Comprehensive Study of IoT Vulnerabilities and Countermeasures
Abstract
:1. Introduction
Organization of the Paper
2. Preliminary Materials
2.1. Internet of Things for Smart Cities and Transportation
2.2. Internet of Things for Advanced Manufacturing
2.3. Internet of Things Smart Home System
2.4. Internet of Medical Things
2.5. Internet of Agricultural Things
2.6. Internet of Battlefield Things
2.7. Commonly Used Protocols
2.7.1. ZigBee
2.7.2. Dash7
2.7.3. WiFi
2.7.4. Cellular
2.7.5. 6LoWPAN
2.7.6. Bluetooth
2.7.7. Bluetooth Low Energy (BLE)
2.7.8. LoRa and LoRaWAN
2.7.9. SigFox
2.7.10. Narrowband Internet of Things (NB-IoT)
2.7.11. Near-Field Communication (NFC)
2.7.12. Z-Wave
2.7.13. Li-Fi
2.7.14. Ultra-Wideband (UWB)
2.7.15. Advanced Message Queuing Protocol (AMQP)
2.7.16. Constrained Application Protocol (CoAP)
2.7.17. Message Queuing Telemetry Transport Protocol (MQTT)
2.7.18. Data Distribution Service (DDS)
2.7.19. Open Platform Communications (OPC)
3. IoT Vulnerability Layers
3.1. Hardware Vulnerabilities
3.1.1. Radio Frequency Attacks
3.1.2. Hardware Reverse Engineering and Micro-Probing
3.1.3. Implants and Hardware Trojans
3.2. Software Vulnerabilities
3.3. Network Vulnerabilities
3.3.1. WiFi and Ethernet Based Networks
3.3.2. Wireless Sensor Networks
3.3.3. Cloud Based Networks
4. Significance of Our Paper
5. Conclusions and Future Research to Be Worked
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-fib | Atrial Fibrillation |
AC | Air Conditioning |
AES | Advanced Encryption Standard |
AODV | Ad Hoc On-Demand Distance Vector Routing Protocol |
AMQP | Advanced Message Queuing Protocol |
API | Application Programming Interface |
ARP | Address Resolution Protocol |
BLE | Bluetooth Low Energy |
bps | Bits per second |
CCTV | Closed-Circuit Television |
c-Delay | IoT Command Message Delay |
CGM | Continuous Glucose Monitor |
CoAP | Constrained Application Protocol |
CoRE | Constrained RESTful Environments |
CPS | Cyber-Physical Systems |
D7AP | Dash7 Alliance Protocol |
DA | Data Access |
DDoS | Distributed Denial of Service |
DDS | Data Distribution Service |
DHCP | Dynamic Host Configuration Protocol |
DH | Diffie–Hellman |
DSSS | Direct Sequence Spread Spectrum |
DNS | Domain Name System |
DNSSEC | Domain Name System Security Extensions |
DoS | Denial of Service |
DTLS | Datagram Transport Layer Security |
E-DDoS | Energy-Oriented Distributed Denial of Service |
e-Delay | IoT Event Message Delay |
ECG | Electrocardiogram |
ECDH | Elliptic Curve Diffie–Hellman |
ECDSA | Elliptic Curve Digital Signature Algorithm |
eMBB | Enhanced Mobile Broadband |
FAU | Florida Atlantic University |
FHSS | Frequency Hopping Spread Spectrum |
GHz | Gigahertz |
Gbps | Gigabits per second |
GPS | Global Positioning System |
HTTP | Hypertext Transfer Protocol |
HVAC | Heating, Ventilation, and Air Conditioning |
IC | Integrated Circuit |
ICMP | Internet Control Message Protocol |
IEC | International Electrotechnical Commission |
IEEE | Institute of Electrical and Electronics Engineers |
IETF | Internet Engineering Task Force |
IIoT | Industrial Internet of Things |
IDS | Intrusion Detection System |
IO | Input/Output |
IoAT | Internet of Agricultural Things |
IoBT | Internet of Battlefield Things |
IoMT | Internet of Medical Things |
IoT | Internet of Things |
IP | Internet Protocol |
IPv6 | Internet Protocol version 6 |
