Urban Green Areas: Examining Honeybee Pathogen Spillover in Wild Bees Through Shared Foraging Niches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Plant–Pollinator Interaction
2.3. Pathogen Spillovers
2.4. Spore Count of Microsporidia Nosema spp.
2.5. Viral Investigations
2.5.1. Negative Staining Electron Microscopy (nsEM)
2.5.2. Molecular Analyses
2.6. Statistical Analyses
3. Results
3.1. Plant–Pollinator Interactions
3.2. Pathogen Spillover
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsh, W.M. Landscape Planning: Environmental Applications; Wiley: New York, NY, USA, 2005; Volume 4. [Google Scholar]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R.; et al. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Magle, S.B.; Reyes, P.; Zhu, J.; Crooks, K.R. Extirpation, colonization, and habitat dynamics of a keystone species along an urban gradient. Biol. Conserv. 2010, 143, 2146–2155. [Google Scholar] [CrossRef]
- Withey, J.C.; Marzluff, J.M. Dispersal by juvenile American crows (Corvus brachyrhynchos) influences population dynamics across a gradient of urbanization. Auk 2005, 122, 205–221. [Google Scholar] [CrossRef]
- Giovanetti, M.; Giuliani, C.; Boff, S.; Fico, G.; Lupi, D. A botanic garden as a tool to combine public perception of nature and life-science investigations on native/exotic plants interactions with local pollinators. PLoS ONE 2020, 15, e0228965. [Google Scholar] [CrossRef]
- Fisogni, A.; Hautekèete, N.; Piquot, Y.; Brun, M.; Vanappelghem, C.; Ohlmann, M.; Franchomme, M.; Hinnewinkel, C.; Massol, F. Seasonal trajectories of plant-pollinator interaction networks differ following phenological mismatches along an urbanization gradient. Landsc. Urban Plan. 2022, 226, 104512. [Google Scholar] [CrossRef]
- Colla, S.R.; Willis, E.; Packer, L. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)? Cities Environ. 2009, 2, 4. [Google Scholar] [CrossRef]
- Hernandez, J.L.; Frankie, G.W.; Thorp, R.W. Ecology of urban bees: A review of current knowledge and directions for future study. Cities Environ. 2009, 2, 3. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Quistberg, R.D.; Bichier, P.; Philpott, S.M. Landscape and local correlates of bee abundance and species richness in urban gardens. Environ. Entomol. 2016, 45, 592–601. [Google Scholar] [CrossRef]
- Lorenz, S.; Stark, K. Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ. Sociol. 2015, 1, 116–126. [Google Scholar] [CrossRef]
- Casanelles-Abella, J.; Fontana, S.; Fournier, B.; Frey, D.; Moretti, M. Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. Ecol. Appl. 2023, 33, e2727. [Google Scholar] [CrossRef] [PubMed]
- Dalmon, A.; Diévart, V.; Thomasson, M.; Fouque, R.; Vaissière, B.E.; Guilbaud, L.; Henry, M. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 2021, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Beaurepaire, A.; Piot, N.; Doublet, V.; Antunez, K.; Campbell, E.; Chantawannakul, P.; Chejanovsky, N.; Gajda, A.; Heerman, M.; Panziera, D. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. Insects 2020, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Fünfhaus, A.; Ebeling, J.; Genersch, E. Bacterial pathogens of bees. Curr. Opin. Insect Sci. 2018, 26, 89–96. [Google Scholar] [CrossRef]
- Martínez-López, V.; Ruiz, C.; Muñoz, I.; Ornosa, C.; Higes, M.; Martín-Hernández, R.; De la Rúa, P. Detection of microsporidia in pollinator communities of a mediterranean biodiversity hotspot for wild bees. Microb. Ecol. 2021, 84, 638–642. [Google Scholar] [CrossRef]
- Nanetti, A.; Bortolotti, L.; Cilia, G. Pathogens spillover from honey bees to other arthropods. Pathogens 2021, 10, 1044. [Google Scholar] [CrossRef]
- Fürst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef]
- Manley, R.; Boots, M.; Wilfert, L. Emerging viral disease risk to pollinating insects: Ecological, evolutionary, and anthropogenic factors. Annu. Rev. Entomol. 2019, 64, 243–264. [Google Scholar] [CrossRef]
- Tehel, A.; Brown, M.J.F.; Paxton, R.J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 2016, 19, 16–22. [Google Scholar] [CrossRef]
- Graystock, P.; Blane, E.J.; McFrederick, Q.S.; Goulson, D.; Hughes, W.O. Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 2016, 5, 64–75. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Gaines-Day, H.R.; Gratton, C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. PLoS ONE 2017, 12, e0189268. [Google Scholar] [CrossRef] [PubMed]
- Genersch, E.; Yue, C.; Fries, I.; de Miranda, J.R. Detection of Deformed Wing Virus, a Honey Bee Viral Pathogen, in Bumble Bees (Bombus Terrestris and Bombus Pascuorum) with Wing Deformities. J. Invertebr. Pathol. 2006, 91, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Meeus, I.; de Miranda, J.R.; de Graaf, D.C.; Wäckers, F.; Smagghe, G. Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J. Invertebr. Pathol. 2014, 121, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, M.; Carrozza, M.L.; Luisi, E.; Forzan, M.; Giusti, M.; Sagona, S.; Felicioli, A. Infectivity of DWV associated to flower pollen: Experimental evidence of a horizontal transmission route. PLoS ONE 2014, 9, e113448. [Google Scholar] [CrossRef]
