, J.; Rostami, P. Clinical Presentation and Outcome in Infantile Sandhoff Disease: A Case Series of 25 Patients from Iranian Neurometabolic Bioregistry with Five Novel Mutations. Orphanet J. Rare Dis. 2018, 13, 130. [Google Scholar] [CrossRef]
- Xiao, C.; Tifft, C.; Toro, C. Sandhoff Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Hendriksz, C.J.; Corry, P.C.; Wraith, J.E.; Besley, G.T.N.; Cooper, A.; Ferrie, C.D. Juvenile Sandhoff Disease—Nine New Cases and a Review of the Literature. J. Inherit. Metab. Dis. 2004, 27, 241–249. [Google Scholar] [CrossRef]
- Liu, M.; Huang, D.; Wang, H.; Zhao, L.; Wang, Q.; Chen, X. Clinical and Molecular Characteristics of Two Chinese Children with Infantile Sandhoff Disease and Review of the Literature. J. Mol. Neurosci. 2020, 70, 481–487. [Google Scholar] [CrossRef]
- Karimzadeh, P.; Jafari, N.; Nejad Biglari, H.; Jabbeh Dari, S.; Ahmad Abadi, F.; Alaee, M.-R.; Nemati, H.; Saket, S.; Tonekaboni, S.H.; Taghdiri, M.-M.; et al. GM2-Gangliosidosis (Sandhoff and Tay Sachs Disease): Diagnosis and Neuroimaging Findings (An Iranian Pediatric Case Series). Iran. J. Child. Neurol. 2014, 8, 55–60. [Google Scholar]
- Solovyeva, V.V.; Shaimardanova, A.A.; Chulpanova, D.S.; Kitaeva, K.V.; Chakrabarti, L.; Rizvanov, A.A. New Approaches to Tay-Sachs Disease Therapy. Front. Physiol. 2018, 9, 1663. [Google Scholar] [CrossRef]
- Karimzadeh, P.; Ebrahimi, M.; Etemad, K.; Ahmad Abadi, F.; Hosseini Nezhad, Z. GM1 and GM2-Gangliosidosis: Clinical Features, Neuroimaging Findings and Electroencephalography. Iran. J. Child. Neurol. 2024, 18, 127–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neuro-Ophthalmology of Late-Onset Tay-Sachs Disease (LOTS)—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/15557512/ (accessed on 25 January 2025).
- Garner, A. Ocular Pathology of GM2 Gangliosidosis—Type 2 (Sandhoff’s Disease). Br. J. Ophthalmol. 1973, 57, 514–520. [Google Scholar] [CrossRef]
- Sango, K.; Yamanaka, S.; Ajiki, K.; Arai, N.; Takano, M. Involvement of Retinal Neurons and Pigment Epithelial Cells in a Murine Model of Sandhoff Disease. Ophthalmic Res. 2008, 40, 241–248. [Google Scholar] [CrossRef]
- Udwadia-Hegde, A.; Hajirnis, O. Temporary Efficacy of Pyrimethamine in Juvenile-Onset Tay-Sachs Disease Caused by 2 Unreported HEXA Mutations in the Indian Population. Child. Neurol. Open 2017, 4, 2329048X16687887. [Google Scholar] [CrossRef]
- Toro, C.; Zainab, M.; Tifft, C.J. The GM2 Gangliosidoses: Unlocking the Mysteries of Pathogenesis and Treatment. Neurosci. Lett. 2021, 764, 136195. [Google Scholar] [CrossRef]
- Alasil, T.; Wang, K.; Keane, P.A.; Lee, H.; Baniasadi, N.; de Boer, J.F.; Chen, T.C. Analysis of Normal Retinal Nerve Fiber Layer Thickness by Age, Sex, and Race Using Spectral Domain Optical Coherence Tomography. J. Glaucoma 2013, 22, 532–541. [Google Scholar] [CrossRef]
