Seismic Hazard Evaluation and Strain Dynamics in the Simav Fault Zone: A Comprehensive Analysis of Earthquake Recurrence and Energy Release Patterns
Abstract
:1. Introduction
2. Tectonic Settings
3. Methodology and Implementation
3.1. Creating Dataset
3.2. Gutenberg–Richter Law
3.2.1. Seismic Hazard Parameters
3.2.2. Earthquake Recurrence Periods
3.3. Spatiotemporal Distribution of Earthquake Energy
3.4. Geodetic Strain Rate Analysis of the SFZ
4. Discussion and Findings
4.1. Strain Accumulation and Evaluation of a and b Parameters
4.2. Earthquake Recurrence Intervals and Seismic Risk
4.3. Spatiotemporal Energy Release Patterns and Geodetic Strain Analysis
4.4. Comprehensive Evaluation of Seismic Hazard Components
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, M.; Elbaz, K.; Shen, S.L.; Chen, J. Earthquake Effects On Civil Engineering Structures and Perspective Mitigation Solutions: A Review. Arab. J. Geosci. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Muslim, B.; Pratomo, D.G.; Anjasmara, I.M.; Arisa, D.; Rahayu, R.W.; Muafiry, I.N. Co-Seismic Ionospheric Disturbances Following The 2016 West Sumatra and 2018 Palu Earthquakes from GPS and GLONASS Measurements. Remote Sens. 2022, 14, 401. [Google Scholar] [CrossRef]
- Özkan, A.; Solak, H.İ.; Tiryakioğlu, İ.; Şentürk, M.D.; Aktuğ, B.; Gezgin, C.; Yavaşoğlu, H.H. Characterization Of The Co-Seismic Pattern And Slip Distribution Of The February 06, 2023, Kahramanmaraş (Turkey) Earthquakes (Mw 7.7 And Mw 7.6) With A Dense GNSS Network. Tectonophysics 2023, 866, 230041. [Google Scholar] [CrossRef]
- Amiri, M.; Walpersdorf, A.; Mousavi, Z.; Khorrami, F.; Pathier, E.; Samsonov, S.V.; Sedighi, M. Constraints on the 2013 Saravan Intraslab Earthquake Using Permanent GNSS, Insar and Seismic Data. Geophys. J. Int. 2024, 239, 155–172. [Google Scholar] [CrossRef]
- Ayele, A. Probabilistic Seismic Hazard Analysis (PSHA) For Ethiopia and The Neighboring Region. J. Afr. Earth Sci. 2017, 134, 257–264. [Google Scholar] [CrossRef]
- Gerstenberger, M.C.; Marzocchi, W.; Allen, T.; Pagani, M.; Adams, J.; Danciu, L.; Petersen, M.D. Probabilistic Seismic Hazard Analysis At Regional And National Scales: State Of The Art And Future Challenges. Rev. Geophys. 2020, 58, e2019RG000653. [Google Scholar] [CrossRef]
- Orhan, A.; Seyrek, E.; Tosun, H. A Probabilistic Approach for Earthquake Hazard Assessment of the Province of Eskişehir, Turkey. Nat. Hazards Earth Syst. Sci. 2007, 7, 607–614. [Google Scholar] [CrossRef]
- Kumar, A.; Ghosh, G.; Gupta, P.K.; Kumar, V.; Paramasivam, P. Seismic Hazard Analysis of Silchar City Located In North East India. Geomat. Nat. Hazards Risk 2023, 14, 2170831. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering Seismic Risk Analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Padmanabhan, M.P.; Udayakumar, G. Probabilistic Seismic Hazard Analysis of Kerala State, India. Indian Geotech. J. 2025, 55, 1–14. [Google Scholar] [CrossRef]
- Bommer, J.J.; Abrahamson, N.A. Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bull. Seismol. Soc. Am. 2006, 96, 1967–1977. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Vinod, J.S.; Sitharam, T.G. Probabilistic Seismic Hazard Analysis for Bangalore. Nat. Hazards 2009, 48, 145–166. [Google Scholar] [CrossRef]