- Martin, S.J.; Brettell, L.E. Deformed wing virus in honeybees and other insects. Annu. Rev. virol. 2019, 6, 49–69. [Google Scholar] [CrossRef]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef]
- Porrini, M.P.; Porrini, L.P.; Garrido, P.M.; de Melo e Silva Neto, C.; Porrini, D.P.; Muller, F.; Eguaras, M.J. Nosema ceranae in South American native stingless bees and social wasp. Microb. Ecol. 2017, 74, 761–764. [Google Scholar] [CrossRef]
- Purkiss, T.; Lach, L. Pathogen spillover from Apis mellifera to a stingless bee. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191071. [Google Scholar] [CrossRef]
- Plischuk, S.; Martın-Hernandez, R.; Prieto, L.; Lucıa, M.; Botıas, C.; Meana, A. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 2009, 1, 131–135. [Google Scholar] [CrossRef]
- Gisder, S.; Horchler, L.; Pieper, F.; Schüler, V.; Šima, P.; Genersch, E. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl. Environ. Microbiol. 2020, 86, e00629-20. [Google Scholar] [CrossRef]
- Bramke, K.; Müller, U.; McMahon, D.P.; Rolff, J. Exposure of larvae of the solitary bee Osmia bicornis to the honey bee pathogen Nosema ceranae affects life history. Insects 2019, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Yañez, O.; Piot, N.; Dalmon, A.; de Miranda, J.R.; Chantawannakul, P.; Panziera, D.; Amiri, E.; Smagghe, G.; Schroeder, D.; Chejanovsky, N. Bee Viruses: Routes of Infection in Hymenoptera. Front. Microbiol. 2020, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Tiritelli, R.; Flaminio, S.; Zavatta, L.; Ranalli, R.; Giovanetti, M.; Grasso, D.A.; Leonardi, S.; Bonforte, M.; Boni, C.B.; Cargnus, E.; et al. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci. Rep. 2024, 14, 5136. [Google Scholar] [CrossRef]
- Warner, S.; Pokhrel, L.R.; Akula, S.M.; Ubah, C.S.; Richards, S.L.; Jensen, H.; Kearney, G.D. A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline. Sci. Total Environ. 2024, 906, 167492. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.Y.; Chantawannakul, P.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Le Conte, Y.; Ellis, M.; Ritter, W. Varroa mites and honey bee health: Can Varroa explain part of the colony losses? Apidologie 2010, 41, 353–363. [Google Scholar] [CrossRef]
- Ribière, M.; Lallemand, P.; Iscache, A.L.; Schurr, F.; Celle, O.; Blanchard, P.; Faucon, J.P. Spread of infectious chronic bee paralysis virus by honeybee (Apis mellifera L.) feces. Appl. Environ. Microbiol. 2007, 73, 7711–7716. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Hendrix, S.D.; Scavo, N.A.; Carrillo-Tripp, J.; Harris, M.A.; Wheelock, M.J.; Toth, A.L. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 2016, 11, e0166190. [Google Scholar] [CrossRef]
- Wilfert, L.; Long, G.; Leggett, H.C.; Schmid-Hempel, P.; Butlin, R.; Martin, S.J.; Boots, M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 2020, 351, 594–597. [Google Scholar] [CrossRef]
- Shen, M.; Yang, X.; Cox-Foster, D.; Cui, L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 2005, 342, 141–149. [Google Scholar] [CrossRef]
- Singh, R.; Levitt, A.L.; Rajotte, E.G.; Holmes, E.C.; Ostiguy, N.; van Engelsdorp, D.; Lipkin, W.I.; de Pamphilis, C.W.; Toth, A.L.; Cox-Foster, D.L. RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species. PLoS ONE 2010, 5, e14357. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Ponisio, L.C.; Russell, K.A.; Philpott, S.M.; McFrederick, Q.S. Floral resources shape parasite and pathogen dynamics in bees facing urbanization. Mol. Ecol. 2022, 31, 2157–2171. [Google Scholar] [CrossRef] [PubMed]
- Alger, S.A.; Burnham, P.A.; Boncristiani, H.F.; Brody, A.K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus sp.). PLoS ONE 2019, 14, e0217822. [Google Scholar] [CrossRef] [PubMed]
- Balkanska, R.; Shumkova, R.; Atsenova, N.; Salkova, D.; Dundarova, H.; Radoslavov, G.; Hristov, P. Molecular Detection and Phylogenetic Analysis of Deformed Wing Virus and Sacbrood Virus Isolated from Pollen. Vet. Sci. 2023, 10, 140. [Google Scholar] [CrossRef]
- Power, K.; Altamura, G.; Martano, M.; Maiolino, P. Detection of honeybee viruses in Vespa orientalis. Front. Cell. Infect. Microbiol. 2022, 12, 896932. [Google Scholar] [CrossRef]
- Evison, S.E.F.; Roberts, K.E.; Laurenson, L.; Pietravalle, S.; Hui, J.; Biesmeijer, J.C.; Smith, J.E.; Budge, G.; Hughes, W.O.H. Pervasiveness of parasites in pollinators. PLoS ONE 2012, 7, e30641. [Google Scholar] [CrossRef]
- Comune di Milano, 2.21 Contesto Geografico. Available online: https://www.pgt.comune.milano.it/vasraall2-quadro-di-riferimento-territoriale-e-ambientale/2-analisi-dei-fattori-determinanti/22-contesto-urbano-demografico-e-socio-economico/221-contesto-geografico (accessed on 13 December 2024).
- Milano Geoportale. 2024. Available online: https://geoportale.comune.milano.it/sit/dettagli/?uuid=C_F205%3ASIT_CENTRALE_M201280017%3A20160427 (accessed on 13 December 2024).
- Staccione, A.; Essenfelder, A.H.; Bagli, S.; Mysiak, J. Connected urban green spaces for pluvial flood risk reduction in the Metropolitan area of Milan. Sustain. Cities Soc. 2024, 104, 105288. [Google Scholar] [CrossRef]
- Collezione Botanica—Bam. 2024. Available online: https://bam.milano.it/collezione-botanica/ (accessed on 13 December 2024).