- Gahramanova, L.; Galbinur, T.; Mammadkhanova, A. LATE-ONSET LYSOSOMAL STORAGE DISORDER WITH MACULAR CHERRY-RED SPOT. Retin. Cases Brief. Rep. 2021, 15, 602–604. [Google Scholar] [CrossRef]
- Abalem, M.F.; Francischini, S.; Carricondo, P.C.; Graziano, R.M. Fundus Autofluorescence in Tay-Sachs Disease. JAMA Ophthalmol. 2014, 132, 876. [Google Scholar] [CrossRef] [PubMed]
- Zarbin, M.A.; Green, W.R.; Moser, A.B.; Tiffany, C. Increased Levels of Ceramide in the Retina of a Patient with Farber’s Disease. Arch. Ophthalmol. 1988, 106, 1163. [Google Scholar] [CrossRef]
- Beraza-Millor, M.; Rodríguez-Castejón, J.; del Pozo-Rodríguez, A.; Rodríguez-Gascón, A.; Solinís, M.Á. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024, 38, 657–680. [Google Scholar] [CrossRef]
- Martina, J.A.; Raben, N.; Puertollano, R. SnapShot: Lysosomal Storage Diseases. Cell 2020, 180, 602–602.e1. [Google Scholar] [CrossRef]
- Van Rappard, D.F.; Boelens, J.J.; Wolf, N.I. Metachromatic Leukodystrophy: Disease Spectrum and Approaches for Treatment. Best. Pr. Res. Clin. Endocrinol. Metab. 2015, 29, 261–273. [Google Scholar] [CrossRef]
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal Storage Diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef]
- Karnati, R.; Talla, V.; Peterson, K.; Laurie, G.W. Lacritin and Other Autophagy Associated Proteins in Ocular Surface Health. Exp. Eye Res. 2016, 144, 4–13. [Google Scholar] [CrossRef]
- Weiter, J.J.; Feingold, M.; Kolodny, E.H.; Raghaven, S.S. Retinal Pigment Epithelial Degeneration Associated with Leukocytic Arylsulfatase A Deficiency. Am. J. Ophthalmol. 1980, 90, 768–772. [Google Scholar] [CrossRef]
- El-Abassi, R.; Singhal, D.; England, J.D. Fabry’s Disease. J. Neurol. Sci. 2014, 344, 5–19. [Google Scholar] [CrossRef]
- Meikle, P.J.; Hopwood, J.J.; Clague, A.E.; Carey, W.F. Prevalence of Lysosomal Storage Disorders. JAMA 1999, 281, 249–254. [Google Scholar] [CrossRef]
- Nilsson, M.; Kolagari, H.T.; Epstein, D.; Samolov, B.; Olsson, M.; Naess, K.; Oscarson, M.; Teaer Fahnehjelm, K. Visual Outcome, Ocular Findings, and Visual Quality of Life in Patients with Fabry Disease. Ophthalmic Genet. 2022, 43, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Kalkum, G.; Pitz, S.; Karabul, N.; Beck, M.; Pintos-Morell, G.; Parini, R.; Rohrbach, M.; Bizjajeva, S.; Ramaswami, U. Paediatric Fabry Disease: Prognostic Significance of Ocular Changes for Disease Severity. BMC Ophthalmol. 2016, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Hughes, D.A. Fabry Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Torregrosa, J.-V. Current Aspects of Fabry’s Disease. Med. Clin. 2018, 151, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Sodi, A.; Bini, A.; Mignani, R.; Minuti, B.; Menchini, U. Subfoveal Choroidal Neovascularization in a Patient with Fabry’s Disease. Int. Ophthalmol. 2009, 29, 435–437. [Google Scholar] [CrossRef]