- Thenhaus, P.C.; Campbell, K.W.; Chen, W.F.; Scawthorn, C. Seismic Hazard Analysis. In Earthquake Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2003; Volume 8, pp. 1–50. [Google Scholar]
- Beer, M.; Kougioumtzoglou, I.A.; Patelli, E.; Au, S.K. Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Reid, H.F. The Mechanics of the Earthquake. In The California Earthquake of April 18, 1906; Lawson, A.C., Ed.; Carnegie Institution of Washington: Washington, DC, USA, 1910; Volume 2, pp. 1–192. [Google Scholar]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in A Half-Space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Özener, H.; Arpat, E.; Ergintav, S.; Dogru, A.; Cakmak, R.; Turgut, B.; Dogan, U. Kinematics of The Eastern Part of the North Anatolian Fault Zone. J. Geodyn. 2010, 49, 141–150. [Google Scholar] [CrossRef]
- Yavaşoğlu, H.; Tarı, E.; Tüysüz, O.; Çakır, Z.; Ergintav, S. Determining and Modeling Tectonic Movements Along the Central Part of the North Anatolian Fault (Turkey) Using Geodetic Measurements. J. Geodyn. 2011, 51, 339–343. [Google Scholar] [CrossRef]
- Aktuğ, B.; Parmaksız, E.; Kurt, M.; Lenk, O.; Kılıçoğulu, A.; Gürdal, M.A.; Özdemir, S. Deformation of Central Anatolia: GPS Implications. J. Geodyn. 2013, 67, 78–96. [Google Scholar] [CrossRef]
- Tiryakioğlu, İ.; Floyd, M.; Erdoğan, S.; Gülal, E.; Ergintav, S.; Mcclusky, S.; Reilinger, R. GPS Constraints On Active Deformation in The Isparta Angle Region of SW Turkey. Geophys. J. Int. 2013, 195, 1455–1463. [Google Scholar] [CrossRef]
- Tiryakioğlu, İ.; Aktuğ, B.; Yiğit, C.Ö.; Yavaşoğlu, H.H.; Sözbilir, H.; Özkaymak, Ç.; Özener, H. Slip Distribution and Source Parameters of The 20 July 2017 Bodrum-Kos Earthquake (Mw6.6) From GPS Observations. Geodin. Acta. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Poyraz, F.; Hastaoğlu, K.O.; Koçbulut, F.; Tiryakioğlu, I.; Tatar, O.; Demirel, M.; Sıgırcı, R. Determination of The Block Movements in The Eastern Section of the Gediz Graben (Turkey) From GNSS Measurements. J. Geodyn. 2019, 123, 38–48. [Google Scholar] [CrossRef]
- Arnoso, J.; Riccardi, U.; Benavent, M.; Tammaro, U.; Montesinos, F.G.; Blanco-Montenegro, I.; Vélez, E. Strain Pattern and Kinematics of the Canary Islands from GNSS Time Series Analysis. Remote Sens. 2020, 12, 3297. [Google Scholar] [CrossRef]
- Gezgin, C.; Ekercin, S.; Tiryakioğlu, İ.; Aktuğ, B.; Erdoğan, H.; Gürbüz, E.; Kaya, E. Determination of Recent Tectonic Deformations Along the Tuzgölü Fault Zone in Central Anatolia (Turkey) With GNSS Observations. Turk. J. Earth Sci. 2022, 31, 20–33. [Google Scholar]
- Solak, H.İ. Prediction of GNSS Velocity Accuracies Using Machine Learning Algorithms for Active Fault Slip Rate Determination and Earthquake Hazard Assessment. Appl. Sci. 2024, 15, 113. [Google Scholar] [CrossRef]
- Liu, J.; Huang, C.; Zhang, G.; Shan, X.; Korzhenkov, A.; Taymaz, T. Immature Characteristics of the East Anatolian Fault Zone from SAR, GNSS and Strong Motion Data of The 2023 Türkiye–Syria Earthquake Doublet. Sci. Rep. 2024, 14, 10625. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, L.; Mäntyniemi, P.; Malm, M.; Toro, G.; Crespo, M.J.; Schmitt, T.; Välikangas, P. Probabilistic Seismic Hazard Analysis in Low-Seismicity Regions: An Investigation of Sensitivity with A Focus On Finland. Nat. Hazards 2023, 116, 111–132. [Google Scholar] [CrossRef]