- Bosch, J.; Blas, M. Foraging behaviour and pollinating efficiency of Osmia cornuta and Apis mellifera on almond (Hymenoptera, Megachilidae and Apidae). Appl. Entomol. Zool. 1994, 29, 1–9. [Google Scholar] [CrossRef]
- Vicens, N.; Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 2000, 29, 413–420. [Google Scholar] [CrossRef]
- Messan, K.; Messan, M.R.; Chen, J.; DeGrandi-Hoffman, G.; Kang, Y. Population dynamics of Varroa mite and honeybee: Effects of parasitism with age structure and seasonality. Ecol. Model. 2021, 440, 109359. [Google Scholar] [CrossRef]
- Fries, I.; Chauzat, M.P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; Mcmahon, D.P.; Martin-Hernandez, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Lavazza, A.; Botti, G.; Milani, N.; Gamba, D.; Ball, B.V.; Capucci, L. The identification and characterization of deformed wing virus in Italian Honey bees as a preliminary step for the production of specific reagents and the establishment of diagnostic methods. In Proceedings of the Abstracts 38th International Congress of Apimondia, Ljubljana, Slovenia, 24–29 August 2003. [Google Scholar]
- Cilia, G.; Tafi, E.; Zavatta, L.; Dettori, A.; Bortolotti, L.; Nanetti, A. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch. Virol. 2024, 169, 43. [Google Scholar] [CrossRef] [PubMed]
- Lavazza, A.; Pascucci, S.; Gelmetti, D. Rod-shaped virus-like particles in intestinal contents of three avian species. Vet. Rec. 1990, 126, 581. [Google Scholar] [PubMed]
- Carpana, E.; Vecchi, M.A.; Lavazza, A.; Bassi, S.; Dottori, M. Prevalence of acute paralysis virus and other viral infections in honeybees in Italy. In Proceedings of the International Symposium on Recent Research on Bee Pathology, Gent, Belgium, 5–7 September 1990; pp. 155–165. [Google Scholar]
- Lavazza, A.; Tittarelli, C.; Cerioli, M. The Use of Convalescent Sera in Immune-Electron Microscopy to Detect Non-Suspected/New Viral Agents. Viruses 2015, 7, 2683–2703. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Baratto, C.; Manzinello, C.; Piva, E.; Borin, A.; Toson, M.; Mutinelli, F. Spring mortality in honey bees in northeastern Italy: Detection of pesticides and viruses in dead honey bees and other matrices. J. Apic. Res. 2017, 56, 239–254. [Google Scholar] [CrossRef]
- Blanchard, P.; Ribière, M.; Celle, O.; Lallemand, P.; Schurr, F.; Olivier, V.; Iscache, A.L.; Faucon, J.P. Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J. Virol. Methods 2007, 141, 7–13. [Google Scholar] [CrossRef]
- Berényi, O.; Bakonyi, T.; Derakhshifar, I.; Köglberger, H.; Nowotny, N. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 2006, 72, 2414–2420. [Google Scholar] [CrossRef]
- Genersch, E.; Von Der Ohe, W.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Rosenkranz, P. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef]
- Webster, T.C.; Pomper, K.W.; Hunt, G.; Thacker, E.M.; Jones, S.C. Nosema apis infection in worker and queen Apis mellifera. Apidologie 2004, 35, 49–54. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Meana, A.; Prieto, L.; Salvador, A.M.; Garrido-Bailón, E.; Higes, M. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 2007, 73, 6331–6338. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. 2020. Available online: http://www.rstudio.com/ (accessed on 10 January 2025).
- Dormann, C.; Gruber, B.; Fruend, J. Introducing the bipartite Package: Analysing Ecological Networks. R News 2008, 8, 8–11. Available online: https://cran.r-project.org/web/packages/bipartite/index.html (accessed on 10 January 2024).
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F. Using Bipartite to Describe and Plot Two-Mode Networks in R. 2020. Available online: https://cloud.r-project.org/web/packages/bipartite/vignettes/Intro2bipartite.pdf (accessed on 10 January 2025).
- Suárez-Mariño, A.; Arceo-Gómez, G.; Albor, C.; Parra-Tabla, V. Co-flowering modularity and floral trait similarity help explain temporal changes in plant–pollinator network structure. Plant Ecol. 2022, 223, 1289–1304. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Biesmeijer, J.C.; Benadi, G.; Fründ, J.; Stang, M.; Bartomeus, I.; Kunin, W.E. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 2014, 17, 1389–1399. [Google Scholar] [CrossRef]
- Zakardjian, M.; Geslin, B.; Mitran, V.; Franquet, E.; Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: An experimental approach using exotic plants. Insects 2020, 11, 773. [Google Scholar] [CrossRef]
- Ropars, L.; Affre, L.; Thébault, É.; Geslin, B. Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos 2022, 2022, e08915. [Google Scholar] [CrossRef]
- Schurr, F.; Tison, A.; Militano, L.; Cheviron, N.; Sircoulomb, F.; Rivière, M.P.; Ribière-Chabert, M.; Thiéry, R.; Dubois, E. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses. J. Virol. Methods 2019, 270, 70–78. [Google Scholar] [CrossRef]
- Ayers, A.C.; Rehan, S.M. Supporting bees in cities: How bees are influenced by local and landscape features. Insects 2021, 12, 128. [Google Scholar] [CrossRef]
- Graf, L.V.; Meyer, F.S.; Jeronimo, F.F.; Gonçalves, R.B. Urbanization as a driver of changes in mutualistic networks between bees and plants. Urban Ecosyst. 2025, 28, 30. [Google Scholar] [CrossRef]