ISM | Industrial, Scientific, and Medical |
ISO | International Organization for Standardization |
JTagulator | JTAG Analysis Tool |
kbps | Kilobits per second |
kbit/s | Kilobits per second |
KHz | Kilohertz |
LAN | Local Area Network |
LED | Light-Emitting Diode |
Li-Fi | Light Fidelity |
LoRa | Long Range |
LoRaWAN | Long Range Wide Area Network |
LPWAN | Low-Power Wide Area Network |
LTE | Long-Term Evolution |
LTE-A | Long-Term Evolution Advanced |
M2M | Machine-to-Machine |
MAC | Message Authentication Code |
Mbps | Megabits per second |
MHz | Megahertz |
MITM | Man-in-the-Middle |
ms | Milliseconds |
MQTT | Message Queuing Telemetry Transport Protocol |
NB-IoT | Narrowband Internet of Things |
NFC | Near-Field Communication |
OMG | Object Management Group |
OPC | Open Platform Communications |
PCB | Printed Circuit Board |
QoS | Quality of Service |
RBAC | Role-Based Access Control |
RC4 | Rivest Cipher 4 |
REST | Representational State Transfer |
RF | Radio Frequency |
RTL-SDR | Realtek Software-Defined Radio |
SAE | Simultaneous Authentication of Equals |
SASL | Simple Authentication and Security Layer |
SDR | Software-Defined Radio |
SEAD | Secure Efficient Ad Hoc Distance Vector |
SMTP | Simple Mail Transfer Protocol |
SPO2 | Peripheral Capillary Oxygen Saturation |
SSL | Secure Sockets Layer |
SYN | Synchronize |
TCP | Transmission Control Protocol |
TLS | Transport Layer Security |
UA | Unified Architecture |
UAV | Unmanned Aerial Vehicle |
UDP | User Datagram Protocol |
URLLC | Ultra-Reliable Low-Latency Communication |
UWB | Ultra-Wideband |
V2I | Vehicle-to-Infrastructure |
V2V | Vehicle-to-Vehicle |
VLC | Visible Light Communication |
WEP | Wired Equivalent Privacy |
WiFi | Wireless Fidelity |
WPA | Wi-Fi Protected Access |
WPA2 | Wi-Fi Protected Access 2 |
WPA3 | Wi-Fi Protected Access 3 |
WSAN | Wireless Sensor and Actuator Network |
WSN | Wireless Sensor Network |
XOR | Exclusive OR |
Z-Wave | Z-Wave |
References
- Pico-Valencia, P.; Holgado-Terriza, J.A.; Quiñónez-Ku, X. A Brief Survey of the Main Internet-Based Approaches. An Outlook from the Internet of Things Perspective. In Proceedings of the 2020 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 536–542. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Singh, D.; Tripathi, G.; Jara, A.J. A survey of Internet-of-Things: Future vision, architecture, challenges and services. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014; pp. 287–292. [Google Scholar] [CrossRef]
- Zhong, C.L.; Zhu, Z.; Huang, R.G. Study on the IOT Architecture and Gateway Technology. In Proceedings of the 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Guiyang, China, 18–24 August 2015; pp. 196–199. [Google Scholar] [CrossRef]
- Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2012, 1, 22–32. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Sivapriyan, R.; Rao, K.M.; Harijyothi, M. Literature Review of IoT based Home Automation System. In Proceedings of the 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 8–10 January 2020; pp. 101–105. [Google Scholar] [CrossRef]
- CardiacSense. Heart Rate Monitor Watch. 2023. Available online: https://www.cardiacsense.com/heart-rate-monitor-watch/ (accessed on 14 June 2023).
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- SeeTree. About Us. 2017. Available online: https://www.seetree.ai/about-seetree (accessed on 19 September 2023).