- Samiy, N. Ocular Features of Fabry Disease: Diagnosis of a Treatable Life-Threatening Disorder. Surv. Ophthalmol. 2008, 53, 416–423. [Google Scholar] [CrossRef]
- Minnella, A.M.; Barbano, L.; Verrecchia, E.; Martelli, F.; Pagliei, V.; Gambini, G.; Placidi, G.; Falsini, B.; Caporossi, A.; Manna, R. Macular Impairment in Fabry Disease: A Morpho-Functional Assessment by Swept-Source OCT Angiography and Focal Electroretinography. Invest. Ophthalmol. Vis. Sci. 2019, 60, 2667–2675. [Google Scholar] [CrossRef]
- Kuriyama, A.; Nakamura, S.; Inokuchi, Y.; Abe, H.; Yasuda, H.; Hidaka, Y.; Nagaoka, K.; Soeda, T.; Shimazawa, M.; Hara, H. The Protective Effect of Anti-VEGF-A/Ang-2 Bispecific Antibody on Retinal Vein Occlusion Model Mice. Eur. J. Pharmacol. 2024, 976, 176691. [Google Scholar] [CrossRef]
- Ersoz, M.G.; Ture, G. Cilioretinal Artery Occlusion and Anterior Ischemic Optic Neuropathy as the Initial Presentation in a Child Female Carrier of Fabry Disease. Int. Ophthalmol. 2018, 38, 771–773. [Google Scholar] [CrossRef]
- Lindziute, M.; Kaufeld, J.; Hufendiek, K.; Volkmann, I.; Brockmann, D.; Hosari, S.; Hohberger, B.; Christian, M.; Framme, C.; Jan, T.; et al. Correlation of Retinal Vascular Characteristics with Laboratory and Ocular Findings in Fabry Disease: Exploring Ocular Diagnostic Biomarkers. Orphanet J. Rare Dis. 2023, 18, 314. [Google Scholar] [CrossRef]
- Atiskova, Y.; Rassuli, R.; Koehn, A.F.; Golsari, A.; Wagenfeld, L.; du Moulin, M.; Muschol, N.; Dulz, S. Retinal Hyperreflective Foci in Fabry Disease. Orphanet J. Rare Dis. 2019, 14, 296. [Google Scholar] [CrossRef]
- Puthenparampil, M.; Torresin, T.; Franciotta, S.; Marin, A.; De Napoli, F.; Mauceri, V.A.; Miante, S.; Pilotto, E.; Midena, E.; Gallo, P. Hyper-Reflecting Foci in Multiple Sclerosis Retina Associate with Macrophage/Microglia-Derived Cytokines in Cerebrospinal Fluid. Front. Immunol. 2022, 13, 852183. [Google Scholar] [CrossRef] [PubMed]
- Sodi, A.; Nicolosi, C.; Vicini, G.; Lenzetti, C.; Virgili, G.; Rizzo, S. Computer-Assisted Retinal Vessel Diameter Evaluation in Fabry Disease. Eur. J. Ophthalmol. 2021, 31, 173–178. [Google Scholar] [CrossRef]
- Roorda, A. Adaptive Optics Ophthalmoscopy. J. Refract. Surg. 2000, 16, S602–S607. [Google Scholar] [CrossRef]
- Orsini, J.J.; Escolar, M.L.; Wasserstein, M.P.; Caggana, M. Krabbe Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Wenger, D.A.; Rafi, M.A.; Luzi, P. Molecular Genetics of Krabbe Disease (Globoid Cell Leukodystrophy): Diagnostic and Clinical Implications. Hum. Mutat. 1997, 10, 268–279. [Google Scholar] [CrossRef]
- Hagberg, B.; Kollberg, H.; Sourander, P.; Akesson, H.O. Infantile Globoid Cell Leucodystrophy (Krabbe’s Disease). A Clinical and Genetic Study of 32 Swedish Cases 1953. Neuropädiatrie 1969, 1, 74–88. [Google Scholar] [CrossRef]
- Barczykowski, A.L.; Foss, A.H.; Duffner, P.K.; Yan, L.; Carter, R.L. Death Rates in the U.S. Due to Krabbe Disease and Related Leukodystrophy and Lysosomal Storage Diseases. Am. J. Med. Genet. A 2012, 158A, 2835–2842. [Google Scholar] [CrossRef]