- Graffigna, S.; González-Vaquero, R.A.; Torretta, J.P.; Marrero, H.J. Importance of urban green areas’ connectivity for the conservation of pollinators. Urban Ecosyst. 2024, 27, 417–426. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Walker, K.; Williams, N.S.; Hahs, A.K.; Mata, L.; Stork, N.; Livesley, S.J. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 2015, 187, 240–248. [Google Scholar] [CrossRef]
- Banaszak-Cibicka, W.; Ratyńska, H.; Dylewski, Ł. Features of urban green space favourable for large and diverse bee populations (Hymenoptera: Apoidea: Apiformes). Urban For. Urban Green 2016, 20, 448–452. [Google Scholar] [CrossRef]
- Dalmon, A.; Peruzzi, M.; Le Conte, Y.; Alaux, C.; Pioz, M. Temperature-driven changes in viral loads in the honey bee Apis mellifera. J. Iinvertebr. Pathol. 2019, 160, 87–94. [Google Scholar] [CrossRef]
- Chen, G.; Wu, Y.; Deng, J.; Wen, Z.; Wang, S.; Chen, Y.; Zheng, H. Seasonal variation of viral infections between the eastern honey bee (Apis cerana) and the western honey bee (Apis mellifera). Microbiologyopen 2021, 10, e1162. [Google Scholar] [CrossRef] [PubMed]
- Piot, N.; Schweiger, O.; Meeus, I.; Yañez, O.; Straub, L.; Villamar-Bouza, L.; De Miranda, J.R. Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci. Rep. 2022, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Gisder, S.; Genersch, E. Viruses of commercialized insect pollinators. J. Invertebr. Pathol. 2017, 147, 51–59. [Google Scholar] [CrossRef]
- McMahon, D.P.; Fürst, M.A.; Caspar, J.; Theodorou, P.; Brown, M.J.F.; Paxton, R.J. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 2015, 84, 615–624. [Google Scholar] [CrossRef]
- Bailey, L.; Gibbs, A.J. Acute infection of bees with paralysis virus. J. Invertebr. Pathol. 1964, 6, 395–407. [Google Scholar]
- Ball, B.V. Acute paralysis virus isolates from honeybee colonies infested with Varroa jacobsoni. J. Apic. Res. 1985, 24, 115–119. [Google Scholar] [CrossRef]
- de Miranda, J.; Cordoni, G.; Budge, G. The acute bee paralysis virus—Kashmir bee virus—Israeli acute paralysis virus complex. J. Invertebr. Pathol 2010, 103, S30–S47. [Google Scholar] [CrossRef]
- Sachman-Ruiz, B.; Narvaez-Padilla, V.; Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central Mexico. Biol. Invasions 2015, 17, 2043–2053. [Google Scholar] [CrossRef]
- Guzman-Novoa, E.; Hamiduzzaman, M.M.; Anguiano-Baez, R.; Correa-Benitez, A.; Castaneda-Cervantes, E.; Arnold, N.I. First detection of honey bee viruses in stingless bees in North America. J. Apic. Res. 2015, 54, 93–95. [Google Scholar] [CrossRef]
- Gamboa, V.; Ravoet, J.; Brunain, M.; Smagghe, G.; Meeus, I.; Figueroa, J.; Riaño, D.; de Graaf, D.C. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. pathol. 2015, 129, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Gusachenko, O.N.; Woodford, L.; Balbirnie-Cumming, K.; Kyabov, E.V.; Evans, D.J. Evidence for and against deformed wing virus spillover from honey bees to bumble bees: A reverse genetic analysis. Sci. Rep. 2020, 10, 16847. [Google Scholar] [CrossRef]
- Cilia, G.; Flaminio, S.; Zavatta, L.; Ranalli, R.; Quaranta, M.; Bortolotti, L.; Nanetti, A. Occurrence of honey bee (Apis mellifera L.) pathogens in wild pollinators in northern Italy. Front. Cell. Infect. Microbiol. 2022, 12, 907489. [Google Scholar] [CrossRef]
- De Souza, R.S.; Kevill, J.L.; Correia-Aveira, M.E.; de Carvalho, C.A.L.; Martin, S.J. Occurrence of deformed wing virus variants in the stingless bee Melipona subnitida and honey bee Apis mellifera populations in Brazil. J. Gen. Virol. 2019, 100, 289–294. [Google Scholar] [CrossRef]
- Levitt, A.L.; Singh, R.; Cox-Foster, D.L.; Rajotte, E.; Hoover, K.; Ostiguy, N.; Holmes, E.C. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 2013, 176, 232–240. [Google Scholar] [CrossRef]
- Peng, W.; Li, J.; Boncristiani, H.; Strange, J.P.; Hamilton, M.; Chen, Y. Host range expansion of honey bee black queen cell virus in the bumble bee, Bombus huntii. Apidologie 2011, 42, 650–658. [Google Scholar] [CrossRef]
- Tapia-González, J.M.; Morfin, N.; Macías-Macías, J.O.; De la Mora, A.; Tapia-Rivera, J.C.; Ayala, R.; Contreras-Escareño, F.; Gashout, H.A.; Guzman-Novoa, E. Evidence of presence and replication of honey bee viruses among wild bee pollinators in subtropical environments. J. Invertebr. Pathol. 2019, 168, 107256. [Google Scholar] [CrossRef]
- Bailey, L.; Gibbs, A.J.; Woods, R.D. Two viruses from adult honey bees (Apis mellifera Linnaeus). Virology 1963, 21, 390–395. [Google Scholar] [CrossRef]
- Ribiere, M.; Olivier, V.; Blanchard, P. Chronic bee paralysis virus: A disease and a virus like no other? J. Invertebr. Pathol. 2010, 103, S120–S131. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-S.; Shi, T.-F.; Liu, F.; Yu, L.-S.; Qi, L.; Meng, X.-J. Occurrence and distribution of seven bee viruses in Apis mellifera and Apis cerana in Anhui Province, China. Chin. J. Appl. Entomol. 2015, 52, 324–332. [Google Scholar]
- Choi, Y.S.; Lee, M.Y.; Hong, I.P.; Kim, N.S.; Kim, H.K.; Byeon, K.H.; Yoon, H. Detection of honey bee virus from bumblebee (Bombus terrestris and Bombus ignitus). Korean J. Apic. 2010, 25, 259–266. [Google Scholar]