- Shachar, O.; Yushchuk, M.; Salton-Morgenstern, G. Recurrent Pattern Image Classification and Registration. U.S. Patent No. 10,546,216, 28 January 2020. [Google Scholar]
- Kott, A.; Swami, A.; West, B.J. The Internet of Battle Things. Computer 2016, 49, 70–75. [Google Scholar] [CrossRef]
- Russell, S.; Abdelzaher, T. The Internet of Battlefield Things: The Next Generation of Command, Control, Communications and Intelligence (C3I) Decision-Making. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 737–742. [Google Scholar] [CrossRef]
- Farahani, S. ZigBee Wireless Networks and Transceivers; Newnes: Newton, MA, USA, 2011. [Google Scholar]
- Ergen, S.C. ZigBee/IEEE 802.15.4 Summary. UC Berkeley Sept. 2004, 10, 11. [Google Scholar]
- Elahi, A.; Gschwender, A. ZigBee Wireless Sensor and Control Network; Pearson Educ.: London, UK, 2009. [Google Scholar]
- Norair, J. Introduction to DASH7 technologies. In Dash7 Alliance Low Power RF Technical Overview; DASH7: Aberdeen, Scotland, 2009; pp. 1–22. [Google Scholar]
- Piromalis, D.; Arvanitis, K.; Sigrimis, N. DASH7 mode 2: A promising perspective for wireless agriculture. IFAC Proc. Vol. 2013, 46, 127–132. [Google Scholar] [CrossRef]
- Ayoub, W.; Samhat, A.E.; Nouvel, F.; Mroue, M.; Prévotet, J.C. Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility. IEEE Commun. Surv. Tutorials 2019, 21, 1561–1581. [Google Scholar] [CrossRef]
- Czyz, J.; Luckie, M.J.; Allman, M.; Bailey, M. Do not forget to lock the back door! A characterization of IPv6 network security policy. In Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016. [Google Scholar]
- Lashkari, A.H.; Danesh, M.M.S.; Samadi, B. A survey on wireless security protocols (WEP, WPA and WPA2/802.11 i). In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 48–52. [Google Scholar]
- Kohlios, C.P.; Hayajneh, T. A comprehensive attack flow model and security analysis for Wi-Fi and WPA3. Electronics 2018, 7, 284. [Google Scholar] [CrossRef]
- Pahlavan, K.; Krishnamurthy, P. Evolution and impact of Wi-Fi technology and applications: A historical perspective. Int. J. Wirel. Inf. Netw. 2021, 28, 3–19. [Google Scholar] [CrossRef]
- Banerji, S.; Chowdhury, R.S. On IEEE 802.11: Wireless Lan Technology. Int. J. Mob. Netw. Commun. Telemat. 2013, 3, 45–64. [Google Scholar] [CrossRef]
- Ezhilarasan, E.; Dinakaran, M. A review on mobile technologies: 3G, 4G and 5G. In Proceedings of the 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), Tindivanam, Tamilnadu, 3–4 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 369–373. [Google Scholar]
- Akyildiz, I.F.; Gutierrez-Estevez, D.M.; Reyes, E.C. The evolution to 4G cellular systems: LTE-Advanced. Phys. Commun. 2010, 3, 217–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Årvidsson, A. Understanding the characteristics of cellular data traffic. In Proceedings of the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future Design, Helsinki, Finland, 13 August 2012; pp. 13–18. [Google Scholar]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2019, 7, 16–32. [Google Scholar] [CrossRef]
- Zeqiri, R.; Idrizi, F.; Halimi, H. Comparison of Algorithms and Technologies 2G, 3G, 4G and 5G. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th Workshop on Embedded Networked Sensors, Cork, Ireland, 25–26 June 2007; pp. 78–82. [Google Scholar]
- Baker, N. ZigBee and Bluetooth: Strengths and weaknesses for industrial applications. Comput. Control. Eng. 2005, 16, 20–25. [Google Scholar] [CrossRef]
- Bisdikian, C. An overview of the Bluetooth wireless technology. IEEE Commun. Mag. 2001, 39, 86–94. [Google Scholar] [CrossRef]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance evaluation of bluetooth low energy: A systematic review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef] [PubMed]
- Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors 2018, 18, 3995. [Google Scholar] [CrossRef]
- Khutsoane, O.; Isong, B.; Abu-Mahfouz, A.M. IoT devices and applications based on LoRa/LoRaWAN. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6107–6112. [Google Scholar]
- Lavric, A.; Petrariu, A.I.; Popa, V. Long range sigfox communication protocol scalability analysis under large-scale, high-density conditions. IEEE Access 2019, 7, 35816–35825. [Google Scholar] [CrossRef]
- Fourtet, C.; Ponsard, B. An introduction to Sigfox radio system. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–118. [Google Scholar]
- Alqurashi, H.; Bouabdallah, F.; Khairullah, E. SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors 2023, 23, 3732. [Google Scholar] [CrossRef]
- Ratasuk, R.; Vejlgaard, B.; Mangalvedhe, N.; Ghosh, A. NB-IoT system for M2M communication. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Coskun, V.; Ok, K.; Ozdenizci, B. Near Field Communication (NFC): From Theory to Practice; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Coskun, V.; Ozdenizci, B.; Ok, K. A survey on near field communication (NFC) technology. Wirel. Pers. Commun. 2013, 71, 2259–2294. [Google Scholar] [CrossRef]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and bluetooth wireless technologies used in home automation. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Sapundzhi, F. Home automation based on Z-wave technology. Bulg. Chem. Commun. 2022, 54, 92–96. [Google Scholar]
- Bhavya, R.; Lokesh, M. A Survey on Li-Fi Technology. Int. J. Eng. Technol. 2016, 3, 1624–1625. [Google Scholar]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Light. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
- Zhuang, W.; Shen, X.; Bi, Q. Ultra-wideband wireless communications. Wirel. Commun. Mob. Comput. 2003, 3, 663–685. [Google Scholar] [CrossRef]
- Hirt, W. Ultra-wideband radio technology: Overview and future research. Comput. Commun. 2003, 26, 46–52. [Google Scholar] [CrossRef]
- Aiello, G.; Rogerson, G. Ultra-wideband wireless systems. IEEE Microw. Mag. 2003, 4, 36–47. [Google Scholar] [CrossRef]
- Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Lopes, I.C.; Rodrigues, J.J.; Ullah, S. Performance evaluation of RESTful web services and AMQP protocol. In Proceedings of the 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 810–815. [Google Scholar]
- Betzler, A.; Gomez, C.; Demirkol, I.; Paradells, J. CoAP congestion control for the internet of things. IEEE Commun. Mag. 2016, 54, 154–160. [Google Scholar] [CrossRef]
- Chen, Y.; Kunz, T. Performance evaluation of IoT protocols under a constrained wireless access network. In Proceedings of the 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), Cairo, Egypt, 11–13 April 2016; pp. 1–7. [Google Scholar] [CrossRef]
- OMG. The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification, Version 2.2; OMG: Needham, MA, USA, 2014. [Google Scholar]
- González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J.M.C. A Literature Survey on Open Platform Communications (OPC) Applied to Advanced Industrial Environments. Electronics 2019, 8, 510. [Google Scholar] [CrossRef]
- Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733. [Google Scholar] [CrossRef]
- Adeniyi, A.E.; Jimoh, R.G.; Awotunde, J.B. A systematic review on elliptic curve cryptography algorithm for internet of things: Categorization, application areas, and security. Comput. Electr. Eng. 2024, 118, 109330. [Google Scholar] [CrossRef]