- Greco, M.R.; Lopez, M.A.; Beltran-Quintero, M.L.; Tuc Bengur, E.; Poe, M.D.; Escolar, M.L. Infantile Krabbe Disease (0–12 Months), Progression, and Recommended Endpoints for Clinical Trials. Ann. Clin. Transl. Neurol. 2024, 11, 3064–3080. [Google Scholar] [CrossRef]
- Pavuluri, P.; Vadakedath, S.; Gundu, R.; Uppulety, S.; Kandi, V. Krabbe Disease: Report of a Rare Lipid Storage and Neurodegenerative Disorder. Cureus 2017, 9, e949. [Google Scholar] [CrossRef]
- Bascou, N.; DeRenzo, A.; Poe, M.D.; Escolar, M.L. A Prospective Natural History Study of Krabbe Disease in a Patient Cohort with Onset between 6 Months and 3 Years of Life. Orphanet J. Rare Dis. 2018, 13, 126. [Google Scholar] [CrossRef]
- Jain, M.; De Jesus, O. Krabbe Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Durães, J.; Salsano, E.; Macário, M.D.C. Adult-Onset Krabbe Disease. Neurol. Clin. Pr. 2021, 11, e15–e17. [Google Scholar] [CrossRef]
- Lyon, G.; Hagberg, B.; Evrard, P.; Allaire, C.; Pavone, L.; Vanier, M. Symptomatology of Late Onset Krabbe’s Leukodystrophy: The European Experience. Dev. Neurosci. 1991, 13, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, B.; Ashton, N. Ultrastructure of the Optic Nerve in Krabbe’s Leucodystrophy. Br. J. Ophthalmol. 1973, 57, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Van de Vlekkert, D.; Hu, H.; Weesner, J.A.; Fremuth, L.E.; Brown, S.A.; Lu, M.; Gomero, E.; Campos, Y.; Sheppard, H.; d’Azzo, A. AAV-Mediated Gene Therapy for Sialidosis. Mol. Ther. 2024, 32, 2094–2112. [Google Scholar] [CrossRef]
- Diagnosis and Management of Type 1 Sialidosis: Clinical Insights from Long-Term Care of Four Unrelated Patients—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32752208/ (accessed on 17 February 2025).
- Rossi, S.; Gesualdo, C.; Tartaglione, A.; Bilo, L.; Coppola, A.; Simonelli, F. Bergmeister’s Papilla in a Young Patient with Type 1 Sialidosis: Case Report. BMC Ophthalmol. 2020, 20, 356. [Google Scholar] [CrossRef] [PubMed]
- Daich Varela, M.; Zein, W.M.; Toro, C.; Groden, C.; Johnston, J.; Huryn, L.A.; d’Azzo, A.; Tifft, C.J.; FitzGibbon, E.J. A Sialidosis Type I Cohort and a Quantitative Approach to Multimodal Ophthalmic Imaging of the Macular Cherry-Red Spot. Br. J. Ophthalmol. 2021, 105, 838–843. [Google Scholar] [CrossRef]
- Sergi, C.; Beedgen, B.; Kopitz, J.; Zilow, E.; Zoubaa, S.; Otto, H.F.; Cantz, M.; Linderkamp, O. Refractory Congenital Ascites as a Manifestation of Neonatal Sialidosis: Clinical, Biochemical and Morphological Studies in a Newborn Syrian Male Infant. Am. J. Perinatol. 1999, 16, 133–141. [Google Scholar] [CrossRef]
- NEU1 Mutation in a Korean Infant with Type 2 Sialidosis Presenting as Isolated Fetal Ascites—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25223955/ (accessed on 20 February 2025).