- Celle, O.; Blanchard, P.; Olivier, V.; Schurr, F.; Cougoule, N.; Faucon, J.P.; Ribiere, M. Detection of chronic bee paralysis virus (CBPV) genome and its replicative RNA form in various hosts and possible ways of spread. Virus Res. 2008, 133, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Mondet, F.; de Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the front line: Quantitative virus dynamics in honey bee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PloS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef]
- Shen, M.; Cui, L.; Ostiguy, N.; Cox-Foster, D. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J. Gen. Virol. 2005, 86, 2281–2289. [Google Scholar] [CrossRef]
- Reynaldi, F.J.; Sguazza, G.H.; Albicoro, F.J.; Pecoraro, M.R.; Galosi, C.M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Braz. J. Biol. 2013, 73, 797–800. [Google Scholar] [CrossRef]
- Ravoet, J.; De Smet, L.; Meeus, I.; Smagghe, G.; Wenseleers, T.; de Graaf, D.C. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 2014, 122, 55–58. [Google Scholar] [CrossRef]
- Chaimanee, V.; Warrit, N.; Chantawannakul, P. Infections of Nosema ceranae in four different honeybee species. J. Invertebr. Pathol. 2010, 105, 207–210. [Google Scholar] [CrossRef]
- Forsgren, E.; Fries, I. Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet. Parasitol. 2010, 170, 212–217. [Google Scholar] [CrossRef]
- Shykoff, J.A.; Schmid-Hempel, P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie 1991, 22, 117–125. [Google Scholar] [CrossRef]
- Otti, O.; Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 2007, 96, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, W.; Wu, J.; Peng, W.; An, J.; Schmid-Hempel, P.; Schmid-Hempel, R. Diversity of Nosema associated with bumblebees (Bombus sp.) from China. Int. J. Parasitol. 2012, 42, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.J.F. Microsporidia: An Emerging Threat to Bumblebees? Trends Parasitol. 2017, 33, 754–762. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Bartolomé, C.; Chejanovsky, N.; Le Conte, Y.; Dalmon, A.; Dussaubat, C.; Higes, M. Nosema ceranae in Apis mellifera: A 12 years post detection perspective. Environ. Microbiol. 2018, 1302–1329. [Google Scholar] [CrossRef]
- Grupe, A.C., II; Quandt, C.A. A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog. 2020, 16, e1008580. [Google Scholar] [CrossRef]
- Maurer, C.; Schauer, A.; Yañez, O.; Neumann, P.; Gajda, A.; Paxton, R.J.; Pellissier, L.; Schweiger, O.; Szentgyörgyi, H.; Vanbergen, A.J.; et al. Species traits, landscape quality and floral resource overlap with honeybees determine virus transmission in plant–pollinator networks. Nat. Ecol. Evol. 2024, 8, 2239–2251. [Google Scholar] [CrossRef]
- Bosco, L.; Yañez, O.; Schauer, A.; Maurer, C.; Cushman, S.A.; Arlettaz, R.; Schläppi, D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. Sci. Total Environ. 2024, 946, 174280. [Google Scholar] [CrossRef]
Year | Green Area | Date | Species | Plant Taxa |
---|---|---|---|---|
2020 | Modern park E | 8 July 2020 | Apis mellifera L | Salvia yangii BT Drew; Lavandula sp. |
Modern park E | 8 July 2020 | Bombus terrestris L. | Salvia yangii BT Drew; Lavandula sp. | |
Modern park E | 8 July 2020 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Lavandula sp. | |
Modern park E | 10 July 2020 | Bombus pascuorum Scopoli | Salvia yangii BT Drew; Lavandula sp. | |
Modern park D | 17 July 2020 | Apis mellifera L. | Salvia yangii BT Drew; Lavandula sp. | |
Modern park D | 17 July 2020 | Bombus terrestris L. | Salvia yangii BT Drew; Lavandula sp. | |
Modern park D | 17 July 2020 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Lavandula sp. | |
Modern park C | 23 July 2020 | Apis mellifera L | Salvia yangii BT Drew | |
Modern park C | 23 July 2020 | Anthidium florentinum Fabricius | Salvia yangii BT Drew | |
Historic city park A | 30 July 2020 | Apis mellifera L. | Abelia sp. Trifolium sp. | |
Historic city park A | 30 July 2020 | Bombus terrestris L. | Abelia sp. Trifolium sp. | |
Modern park E | 14 September 2020 | Apis mellifera L. | Salvia yangii BT Drew | |
2021 | Modern park E | 8 March 2021 | Apis mellifera L. | Chanomeles japonica (Thunb.) Lindl. |
Modern park E | 8 March 2021 | Osmia bicornis L. | Chanomeles japonica (Thunb.) Lindl. | |
Modern park E | 12 March 2021 | Apis mellifera L. | Chanomeles japonica (Thunb.) Lindl. | |
Historic city park B | 18 March 2021 | Osmia bicornis L. | Chanomeles japonica (Thunb.) Lindl. | |
Modern park D | 7 May 2021 | Apis mellifera L. | Nepeta racemosa Lam. | |
Modern park D | 7 May 2021 | Osmia bicornis L. | Nepeta racemosa Lam. | |
Modern park E | 24 June 2021 | Apis mellifera L. | Salvia yangii BT Drew; Lavandula sp. | |
Modern park E | 24 June 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Lavandula sp. | |
Roundabout F | 24 June 2021 | Apis mellifera L. | Salvia yangii BT Drew; Stachis bizantina K. Koch | |
Roundabout F | 24 June 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Stachis bizantina K. Koch | |
Roundabout G | 30 June 2021 | Apis mellifera L. | Salvia yangii BT Drew; | |