- Reddy, N.M.; Budati, A.K.; Islam, S.; Ramesh, G. Enhanced elliptic curve-diffie hellman technique with bigdata analytics for satellite image security enhancement in internet of things systems. Earth Sci. Inform. 2024, 17, 711–723. [Google Scholar] [CrossRef]
- Sebbah, A.; Benamar, K. A Privacy-Enhanced Scheme Within The Public Key Infrastructure For The Internet Of Things, Employing Elliptic Curve Diffie-Hellman (ECDH). Indones. J. Electr. Eng. Inform. (IJEEI) 2024, 12, 65–74. [Google Scholar] [CrossRef]
- Aoueileyine, M.O.E.; Karmous, N.; Bouallegue, R.; Youssef, N.; Yazidi, A. Detecting and mitigating MiTM attack on IOT devices using SDN. In Proceedings of the International Conference on Advanced Information Networking and Applications, Kitakyushu, Japan, 17–19 April 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 320–330. [Google Scholar]
- Tyagi, V.; Saraswat, A.; Kumar, A.; Gambhir, S. Securing IoT Devices Against MITM and DoS Attacks: An Analysis. In Reshaping Intelligent Business and Industry: Convergence of AI and IoT at the Cutting Edge; Scrivener Publishing LLC: Beverly, MA, USA, 2024; pp. 237–249. [Google Scholar]
- Alkofahi, H.; Alawneh, H.; Skjellum, A. MitM attacks on intellectual property and integrity of additive manufacturing systems: A security analysis. Comput. Secur. 2024, 140, 103810. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Todorović, B.M.; Ristić, V.B.; Stojanović, I.V. Direct sequence spread spectrum: History, principles and modern applications. Vojnotehnički glasnik/Mil. Tech. Cour. 2024, 72, 790–813. [Google Scholar] [CrossRef]
- Du, F.; Du, P. Micro frequency hopping spread spectrum modulation and encryption technology. arXiv 2024, arXiv:2408.00400. [Google Scholar]
- Wang, J.; Liang, Y.; Xu, X.; Wang, J.; Zhong, Y. A High Dynamic Velocity Locked Loop for the Carrier Tracking of a Wide-Band Hybrid Direct Sequence/Frequency Hopping Spread-Spectrum Signal. Electronics 2024, 13, 1794. [Google Scholar] [CrossRef]
- Haataja, K.; Toivanen, P. Two practical man-in-the-middle attacks on Bluetooth secure simple pairing and countermeasures. IEEE Trans. Wirel. Commun. 2010, 9, 384–392. [Google Scholar] [CrossRef]
- Fuster, J.; Solera-Cotanilla, S.; Pérez, J.; Vega-Barbas, M.; Palacios, R.; Alvarez-Campana, M.; Lopez, G. Analysis of security and privacy issues in wearables for minors. Wirel. Netw. 2024, 30, 5437–5453. [Google Scholar] [CrossRef]
- Pratama, D.; Moon, J.; Laksmono, A.M.A.; Yun, D.; Iqbal, M.; Jeong, B.; Ji, J.H.; Kim, H. Behind The Wings: The Case of Reverse Engineering and Drone Hijacking in DJI Enhanced Wi-Fi Protocol. In Proceedings of the 2024 International Conference on Platform Technology and Service (PlatCon), Jeju, Republic of Korea, 26–28 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 127–132. [Google Scholar]
- Rahman, M.T.; Shi, Q.; Tajik, S.; Shen, H.; Woodard, D.L.; Tehranipoor, M.; Asadizanjani, N. Physical Inspection & Attacks: New Frontier in Hardware Security. In Proceedings of the 2018 IEEE 3rd International Verification and Security Workshop (IVSW), Costa Brava, Spain, 2–4 July 2018; pp. 93–102. [Google Scholar] [CrossRef]
- Wurm, J.; Hoang, K.; Arias, O.; Sadeghi, A.R.; Jin, Y. Security analysis on consumer and industrial IoT devices. In Proceedings of the 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macao, China, 25–28 January 2016; pp. 519–524. [Google Scholar]
- Bou-Harb, E.; Fachkha, C.; Pourzandi, M.; Debbabi, M.; Assi, C. Communication security for smart grid distribution networks. IEEE Commun. Mag. 2013, 51, 42–49. [Google Scholar] [CrossRef]
- Tychola, K.A.; Rantos, K. Cyberthreats and Security Measures in Drone-Assisted Agriculture. Electronics 2025, 14, 149. [Google Scholar] [CrossRef]