- Sawires, R.; Peláez, J.A.; Santoyo, M.A. Probabilistic Seismic Hazard Assessment for Western Mexico. Eng. Geol. 2023, 313, 106959. [Google Scholar] [CrossRef]
- Arfa, M.; Awad, H.A.; Abbas, H.; Peláez, J.A.; Sawires, R. Probabilistic Seismic Hazard Assessment of the Southwestern Region of Saudi Arabia. Appl. Sci. 2024, 14, 6600. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Bajaj, K.; Matharu, K.; Moustafa, S.S.; Al-Arifi, N.S. Probabilistic Seismic Hazard Analysis Using the Logic Tree Approach–Patna District (India). Nat. Hazards Earth Syst. Sci. 2019, 19, 2097–2115. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Alamri, A.M. Susceptibility to Seismic Amplification and Earthquake Probability Estimation Using Recurrent Neural Network (RNN) Model in Odisha, India. Appl. Sci. 2020, 10, 5355. [Google Scholar] [CrossRef]
- Weatherill, G.; Cotton, F.; Daniel, G.; Zentner, I.; Iturrieta, P.; Bosse, C. Strategies for Comparison of Modern Probabilistic Seismic Hazard Models and Insights from The Germany and France Border Region. Nat. Hazards Earth Syst. Sci. 2024, 24, 3755–3787. [Google Scholar] [CrossRef]
- McKenzie, D.P. Active Tectonics of the Mediterranean Region. Geophys. J. R. Astron. Soc. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- KOERI Kandilli Observatory and Earthquake Research Institute—Istanbul, Turkey. Boğazici University Kandilli Observatory and Earthquake Research Institute [Data Set]. Available online: https://www.fdsn.org/networks/detail/KO/ (accessed on 7 November 2024).
- Şengör, A.M.C. Türkiye’nin Neotektoniğinin Esasları (Fundamentals of The Neotectonics of Turkey). In Geological Society of Turkey Conference Series; Geological Society of Turkey: Ankara, Turkey, 1980; Volume 2. [Google Scholar]
- Dewey, J.F.; Hempton, M.R.; Kidd, W.S.F.; Şengör, A.M.C. Shortening of Continental Lithosphere; The Neotectonics of Eastern Anatolia, A Young Collision Zone. Geol. Soc. Spec. Publ. 1986, 19, 3–36. [Google Scholar] [CrossRef]
- Oral, B.; Reilinger, R.E.; Toksöz, M.N.; King, R.W.; Kınık, I.; Barka, A. Global Positioning System (GPS) Evidence of Plate Motions in The Eastern Mediterranean. EOS Trans. AGU 1995, 76, 9–11. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Paradissis, D.; Ergintav, S.; Vernant, P. Geodetic Constraints On the Tectonic Evolution of the Aegean Region and Strain Accumulation Along the Hellenic Subduction Zone. Tectonophysics 2010, 488, 22–30. [Google Scholar] [CrossRef]
- Aktuğ, B.; Nocquet, J.M.; Cingoz, A.; Parsons, B.; Erkan, Y.; England, P.C.; Lenk, O.; Gurdal, M.A.; Kılıçoğlu, A.; Akdeniz, H.; et al. Deformation of Western Turkey from A Combination of Permanent and Campaign GPS Data: Limits to Block-Like Behavior. J. Geophys. Res. 2009, 114, B10404. [Google Scholar] [CrossRef]
- Tiryakioğlu, I. Geodetic Aspects of The 19 May 2011 Simav Earthquake in Turkey. Geomat. Nat. Hazards Risk 2015, 6, 76–89. [Google Scholar] [CrossRef]