Roundabout G | 30 June 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; | |
Historic city park B | 1 July 2021 | Megachile sculpturalis Smith | Magnolia grandiflora L. | |
Modern park D | 2 July 2021 | Apis mellifera L. | Salvia yangii BT Drew; | |
Modern park D | 2 July 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; | |
Modern park E | 2 August 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Lavandula sp. | |
Roundabout F | 2 August 2021 | Anthidium florentinum Fabricius | Salvia yangii BT Drew; Stachis bizantina K. Koch | |
Roundabout F | 2 August 2021 | Bombus terrestris L. | Salvia yangii BT Drew; Stachis bizantina K. Koch | |
Modern park D | 3 August 2021 | Bombus terrestris L. | Salvia yangi BT Drew | |
Historic city park B | 3 August 2021 | Megachile sculpturalis Smith | Magnolia grandiflora L. | |
Historic city park A | 5 August 2021 | Bombus terrestris L. | Abelia x grandiflora |
Pathogens | Number of Samples Analyzed | Techniques Used |
---|---|---|
Nosema spp. (spore) | 33 | Light Microscopy |
Nosema apis e N. ceranae | 2 | One-step PCR |
Viruses | 35 | Electronic microscopy |
DWV | 33 | qRT-PCR Real-time (Viral quantification) |
ABPV | 33 | qRT-PCR Real-time (Viral quantification) |
CBPV | 33 | qRT-PCR Real-time (Viral quantification) |
BQCV | 33 | One-step RT-PCR |
SBV | 33 | One-step RT-PCR |
KBV | 33 | One-step RT-PCR |
IAPV | 33 | One-step RT-PCR |
Year | Date | Green Area | Species | N° Collected | N. Extracted for PCR | Weight | Volume (mL) |
---|---|---|---|---|---|---|---|
2020 | 8 July 2020 | Modern park E | A. mellifera | 10 | 3 | 0.31 g | 2 |
8 July 2020 | Modern park E | B. terrestris | 10 | 3 | 0.60 g | 2 | |
8 July 2020 | Modern park E | An. florentinum | 10 | 3 | 0.47 g | 2 | |
17 July 2020 | Modern park D | A. mellifera | 10 | 3 | 0.30 g | 2 | |
17 July 2020 | Modern park D | B. terrestris | 10 | 3 | 0.60 g | 2 | |
17 July 2020 | Modern park D | An. florentinum | 10 | 3 | 0.81 g | 2 | |
23 July 2020 | Modern park C | A. mellifera | 10 | 3 | 0.23 g | 2 | |
23 July 2020 | Modern park C | An. florentinum | 10 | 3 | 0.38 g | 2 | |
30 July 2020 | Historic city park A | A. mellifera | 10 | 3 | 0.29 g | 2 | |
30 July 2020 | Historic city park A | B. terrestris | 10 | 3 | 0.56 g | 2 | |
13 July 2020 | Modern park E | B. pascuorum | 10 | 3 | 0.43 g | 2 | |
14 September 2020 | Modern park E | A. Mellifera | 10 | 3 | 0.35 g | 2 | |
2021 | 8 March 2021 | Modern park E | A. mellifera | 7 | 5 | 0.44 g | 5 |
Modern park E | O. bicornis | 10 | 5 | 0.43 g | 5 | ||
12 March 2021 | Modern park E | A. mellifera | 9 | 5 | 0.51 g | 5 | |
18 March 2021 | Historic city park B | O. bicornis | 10 | 5 | 0.65 g | 5 | |
7 May 2021 | Modern park D | A. mellifera | 10 | 5 | 0.39 g | 5 | |
Modern park D | O. bicornis | 10 | 5 | 0.45 g | 5 | ||
24 June 2021 | Modern park E | A. mellifera | 10 | 5 | 0.47 g | 5 | |
Modern park E | An. florentinum | 10 | 5 | 0.89 g | 5 | ||
24 June 2021 | Roundabout F | A. mellifera | 10 | 5 | 0.41 g | 5 | |
Roundabout F | An. florentinum | 10 | 5 | 0.67 g | 5 | ||
30 June 2021 | Roundabout G | A. mellifera | 10 | 5 | 0.36 g | 5 | |
Roundabout G | An. florentinum | 10 | 5 | 0.66 g | 5 | ||
1 July 2021 | Historic city park B | M. sculpturalis | 10 | 5 | 1.69 g | 5 | |
2 July 2021 | Modern park D | A. mellifera | 10 | 5 | 0.46 g | 5 | |
Modern park D | An. florentinum | 10 | 5 | 0.85 g | 5 | ||
2 August 2021 | Modern park E | An. florentinum | 10 | 5 | 0.93 g | 5 | |
2 August 2021 | Roundabout F | An. florentinum | 10 | 5 | 1.02 g | 5 | |
Roundabout F | B. terrestris | 7 | 5 | 0.90 g | 5 | ||
3 August 2021 | Modern park D | B. terrestris | 8 | 5 | 0.97 g | 5 | |
3 August 2021 | Historic city park B | M. sculpturalis | 10 | 5 | 1.79 g | 5 | |
5 August 2021 | Historic city park A | B. terrestris | 8 | 5 | 1.05 g | 5 |
Target | Forward Primer | Reverse Primer | Probe | Length Amplicon | Type of PCR Performed | Reference |
---|---|---|---|---|---|---|
ABPV | GCCCAGACAAGCGCAGTACT | AGCCGGAAAACGCGTCTT | (6-FAM) TCCCCGATAGCRACCGA (MGB) | 72 | Real-Time RT-PCR | [61] |
CBPV | CGCAARTACGCCTTGATAAAGAAC | ACTACTAGAAACTCGTCGCTTCG | (6-FAM) TCAAGAACGAGACVACCGCCAAGTTC (BHQ-1) | 103 | Real-Time RT-PCR | [62] |
DWV | ATGGGTTTGATTCG/AATATCTTGGAA | GATGTTCCG/AGGTGGCTTTAATGA | (6FAM) ACTAGTGCTGGTTTTCCTTTGTC (MGB) | 73 | Real-Time RT-PCR | [61] |
SBV | ACCAACCGATTCCTCAGTAG | CCTTGGAACTCTGCTGTGTA | // | 487 | end-point RT-PCR | [63] |
BQCV | AGTAGTTGCGATGTACTTCC | CTTAGTCTTACTCGCCACTT | // | 472 | end-point RT-PCR | [63] |
IAPV | GAGCGTCGATCCCCCGTATGG | TCCATTACCACTGCTCCGACAC | // | 524 | end-point RT-PCR | [64] |
KBV | GATGAACGTCGACCTATTGA | TGTGGGTTGGCTATGAGTCA | // | 414 | end-point RT-PCR | [64] |
Nosema apis | CCGACGATGTGATATGAGATG | CACTATTATCATCCTCAGATCATA | // | 209 | end-point RT-PCR | [65] |
Nosema ceranae | CGGCGACGATGTGATATGAAAATATTAA | CCCGGTCATTCTCAAACAAAAAACCG | // | 218 | end-point RT-PCR | [66] |
Taxa (n) | Links per Taxa | Shared Partners (Mean Number) | Niche Overlap | Partners Diversity | Shannon Diversity Index | Modularity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Year | Plants | Pollinators | Plants | Pollinators | Plants | Pollinators | Plants | Pollinators | |||