- Koley, S.; Ghosal, P. Addressing Hardware Security Challenges in Internet of Things: Recent Trends and Possible Solutions. In Proceedings of the 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015; pp. 517–520. [Google Scholar] [CrossRef]
- Pan, Z.; Mishra, P. Design of AI Trojans for Evading Machine Learning-based Detection of Hardware Trojans. In Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 682–687. [Google Scholar] [CrossRef]
- Zhang, M.; Zonouz, S. Control Corruption without Firmware Infection: Stealthy Supply Chain Attacks via PLC Hardware Implants (MalTag). In Proceedings of the 2024 ACM/IEEE 15th International Conference on Cyber-Physical Systems (ICCPS), Hong Kong, China, 13–16 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 247–258. [Google Scholar]
- Kokolakis, G.; Moschos, A.; Keromytis, A.D. Harnessing the power of general-purpose llms in hardware trojan design. In Proceedings of the International Conference on Applied Cryptography and Network Security, Abu Dhabi, United Arab Emirates, 5–8 March 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 176–194. [Google Scholar]
- Abideen, Z.U. Reconfigurable Obfuscation Techniques for the IC Supply Chain: Using FPGA-Like Schemes for Protection of Intellectual Property; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Abideen, Z.U.; Gokulanathan, S.; J. Aljafar, M.; Pagliarini, S. An overview of FPGA-inspired obfuscation techniques. ACM Comput. Surv. 2024, 56, 1–35. [Google Scholar] [CrossRef]
- Khokhar, R.H.; Rankothge, W.; Rashidi, L.; Mohammadian, H.; Ghorbani, A.; Frei, B.; Ellis, S.; Freitas, I. A Survey on Supply Chain Management: Exploring Physical and Cyber Security Challenges, Threats, Critical Applications, and Innovative Technologies. Int. J. Supply Oper. Manag. 2024, 11, 250–283. [Google Scholar]
- Bakhshi, T.; Ghita, B.; Kuzminykh, I. A review of IoT firmware vulnerabilities and auditing techniques. Sensors 2024, 24, 708. [Google Scholar] [CrossRef]
- Keromytis, A.D. Buffer overflow attacks. In Encyclopedia of Cryptography, Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–4. [Google Scholar]
- Shaw, S. Report on Stack-Based Buffer Overflows. 2024. Available online: https://cyberstan.co.uk/wp-content/uploads/2024/10/CSAO_coursework-2.pdf (accessed on 7 March 2025).
- Mahdi, O.M.E.; Juremi, J. EFTS: An encryption file transfer system applying advanced encryption standard (AES) algorithm. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2024; Volume 2802. [Google Scholar]
- Gaydos, M.G.; Wallace, N.L.; Brown, R.G. Reverse Engineering and Embedded Processor Analysis; Technical report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2020. [Google Scholar]
- Tushir, B.; Dalal, Y.; Dezfouli, B.; Liu, Y. A Quantitative Study of DDoS and E-DDoS Attacks on WiFi Smart Home Devices. IEEE Internet Things J. 2021, 8, 6282–6292. [Google Scholar] [CrossRef]
- Ashfaq, M.F.; Malik, M.; Fatima, U.; Shahzad, M.K. Classification of IoT based DDoS Attack using Machine Learning Techniques. In Proceedings of the 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 3–5 January 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Alyami, M.; Alharbi, I.; Zou, C.; Solihin, Y.; Ackerman, K. WiFi-based IoT Devices Profiling Attack based on Eavesdropping of Encrypted WiFi Traffic. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 385–392. [Google Scholar] [CrossRef]
- Garvik, M.L.; Lindås, S.; Bø Svendsen, F. Authentication with the Use of MAC and It’s Security Challenges. Bachelor’s Thesis, NTNU, Trondheim, Sweden, 2023. [Google Scholar]
- Hoffman, P.E. DNS Security Extensions (DNSSEC). RFC 9364 2023. Available online: https://www.hjp.at/doc/rfc/rfc9364.html (accessed on 7 March 2025).