- Ries, M.; Deeg, K.H.; Wölfel, D.; Ibel, H.; Maier, B.; Buheitel, G. Colour Doppler Imaging of Intracranial Vasculopathy in Severe Infantile Sialidosis. Pediatr. Radiol. 1992, 22, 179–181. [Google Scholar] [CrossRef]
- Rosenberg, R.; Halimi, E.; Mention-Mulliez, K.; Cuisset, J.-M.; Holder, M.; Defoort-Dhellemmes, S. Five Year Follow-up of Two Sisters with Type II Sialidosis: Systemic and Ophthalmic Findings Including OCT Analysis. J. Pediatr. Ophthalmol. Strabismus 2013, 50, e33–e36. [Google Scholar] [CrossRef]
- Palmeri, S.; Villanova, M.; Malandrini, A.; van Diggelen, O.P.; Huijmans, J.G.; Ceuterick, C.; Rufa, A.; DeFalco, D.; Ciacci, G.; Martin, J.J.; et al. Type I Sialidosis: A Clinical, Biochemical and Neuroradiological Study. Eur. Neurol. 2000, 43, 88–94. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Lai, C.-H.; Chen, N.-N.; Wu, W.-C.; Ling, X.-C.; Lai, S.-C.; Kao, L.-Y.; Chen, C.-Y. Possible Choroidal Hyperpermeability in Cherry-Red Spot: A Connection to Transretinal Hyperreflective Foveola in Type 1 Sialidosis. Retina 2024, 44, e14–e15. [Google Scholar] [CrossRef]
- Yuan, L. Unraveling the Diagnostic Enigma: Laboratory Diagnosis of Sphingolipid Activator Protein Deficiencies. J. Lab. Precis. Med. 2024, 9, 22. [Google Scholar] [CrossRef]
- Mahlovanyi, B.; Król, N.; Lopushansky, A.; Shpotyuk, Y.; Boussard-Pledel, C.; Bureau, B.; Szmuc, K.; Gruzeł, G.; Łach, K.; Kowal, A.; et al. Diagnostic and Prognostic Perspectives of Fabry Disease via Fiber Evanescent Wave Spectroscopy Advanced by Machine Learning. Biosens. Bioelectron. 2025, 273, 117139. [Google Scholar] [CrossRef]
- San Román, I.; Rodríguez, M.-E.; Caporossi, O.; Zoppetti, C.; Sodi, A.; Mecocci, A.; López, D.; Rodríguez, B.; Gimeno, J.-R. Computer Assisted Retinal Vessel Tortuosity Evaluation in Novel Mutation Fabry Disease: Towards New Prognostic Markers. Retina 2017, 37, 592–603. [Google Scholar] [CrossRef]
- Wagner, S.K.; Fu, D.J.; Faes, L.; Liu, X.; Huemer, J.; Khalid, H.; Ferraz, D.; Korot, E.; Kelly, C.; Balaskas, K.; et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl. Vis. Sci. Technol. 2020, 9, 6. [Google Scholar] [CrossRef]
- Honavar, S.G. Oculomics—The Eyes Talk a Great Deal. Indian. J. Ophthalmol. 2022, 70, 713. [Google Scholar] [CrossRef]
- Rozhyna, A.; Somfai, G.M.; Atzori, M.; DeBuc, D.C.; Saad, A.; Zoellin, J.; Müller, H. Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview. Diagnostics 2024, 14, 1668. [Google Scholar] [CrossRef]
- Arnould, L.; Meriaudeau, F.; Guenancia, C.; Germanese, C.; Delcourt, C.; Kawasaki, R.; Cheung, C.Y.; Creuzot-Garcher, C.; Grzybowski, A. Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review. Ophthalmol. Ther. 2023, 12, 657–674. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Kaizu, Y.; Nakao, S.; Wada, I.; Yamaguchi, M.; Fujiwara, K.; Yoshida, S.; Hisatomi, T.; Ikeda, Y.; Hayami, T.; Ishibashi, T.; et al. Imaging of Retinal Vascular Layers: Adaptive Optics Scanning Laser Ophthalmoscopy Versus Optical Coherence Tomography Angiography. Transl. Vis. Sci. Technol. 2017, 6, 2. [Google Scholar] [CrossRef]
- Li, R.; Du, Z.; Qian, X.; Li, Y.; Martinez-Camarillo, J.-C.; Jiang, L.; Humayun, M.S.; Chen, Z.; Zhou, Q. High Resolution Optical Coherence Elastography of Retina under Prosthetic Electrode. Quant. Imaging Med. Surg. 2021, 11, 918–927. [Google Scholar] [CrossRef]