Historic city park A | 2020 | 16 | 14 | 1.4 | 0.98 | 0.57 | 0.35 | 0.11 | 0.69 | 1.38 | 3.04 | 0.48 |
2021 | 23 | 16 | 1.71 | 0.84 | 0.83 | 0.31 | 0.14 | 0.96 | 1.69 | 3.81 | 0.48 | |
Historic city park B | 2020 | 11 | 8 | 1.21 | 0.72 | 0.57 | 0.4 | 0.12 | 0.57 | 1.13 | 2.7 | 0.47 |
2021 | 22 | 20 | 1.61 | 0.82 | 0.62 | 0.32 | 0.15 | 0.89 | 1.59 | 3.54 | 0.49 | |
Modern park C | 2020 | 9 | 8 | 1.35 | 0.91 | 0.75 | 0.55 | 0.21 | 0.59 | 0.92 | 1.96 | 0.20 |
2021 | 19 | 16 | 1.62 | 1.08 | 0.83 | 0.49 | 0.17 | 0.86 | 1.53 | 2.99 | 0.34 | |
Modern park D | 2020 | 11 | 10 | 1.52 | 1.18 | 0.97 | 0.56 | 0.25 | 0.85 | 1.28 | 2.56 | 0.20 |
2021 | 16 | 18 | 1.32 | 0.76 | 0.44 | 0.34 | 0.15 | 1.07 | 1.15 | 2.85 | 0.33 | |
Modern park E | 2020 | 9 | 9 | 1.27 | 0.88 | 1.05 | 0.47 | 0.32 | 1.06 | 1.08 | 2.35 | 0.18 |
2021 | 18 | 17 | 1.4 | 0.88 | 0.51 | 0.43 | 0.16 | 1.09 | 1.37 | 3.12 | 0.37 | |
Roundabout F | 2020 | 3 | 11 | 1.14 | 1.66 | 1.1 | 0.36 | 0.94 | 1.52 | 0.42 | 2.02 | 0.07 |
2021 | 2 | 10 | 1.08 | 3.00 | 0.84 | 0.46 | 0.65 | 1.40 | 0.21 | 1.81 | 0.14 |
Site | Year | Apis mellifera | Anthidium spp. | Anthidium florentinum | Bombus terrestris | Bombus pascuorum | Osmia cornuta | Megachile sculpturalis |
---|---|---|---|---|---|---|---|---|
Historic city park A | 2020 | 0.7 | 0.2 | - | 0.3 | 0.3 | 0 | 0 |
2021 | 0.7 | 0.1 | 0.1 | 0.1 | 0.1 | 0 | 0 | |
Historic city park B | 2020 | 0.8 | 0.1 | - | 0.2 | 0 | 0.4 | 0 |
2021 | 0.8 | 0 | - | 0.2 | 0.1 | 0.1 | 0.1 | |
Modern park C | 2020 | 0.8 | 0.7 | - | 0 | 0.5 | 0 | 0 |
2021 | 0.7 | 0.4 | 0.4 | 0.6 | 0.7 | 0.2 | 0 | |
Modern park D | 2020 | 0.6 | 0.6 | - | 0.6 | 0.4 | 0 | 0 |
2021 | 0.6 | 0.3 | 0.3 | 0.3 | 0 | 0.4 | 0 | |
Modern park E | 2020 | 0.5 | 0.5 | - | 0.5 | 0.5 | 0.4 | 0 |
2021 | 0.6 | 0.2 | 0.2 | 0.4 | 0.3 | 0.2 | 0 | |
Roundabout F | 2020 | 0.3 | 0.3 | - | 0.3 | 0.3 | 0 | 0.3 |
2021 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0 | 0 |
Sampling Date | Green Area | Bee Species | Real-Time PCR (CBPV) | Real-Time PCR (ABPV) | Real-Time PCR (DWV) | One-Step PCR (KBV) | One-Step PCR (IAPV) | One-Step PCR (BQCV) | One-Step PCR (SBV) | Nosema sp. (Spores) | Electron Microscopy |
---|---|---|---|---|---|---|---|---|---|---|---|
8 July 2020 | Modern park E | A. mellifera | D (1.72 × 104) | D (1.7 × 106) | N | N | N | N | N | N | N Picornavirus-like (+) |
8 July 2020 | Modern park E | B. terrestris | N | D (8.3 × 106) | N | N | N | N | N | N | N |
8 July 2020 | Modern park E | An. florentinum | D (5.3 × 102) | D (7.4 × 106) | D (6.6 × 104) | N | N | D | N | N | N |
10 July 2020 | Modern park E | B. pascuorum | N | D (2.1 × 105) | N | N | N | D | N | N | N |
17 July 2020 | Modern park D | A. mellifera | D (1.3 × 104) | D (4.8 × 108) | D (1.4 × 1011) | N | N | N | D | N | IEM DWV ++++ |
17 July 2020 | Modern park D | B. terrestris | D (9 × 103) | D (1.55 × 1013) | D (7.6 × 104) | N | N | D | N | N | IEM ABPV (++++) |
17 July 2020 | Modern park D | An. florentinum | N | D (7.3 × 107) | D (9.1 × 105) | N | N | D | N | N | N Picornavirus-like (+) |
23 July 2020 | Modern park C | A. mellifera | D (1.37 × 103) | D (3.1 × 1012) | N | N | N | D | N | N | IEM ABPV (++++) |
23 July 2020 | Modern park C | An. florentinum | N | D (1.14 × 105) | N | N | N | D | N | N | N |
30 July 2020 | Historic city park A | A. mellifera | N | D (2.7 × 105) | N | N | N | N | N | N | N |
30 July 2020 | Historic city park A | B. terrestris | N | D (9.1 × 104) | N | N | N | N | N | N | N |
14 September 2020 | Modern park E | A. mellifera | N | D (2.7 × 104) | N | N | N | D | N | N | N |
Sampling Date | Green Area | Bee Species | Real-Time PCR (CBPV) | Real-Time PCR (ABPV) | Real-Time PCR (DWV) | One-Step PCR (KBV) | One-Step PCR (IAPV) | One-Step PCR (BQCV) | One-Step PCR (SBV) | Nosema sp. (Spores) | Electron Microscopy |
---|---|---|---|---|---|---|---|---|---|---|---|
8 March 2021 | Modern park E | A. mellifera | N | D (1.9 × 103) | D (1.4 × 104) | N | N | N | N | N | N |
8 March 2021 | Modern park E | O. bicornis | N | N | N | N | N | N | N | N | N |
12 March 2021 | Modern park E | A. mellifera | N | D (6 × 105) | D (2.1 × 109) | N | N | N | N | N | IEM DWV (+++) |
18 March 2021 | Historic city park B | O. bicornis | N | D (4.7 × 103) | N | N | N | N | N | N | N |
7 May 2021 | Modern park D | A. mellifera | N | D (3.2 × 105) | D (8.8 × 104) | N | N | N | D | N | N |
7 May 2021 | Modern park D | O. bicornis | N | N | N | N | N | N | N | N | N Picornavirus-like (++) |
24 June 2021 | Modern park E | A. mellifera | N | D (1.1 × 109) | D (1.4 × 107) | N | N | N | D | N | IEM DWV (+++) |
24 June 2021 | Modern park E | An. florentinum | N | D (5.9 × 103) | N | N | N | N | D | D (N. ceranae) | N |
24 June 2021 | Roundabout F | A. mellifera | N | D (2.5 × 109) | D (3.5 × 103) | N | N | N | N | D (N. ceranae) | N |
24 June 2021 | Roundabout F | An. florentinum | N | D (1.4 × 103) | N | N | N | N | N | N | N |
30 June 2021 | Roundabout G | Apis mellifera | D (1.1 × 104) | D (6.2 × 102) | N | N | N | N | D | N | N |
30 June 2021 | Roundabout G | An. florentinum | N | D (4.2 × 102) | N | N | N | N | N | N | N |
1 July 2021 | Historic city park B | M. sculpturalis | N | D (1.9 × 103) | N | N | N | N | D | N | N |