- Sinha, S. Network layer DoS Attack on IoT System and location identification of the attacker. In Proceedings of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021; pp. 22–27. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, X.; An, K.; Li, Y.; Zheng, G. Efficient index-modulation-based FHSS: A unified anti-jamming perspective. IEEE Internet Things J. 2023, 11, 3458–3472. [Google Scholar] [CrossRef]
- Imran, M.; Zhiwen, P.; Nan, L.; Sajjad, M.; Butt, F.M. Anti-jamming for cognitive radio networks with Stackelberg game-assisted DSSS approach. EURASIP J. Wirel. Commun. Netw. 2024, 2024, 73. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Malik, K.R.; Malik, T.S. Performance Analysis of Blackhole and Wormhole Attack in MANET Based IoT. In Proceedings of the 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2), Islamabad, Pakistan, 20–21 May 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Kumavat, K.S.; Gomes, J. Performance Evaluation of IoT-enabled WSN system With and Without DDoS Attack. In Proceedings of the 2023 International Conference for Advancement in Technology (ICONAT), Goa, India, 24–26 January 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Tatar, E.E.; Dener, M. Wormhole Attacks in IoT Based Networks. In Proceedings of the 2021 6th International Conference on Computer Science and Engineering (UBMK), Ankara, Turkey, 15–17 September 2021; pp. 478–482. [Google Scholar] [CrossRef]
- Verma, M.K.; Dwivedi, R.K. A Survey on Wormhole Attack Detection and Prevention Techniques in Wireless Sensor Networks. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 326–331. [Google Scholar] [CrossRef]
- Hu, Y.C.; Johnson, D.B.; Perrig, A. SEAD: Secure efficient distance vector routing for mobile wireless ad hoc networks. Ad Hoc Netw. 2003, 1, 175–192. [Google Scholar] [CrossRef]
- Safari, F.; Kunze, H.; Ernst, J.; Gillis, D. A novel cross-layer adaptive fuzzy-based ad hoc on-demand distance vector routing protocol for MANETs. IEEE Access 2023, 11, 50805–50822. [Google Scholar] [CrossRef]
- Kaddoura, S.; Haraty, R.A.; Al Jahdali, S.; Assi, M. SDODV: A smart and adaptive on-demand distance vector routing protocol for MANETs. Peer-Peer Netw. Appl. 2023, 16, 2325–2348. [Google Scholar] [CrossRef]
- Ali, S.; Khan, M.A.; Ahmad, J.; Malik, A.W.; ur Rehman, A. Detection and prevention of Black Hole Attacks in IOT & WSN. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 217–226. [Google Scholar] [CrossRef]
- Fu, C.; Zeng, Q.; Chi, H.; Du, X.; Valluru, S.L. IoT Phantom-Delay Attacks: Demystifying and Exploiting IoT Timeout Behaviors. In Proceedings of the 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, MD, USA, 27–30 June 2022; pp. 428–440. [Google Scholar] [CrossRef]
- Nassi, B.; Nassi, D.; Ben-Netanel, R.; Mirsky, Y.; Drokin, O.; Elovici, Y. Phantom of the ADAS: Phantom Attacks on Driver-Assistance Systems. Cryptol. ePrint Arch. 2020, 2020/085. Available online: https://eprint.iacr.org/2020/085.pdf (accessed on 9 March 2025).
- Whalen, S. An Introduction to ARP Spoofing. Node99 2001. Available online: http://www.gbppr.net/2600/arp_spoofing_intro.pdf (accessed on 9 March 2025).