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Niemann–Pick types A (1:250,000) [61] | Acid sphingomyelinase (SMPD1) [59] | Sphingomyelin [59] | Infantile form (Type A): hepatosplenomegaly [62], developmental delay [62], interstitial lung disease [60] Median survival three years [60] | Non retinal manifestations: corneal clouding, pigmentation of the anterior lens capsule [3,63] Retinal manifestations: retinal opacification with macular cherry-red spot [44] |
Niemann–Pick types B (1:250,000) [24] | Acid sphingomyelinase (SMPD1) [59] | Sphingomyelin [59] | Juvenile form (Type B): no neurological impairment, milder clinical manifestations [22,62], hepatosplenomegaly [60], interstitial lung disease [60], thrombocytopenia con epistasis [60], atherogenic lipid profile [62], osteopenia [62] Typically survive into adulthood [60] | Non retinal manifestations: ocular symptoms predominantly involve the retina [3] Retinal manifestations: cherry-red maculae, macular halos [4,44], tortuosity of perimacular vessels [37], focal thickening, and high reflectivity in the GCL of the fovea [3] |
Niemann–Pick types C (1:150,000) [64] | Transporters: intracellular cholesterol transporters [59] (Genes NPC1 and NPC2) [59] | Unesterified cholesterol and all sphingolipids, including glycosphingolipids (GSLs) and sphingomyelin [22,65,66] | Variable onset (Type C):
| Non retinal manifestations: supranuclear vertical gaze palsy, optic nerve pallor [3] Retinal manifestations: perimacular gray discoloration [3] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Gaucher type I (1:40,000–1:60,000) [71] | Gluco- cerebrosidase (GBA1) [71] | Gluco-sysphingosine and glucsylceamide [71] | Non-neuronopathic (mainly visceral manifestations): splenomegaly, hepatomegaly, thrombocytopenia, anaemia, bone disease and fatigue [72,73] Neurological manifestations: elevated risk for PD and neurocognitive decline [74] Life expectancy mildly decreased [71] | Non retinal manifestations: gaucher body inclusions in the ciliary body, choroid and sclera, saccade parameter abnormalities [76], Uveitis, pingueculae [77] Retinal manifestations: pre-retinal white dots (amorphous deposits between ILM and vitreous, and at vitreous level), abnormal (reduction) of RNFL and ganglion cell complex [28,78] |
Gaucher type II (1:100,000–1:200,000) [74] | Complete deficit of Glucocerebrosidase (GBA1) [74] | Gluco- sylsphingosine and gluco-sylceramide [74] | Mainly neurological manifestations (acute neuronopathic/infantile): rapid neurological deterioration, triad of swallowing problems, hyperextension of neck and trunk and bilateral VI nerve palsy, opistothonous brainstem involvement (stridor, laryngeal obstruction, dysphagia), pyramidal tract involvement (cortical thumb, laryngomalacia, hypertonia, hyperreflexia, athetosis), microcephaly, epilepsy with seizures refractory to medications [75,79] Death before 3 years | Non retinal manifestations: bilateral VI nerve palsym, impaired vision, saccadic initiation failure, nystagmus and ophtalmoparesis Retinal manifestations: retinal white dots (amorphous deposits between ILM and vitreous, and at vitreous level) [78,80,81] |