- Tiryakioglu, İ.; Baybura, T.; Ozkaymak, C.; Yılmaz, M.; Uğur, M.A.; Yiğit, C.Ö.; Akpınar, B. Current Tectonic Movements Monitoring in Aksehir-Sultandagi Fault Zone After the February 2002 (Mw: 6.2) Earthquake. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions; Springer: Cham, Switzerland, 2018; pp. 1899–1901. [Google Scholar]
- Wells, D.L.; Coppersmith, K.J. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, And Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş. Active Fault Database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Earthquake Magnitude, Intensity, Energy, and Acceleration: (Second Paper). Bull. Seismol. Soc. Am. 1956, 46, 105–145. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.A.; McKenzie, D. Active Tectonics of the North and Central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey-A Synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef]
- Seyitoğlu, G. The Simav Graben: An Example of Young E-W Trending Structures in The Late Cenozoic Extensional System of Western Turkey. Turk. J. Earth Sci. 1997, 6, 3–15. [Google Scholar] [CrossRef]
- Koçyiğit, A.; Bozkurt, E.; Kaymakçı, N.; Şaroğlu, F. 3 Şubat 2002 Çay (Afyon) Depreminin Kaynağı Ve Ağır Hasarın Nedenleri: Akşehir Fay Zonu. ODTÜ Tektonik Araştırma Birimi Raporu 2002, 19. Available online: http://www.metu.edu.tr/~akoc/Afyon.pdf (accessed on 21 January 2025).
- Özden, S.; Kavak, K.Ş.; Koçbulut, F.; Över, S.; Temiz, H. 3 Şubat 2002 Çay (Afyon) Depremleri. Türkiye Jeoloji Bülteni 2002, 45, 49–56. [Google Scholar]
- Emre, Ö.; Duman, T.Y.; DoğAn, A.; Özalp, S.; Yıldırım, C.; Kürçer, A.; Özsoy, V.; Elmacı, H.; Koç, G. Batı Türkiye’nin Diri Fay Geometrisi Ve Güncel Kinematiği. In 62. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı; TMMOB-Chamber of Mining Engineers: Ankara, Turkey, 2003. [Google Scholar]
- Koçyiğit, A.; Özacar, A. Extensional Neotectonic Regime Through The NE Edge of the Outer Isparta Angle, SW Turkey: New Field and Seismic Data. Turk. J. Earth Sci. 2003, 12, 67–90. [Google Scholar]
- Yürür, T.; Köse, O.; Demirbağ, H.; Özkaymak, Ç.; Selçuk, L. Could The Coseismic Fractures of a Lake Ice Reflect the Earthquake Mechanism? (Afyon Earthquakes of 2 March 2002, Central Anatolia, Turkey). Geodin. Acta 2003, 16, 83–87. [Google Scholar] [CrossRef]
- Ulusay, R.; Aydan, Ö.; Erken, A.; Tuncay, E.; Kumsar, H.; Kaya, Z. An Overview of Geotechnical Aspects of The Çay-Eber (Turkey) Earthquake. Eng. Geol. 2004, 73, 51–70. [Google Scholar] [CrossRef]
- Koçyiğit, A.; Deveci, Ş. Akşehir-Simav Fay Sistemi: Güneybatı Türkiye’de Neotektonik Rejimin Başlama Yaşı Ve Depremsellik (Akşehir-Simav fault system: Initiation age of the neotectonic regime and seismicity in the southwestern Turkey). In Deprem Sempozyumu Bildiri Özleri Kitabı; Türkiye Deprem Mühendisligi Dernegi: Ankara, Türkiye, 2005; pp. 26–27. [Google Scholar]
- Akyüz, H.S.; Uçarkuş, G.; Şatır, D.; Dikbaş, A.; Kozacı, Ö. 3 Şubat 2002 Çay Depreminde Meydana Gelen Yüzey Kırığı Üzerinde Paleosismolojik Araştırmalar. Yerbilimleri 2006, 27, 41–52. [Google Scholar]
- Koçyiğit, A.; Deveci, Ş. Çukurören-Çobanlar (Afyon) Arasındaki Deprem Kaynaklarının (Aktif Fayların) Belirlenmesi. TÜBİTAK Proje No: 106Y209 2007, 71. Available online: https://open.metu.edu.tr/handle/11511/50015 (accessed on 12 November 2024).