- Gamage, K.A.; Sajid, A.; Sonbul, O.S.; Rashid, M.; Jaffar, A.Y. A Dynamic Framework for Internet-Based Network Time Protocol. Sensors 2024, 24, 691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hu, Z.; Li, J.; Fan, F.; Wen, F. Network Time Protocol (NTP) implementation for laser inter-satellite networks. In Proceedings of the Advanced Fiber Laser Conference (AFL2023), Shenzhen, China, 10–12 November 2023; SPIE: Bellingham, WA, USA, 2024; Volume 13104, pp. 1707–1712. [Google Scholar]
- Banerjee, P.; Matsakis, D. Network Time Protocol (NTP) and Precise Time Protocol (PTP). In An Introduction to Modern Timekeeping and Time Transfer; Springer: Berlin/Heidelberg, Germany, 2023; pp. 141–152. [Google Scholar]
- Taherdoost, H. Security and internet of things: Benefits, challenges, and future perspectives. Electronics 2023, 12, 1901. [Google Scholar] [CrossRef]
- Fei, W.; Ohno, H.; Sampalli, S. A systematic review of iot security: Research potential, challenges, and future directions. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Aslan, Ö.; Aktuğ, S.S.; Ozkan-Okay, M.; Yilmaz, A.A.; Akin, E. A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions. Electronics 2023, 12, 1333. [Google Scholar] [CrossRef]
- Sun, P.; Shen, S.; Wan, Y.; Wu, Z.; Fang, Z.; Gao, X.Z. A Survey of IoT Privacy Security: Architecture, Technology, Challenges, and Trends. IEEE Internet Things J. 2024, 11, 34567–34591. [Google Scholar] [CrossRef]
- Ul Haq, S.; Singh, Y.; Sharma, A.; Gupta, R.; Gupta, D. A survey on IoT & embedded device firmware security: Architecture, extraction techniques, and vulnerability analysis frameworks. Discov. Internet Things 2023, 3, 17. [Google Scholar]
- Siwakoti, Y.R.; Bhurtel, M.; Rawat, D.B.; Oest, A.; Johnson, R. Advances in IoT security: Vulnerabilities, enabled criminal services, attacks, and countermeasures. IEEE Internet Things J. 2023, 10, 11224–11239. [Google Scholar] [CrossRef]
- Noman, H.A.; Abu-Sharkh, O.M. Code injection attacks in wireless-based Internet of Things (IoT): A comprehensive review and practical implementations. Sensors 2023, 23, 6067. [Google Scholar] [CrossRef]
- AlSalem, T.S.; Almaiah, M.A.; Lutfi, A. Cybersecurity risk analysis in the IoT: A systematic review. Electronics 2023, 12, 3958. [Google Scholar] [CrossRef]
- Alqarawi, G.; Alkhalifah, B.; Alharbi, N.; El Khediri, S. Internet-of-things security and vulnerabilities: Case study. J. Appl. Secur. Res. 2023, 18, 559–575. [Google Scholar] [CrossRef]
- Aziz Al Kabir, M.; Elmedany, W.; Sharif, M.S. Securing IOT devices against emerging security threats: Challenges and mitigation techniques. J. Cyber Secur. Technol. 2023, 7, 199–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coston, I.; Plotnizky, E.; Nojoumian, M. Comprehensive Study of IoT Vulnerabilities and Countermeasures. Appl. Sci. 2025, 15, 3036. https://doi.org/10.3390/app15063036
Coston I, Plotnizky E, Nojoumian M. Comprehensive Study of IoT Vulnerabilities and Countermeasures. Applied Sciences. 2025; 15(6):3036. https://doi.org/10.3390/app15063036
Chicago/Turabian StyleCoston, Ian, Eadan Plotnizky, and Mehrdad Nojoumian. 2025. "Comprehensive Study of IoT Vulnerabilities and Countermeasures" Applied Sciences 15, no. 6: 3036. https://doi.org/10.3390/app15063036
APA StyleCoston, I., Plotnizky, E., & Nojoumian, M. (2025). Comprehensive Study of IoT Vulnerabilities and Countermeasures. Applied Sciences, 15(6), 3036. https://doi.org/10.3390/app15063036