Gaucher type IIIa (1:100,000) [74] | Gluco-cerebrosidase (GBA1) | Gluco-sylsphingosineand gluco-sylceramide | Mild visceral involvement, but sever neurological manifestations: cerebellar ataxia, spasticity, progressive myoclonic epilepsy, dementia. Death within the first 2 decades [37,49] | Non retinal manifestations: slowing, looping, or failure of the horizontal saccades movements, vertical saccades involvement can occur [76,82] Retinal manifestations: retinal white dots (amorphous deposits between ILM and vitreous, and at vitreous level) [83,84] |
Gaucher type IIIb | Gluco-cerebrosidase (GBA1) [74,85] | Gluco-sylsphingosine and gluco-sylceramide [74,85] | Severe visceral syntoms and slowly progressive CNS involvement: hepatosplenomegaly, growth retardation, bony symptoms Death in early adulthood. [74,85] | Non retinal manifestations: horizontal supranuclear gaze palsy [76,82,86] Retinal manifestations: retinal white dots (amorphous deposits between ILM and vitreous, and at vitreous level) [82,83,84] |
Gaucher type IIIc | Glucocerebrosidase (GBA1)-associated with the D409H mutation [87,88] | Gluco-sylsphingosine and gluco-sylceramide [87,88] | Cardiovascular involvement: progressive cardiac valves disease, aortic calcifications [87,88] Visceral symptoms: hepatosplenomegaly, skeletal abnormalities, hydrocephalus. Death in early adulthood [87,88] | Non retinal manifestations: corneal stromal opacities and ocular motility disfunction [76] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
GM1 gangliosidosis (1:100,000– 1:200,000) [95] | β-galactosidase (GLB1) | GM1 ganglioside and other substrates |
| Non retinal manifestations: corneal clouding, strabismus, vision loss, nystagmus. Retinal manifestations: macular cherry-red spot and retinal hemorrhages [99,100] Non retinal manifestations: strabismus [101] Retinal manifestations: macular cherry-red spot [100,102] Non retinal manifestations: corneal clouding, strabismus, vision loss [97] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Sandhoff disease | Hexosaminidase A and hexosaminidase B (HEXB) [27] | GM2 Ganglioside, glycolipid globoside [27] |
| Non retinal manifestations: optic atrophy [54] Retinal manifestations: cherry-red macula [34,110,111] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations ) |
---|---|---|---|---|
Tay-Sachs Disease (1:100,000) [81] | Hexosaminidase A (HEXA) [112] | GM2 Ganglioside [112] | dementia (in advanced stages), developmental delay, hyperexcitability, seizure, ataxia, progressive paralysis, respiratory difficulties (in later stages) [113] | Non retinal manifestations: progressive vision loss (starting around age 2) [55], difficulty in fixation on objects, nystagmus [34], optic atrophy [55], internuclear ophtalmoplegia, slow hypometric saccades [114] Retinal manifestations: cherry-red macula [3] |
Disease (Prevalence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Farber lipogranulomatosis (<1:1,000,000) [35] | Acid Ceramidase [2] (ASAH1) | Ceramide [2] | Non retinal manifestations: xanthoma-like growths in the conjunctiva, corneal opacities, nystagmus and poor visual fixation [35] Retinal manifestations: retinal opacification [35] and cherry-red macula [2,35] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Metachromatic leukodystrophy (1:40,000– 1:160,000) [2] | Arylsulfatase A and sphingolipid activator protein B (ARSA and PSAP) [124,126] | Sulfatides [126] |
The most severe form with death in childhood [124].