2 July 2021 | Modern park D | A. mellifera | D (3.2 × 104) | D (4 × 102) | D (9.2 × 105) | N | N | N | D | N | N |
2 July 2021 | Modern park D | An. florentinum | N | N | N | N | N | N | N | N | N |
2 August 2021 | Modern park E | An. florentinum | N | N | N | N | N | N | N | N | N |
2 August 2021 | Roundabout F | An. florentinum | N | D (6.6 × 103) | N | N | N | N | N | N | N |
2 August 2021 | Roundabout F | B. terrestris | N | D (1.4 × 104) | N | N | N | N | D | N | N Picornavirus-like (+) |
3 August 2021 | Modern park D | Bombus terrestris | N | D (8 × 1010) | N | N | N | N | N | N | N Picornavirus-like (++) |
3 August 2021 | Historic city park B | M. sculpturalis | N | N | N | N | N | N | N | N | N |
5 August 2021 | Historic city park A | B. terrestris | N | D (5.102) | N | N | N | N | D | N | N |
Virus | N° Positives | Green Area | Bee Species | Virus Load |
---|---|---|---|---|
CBPV | 5 | Modern park C | 1 A. mellifera | Low positivity |
Modern park D | 1 A. mellifera 1 B. terrestris | Low positivity | ||
Modern park E | 1 A mellifera 1 An. florentinum | Low positivity | ||
ABPV | 12 | Historic city park A | 1 A. mellifera 1 B. terrestris | All low/medium positivity |
Modern park C | 1 A. mellifera 1 An. florentinum | All low/medium positivity except for high positivity in A. mellifera | ||
Modern park D | 1 A. mellifera 1 B. terrestris 1 An. florentinum | All low/medium positivity except for medium-high positivity in A. mellifera and high positivity in B. terrestris | ||
Modern park E | 2 A. mellifera 1 B. terrestris 1 A. florentinum 1 B. pascuorum | Low/medium positivity | ||
DWV | 4 | Modern park D | 1 A. mellifera 1 B. terrestris 1 An. florentinum | All low positivity, except high positivity in A. mellifera |
Modern park E | 1 An. florentinum | Low positivity | ||
KBV | 0 | |||
IAPV | 0 | |||
BQCV | 7 | Modern park C | 1 A. mellifera 1 An. florentinum | n.d. |
Modern park D | 1 B. terrestris 1 An. florentinum | |||
Modern park E | 1 A. mellifera 1 B. pascuorum 1 An. florentinum | |||
SBV | 1 | Modern park D | 1 A. mellifera | n.d. |
Virus | N° Positives | Green Area | Bee Species | Virus Load |
---|---|---|---|---|
CBPV | 2 | Modern park D | 1 A. mellifera | All low positivity |
Roundabout G | 1 A. mellifera | |||
ABPV | 16 | Historic city park A | 1 B. terrestris | Low/medium positivity in 13 samples Medium-high positivity in 2 A. mellifera from modern park “E” and roundabout “F” High positivity in 1 B. terrestris from modern park “D” |
Historic city park B | 1 M. sculpturalis 1 O. bicornis | |||
Modern park D | 2 A. mellifera 1 B. terrestris | |||
Modern park E | 3 A. mellifera 1 An. florentinum | |||
Roundabout F | 1 A. mellifera 2 An. florentinum 1 B. terrestris | |||
Roundabout G | 1 A. mellifera 1 An. florentinum | |||
DWV | 6 | Modern park D | 2 A. mellifera | Low/medium positivity in 4 samples Medium-high positivity in 2 A. mellifera from modern park “E” |
Modern park E | 3 A. mellifera | |||
Roundabout F | 1 A. mellifera | |||
KBV | 0 | |||
IAPV | 0 | |||
BQCV | 0 | |||
SBV | 8 | Historic city park A | 1 B. terrestris | n.d. |
Historic city park B | 1 M. sculpturalis | |||
Modern park D | 2 A. mellifera | |||
Modern park E | 1 A. Mellifera 1 An. Florentinum | |||
Roundabout F | 1 B. terrestris | |||
Roundabout G | 1 A. mellifera |
Year | N° Virus | Apis mellifera | Bombus terrestris | Bombus pascuorum | Anthidium florentinum | Megachile sculpturalis | Osmia bicornis |
---|---|---|---|---|---|---|---|
2020 | 1 | ABPV (1) | ABPV (2) | ||||
2 | ABPV + BQCV (1) CBPV + ABPV (1) | ABPV + BQCV (1) | ABPV + BQCV (1) | ||||
3 | CBPV + ABPV + BQCV (1) | ABPV + DWV + BQCV (1) | |||||
4 | CBPV + ABPV + DWV + SBV (1) | CBPV + ABPV+ DWV + BQCV (1) | CBPV + ABPV + DWV + BQCV (1) | ||||
2021 | 1 | ABPV (1) | ABPV (3) | ABPV (1) | |||
2 | ABPV + DWV (3) | ABPV + SBV (2) | ABPV + SBV (1) | ABPV + SBV (1) | |||
3 | ABPV + DWV+ SBV (2) ABPV + CBPV + SBV (1) | ||||||
4 | ABPV + CBPV+ DWV + SBV (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorvillo, C.; Malabusini, S.; Holzer, E.; Frasnelli, M.; Giovanetti, M.; Lavazza, A.; Lupi, D. Urban Green Areas: Examining Honeybee Pathogen Spillover in Wild Bees Through Shared Foraging Niches. Appl. Sci. 2025, 15, 2879. https://doi.org/10.3390/app15062879
Sorvillo C, Malabusini S, Holzer E, Frasnelli M, Giovanetti M, Lavazza A, Lupi D. Urban Green Areas: Examining Honeybee Pathogen Spillover in Wild Bees Through Shared Foraging Niches. Applied Sciences. 2025; 15(6):2879. https://doi.org/10.3390/app15062879
Chicago/Turabian StyleSorvillo, Carla, Serena Malabusini, Erica Holzer, Matteo Frasnelli, Manuela Giovanetti, Antonio Lavazza, and Daniela Lupi. 2025. "Urban Green Areas: Examining Honeybee Pathogen Spillover in Wild Bees Through Shared Foraging Niches" Applied Sciences 15, no. 6: 2879. https://doi.org/10.3390/app15062879
APA StyleSorvillo, C., Malabusini, S., Holzer, E., Frasnelli, M., Giovanetti, M., Lavazza, A., & Lupi, D. (2025). Urban Green Areas: Examining Honeybee Pathogen Spillover in Wild Bees Through Shared Foraging Niches. Applied Sciences, 15(6), 2879. https://doi.org/10.3390/app15062879