- Kartal, R.F.; Kadirioğlu, F.T. 2011–2012 Simav Depremleri (Ml = 5.7, Ml = 5.0, Ml = 5.4) Ve Bölgenin Tektonik Yapısı Ile İlişkisi. Yerbilimleri 2014, 35, 141–168. [Google Scholar]
- Gündoğdu, E.; Özden, S.; Güngör, T. Late Cenozoic Geodynamic Evolution of Simav (Kutahya) And Surroundings. Geol. Bull. Turk. 2015, 58, 1–20. [Google Scholar]
- Özkaymak, Ç.; Sözbilir, H.; Tiryakioğlu, İ.; Baybura, T. Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik Ve Jeodezik Analizi. Türkiye Jeoloji Bülteni 2017, 60, 169–188. [Google Scholar] [CrossRef]
- Kalafat, D.; Görgün, E. An Example of Triggered Earthquakes in Western Turkey: 2000–2015 Afyon-Akşehir Graben Earthquake Sequences. J. Asian Earth Sci. 2017, 146, 103–113. [Google Scholar] [CrossRef]
- Özkaymak, Ç.; Sözbilir, H.; Gecievi, M.O.; Tiryakioğlu, İ. Late Holocene Coseismic Rupture and Aseismic Creep On the Bolvadin Fault, Afyon Akşehir Graben, Western Anatolia. Turk. J. Earth Sci. 2019, 28, 787–804. [Google Scholar]
- Koçyiğit, A. Güneybatı Türkiye Ve Yakın Dolayında Levha Içi Yeni Tektonik Geliflim. Türkiye Jeoloji Kurumu Bülteni 1984, 27, 1–15. [Google Scholar]
- Şaroğlu, F.; Emre, Ö.; Boray, A. Türkiye’nin Diri Fayları Ve Depremsellikleri. MTA Gen. Dir. Min. Res. Explor. Rep. 1987, 8174, 394. [Google Scholar]
- Doğan, A.; Emre, Ö. Ege Graben Sistemi’nin Kuzey Sınırı: Sındırgı-Sincanlı Fay Zonu. MTA Bull. 2006, 132, 1–15. [Google Scholar]
- Bekler, T.; Demirci, A.; Özden, S.; Kalafat, D. Simav Ve Emet Fay Zonlarindaki Depremlerin Optimum Kaynak Parametrelerinin Analizi. J. Fac. Eng. Archit. Gazi Univ. 2011, 26, 891–900. [Google Scholar]
- Gündoğdu, E.; Özden, S.; Bekler, T. Sındırgı Fayı Ve Düvertepe Fay Zonu Yakın Civarının Kinematik Ve Sismotektonik Özellikleri: Batı Anadolu (Türkiye). ÇOMÜ Fen Bilim. Enst. Derg. 2020, 6, 378–395. [Google Scholar] [CrossRef]
- Tezel, T.; Shibutani, T.; Kaypak, B. Crustal Structure Variation in Western Turkey Inferred from The Receiver Function Analysis. Tectonophysics 2010, 492, 240–252. [Google Scholar] [CrossRef]
- Zhu, L.; Akyol, N.; Mitchell, J.; Sozbilir, H. Seismotectonics of Western Turkey from High Resolution Earthquake Relocations and Moment Tensor Determinations. Geophys. Res. Lett. 2006, 33, L07316. [Google Scholar] [CrossRef]
- Taşdemiroğlu, M. The 1970 Gediz Earthquake in Western Anatolia, Turkey. Bull. Seismol. Soc. Am. 1971, 61, 1507–1527. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Tchalenko, J.S. Seismotectonic Aspects of the Gediz, Turkey, Earthquake of March 1970. Geophys. J. Int. 1972, 30, 229–252. [Google Scholar]
- Tokay, M.; Doyuran, V. Gediz Ve Dolaylarının Sismotektonik Özellikleri. Türkiye Jeoloji Kurumu Bülteni 1979, 22, 209–210. [Google Scholar]