| Retinal manifestations: blindness, atrophy of the optic nerve, retinal pigment epithelial degeneration [127], grayish macula (lamellar lysosomes in retinal ganglion cells) [57] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestation | Ocular Manifestation (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Fabry Disease (1:40,000–1:117,000) [130] | Alpha- galactosidase A (xq22.1cGLA) [131] | Globotriao- Sylceramide (GL3) [131] | Angiokeratomas [132], acroparesthesias [133], neuropathic pain [132], gastrointestinal symptoms [132], renal disfunction [134], left ventricular hypertrophy, cardiac arrhythmias, cardiac valves abnormalities, myocardial ischemic attacks, cerebrovascular occlusions, early strokes [129] | Non retinal manifestations: cornea verticillate [11], lenticular opacities (anterior capsular and posterior subcapsular cataract) [131], conjunctival vessel tortuosity and dilatation [10], lid oedema [131] Retinal manifestations: retinal vein occlusion, retinal artery occlusion [131], choroidal neovascularization, [135], retinal vessels aneurysmal dilation [10], retinal vessels tortuosity [136] |
Disease (Incidence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Krabbe Disease (1:100,000–250,000) [148] | β-galactocerebrosidase, (GALC) | Psychosine |
| Non retinal manifestations: Blindness, atrophy of the optic nerve, pathological VEPs, pathological light reflex, fixational deficits [18,56] Retinal manifestations: thinning of RNFL [18] |
Disease (Prevalence) | Defective Enzyme (Mutated Gene) | Primary Storage Compound | Systemic Symptoms and Manifestations | Ocular Manifestations (Non-Retinal and Retinal Manifestations) |
---|---|---|---|---|
Sialidosis type 1 (1:1,500,000–1:5,000,000) [157] | N-acetyl-alpha-neuraminidase-1 (NEU1 gene) [156] | Sialoglycoconjugates [156] | Non retinal manifestations: nystagmus and cataracts [32] Retinal manifestations: bilateral macular cherry-red spots [32,156], Bergmeister’s papilla [158], optic nerve atrophy [159] | |
Sialidosis type 2 (1:1,500,000–1:5,000,000) [157] | N-acetyl-alpha-neuraminidase-1 (NEU1 gene) [156] | Sialoglycoconjugates [156] |
| Non retinal manifestations: corneal opacities [160], bilateral congenital cataracts [161] Retinal manifestations: foveal hypoplasia [152] bilateral macular cherry-red spots [162] Non retinal manifestations: cataracts, nystagmus, strabismus, and corneal clouding [36] Retinal manifestations: bilateral macular cherry-red spots, optic nerve atrophy [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrozzi, C.; Fumi, D.; Fasciolo, D.; Di Tizio, F.; Fragiotta, S.; Di Pippo, M.; Abdolrahimzadeh, S. Sphingolipidoses and Retinal Involvement: A Comprehensive Review. Appl. Sci. 2025, 15, 2863. https://doi.org/10.3390/app15052863
Carrozzi C, Fumi D, Fasciolo D, Di Tizio F, Fragiotta S, Di Pippo M, Abdolrahimzadeh S. Sphingolipidoses and Retinal Involvement: A Comprehensive Review. Applied Sciences. 2025; 15(5):2863. https://doi.org/10.3390/app15052863
Chicago/Turabian StyleCarrozzi, Chiara, Daniele Fumi, Davide Fasciolo, Federico Di Tizio, Serena Fragiotta, Mariachiara Di Pippo, and Solmaz Abdolrahimzadeh. 2025. "Sphingolipidoses and Retinal Involvement: A Comprehensive Review" Applied Sciences 15, no. 5: 2863. https://doi.org/10.3390/app15052863
APA StyleCarrozzi, C., Fumi, D., Fasciolo, D., Di Tizio, F., Fragiotta, S., Di Pippo, M., & Abdolrahimzadeh, S. (2025). Sphingolipidoses and Retinal Involvement: A Comprehensive Review. Applied Sciences, 15(5), 2863. https://doi.org/10.3390/app15052863