- Duman, T.Y.; Elmacı, H.; Özalp, S.; Olgun, Ş.; Emre, Ö. Simav Fay Zonunda Ilk Paleosismolojik Bulgular. 66. In Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı; Türkiye Jeoloji Mühendisleri Odası: Ankara, Türkiye, 2013. [Google Scholar]
- Gürboğa, Ş. 28 March 1970 Gediz Earthquake Fault, Western Turkey: Palaeoseismology and Tectonic Significance. Int. Geol. Rev. 2013, 55, 1191–1201. [Google Scholar] [CrossRef]
- Gündoğdu, E.; Kurban, Y.C.; Yalçıner, C.Ç.; Özden, S. Simav Fayındaki Düşey Yerdeğiştirmelerin, GPR (Yeraltı Radarı) Yöntemi Ile Belirlenmesi. ÇOMÜ Fen Bilim. Enst. Derg. 2017, 3, 17–33. [Google Scholar]
- Yolsal-Çevikbilen, S.; Taymaz, T.; Helvacı, C. Earthquake Mechanisms in The Gulfs of Gökova, Sığacık, Kuşadası, And The Simav Region (Western Turkey): Neotectonics, Seismotectonics and Geodynamic Implications. Tectonophysics 2014, 635, 100–124. [Google Scholar] [CrossRef]
- Solak, H.İ.; Tiryakioğlu, İ.; Özkaymak, Ç.; Sözbilir, H.; Aktuğ, B.; Yavaşoğlu, H.H.; Özkan, A. Recent Tectonic Features of Western Anatolia Based On Half-Space Modeling of GNSS Data. Tectonophysics 2024, 872, 230194. [Google Scholar] [CrossRef]
- AFAD Earthquake Catalogue. Prime Ministry, Disaster and Emergency Management Presidency, Earthquake Department. 2025. Available online: https://deprem.afad.gov.tr/event-catalog (accessed on 7 November 2024).
- Nalbant, S.S.; Hubert, A.; King, G.C. Stress Coupling Between Earthquakes in Northwest Turkey and The North Aegean Sea. J. Geophys. Res. Solid Earth 1998, 103, 24469–24486. [Google Scholar] [CrossRef]
- Tan, O.; Tapirdamaz, M.C.; Yörük, A. The Earthquake Catalogues for Turkey. Turk. J. Earth Sci. 2008, 17, 405–418. [Google Scholar]
- AFAD Türkiye Deprem Tehlike Haritası. 2024. Available online: https://www.afad.gov.tr/turkiye-deprem-tehlike-haritasi (accessed on 4 January 2025).
- Karasözen, E.; Nissen, E.; Bergman, E.A.; Johnson, K.L.; Walters, R.J. Normal Faulting in The Simav Graben of Western Turkey Reassessed with Calibrated Earthquake Relocations. J. Geophys. Res. Solid Earth 2016, 121, 4553–4574. [Google Scholar] [CrossRef]
- Durmuş, H. 19 Mayıs 2011 Simav Depremi (Mw = 5.9) Öncesi Ve Sonrası Coulomb Değişimleri. Doğa Ve Mühendislik Bilimlerinde Güncel Tartışmalar 2022, 4, 1–12. [Google Scholar]
- Wiemer, S.; Wyss, M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Scordilis, E.M. Empirical Global Relations Converting Ms and Mb to Moment Magnitude. J. Seismol. 2006, 10, 225–236. [Google Scholar] [CrossRef]
- Deniz, A.; Yücemen, M.S. Magnitude Conversion Problem for The Turkish Earthquake Data. Nat. Hazards 2010, 55, 333–352. [Google Scholar] [CrossRef]
- Kadirioğlu, F.T.; Kartal, R.F. The New Empirical Magnitude Conversion Relations Using an Improved Earthquake Catalogue for Turkey and Its Near Vicinity (1900–2012). Turk. J. Earth Sci. 2016, 25, 300–310. [Google Scholar]
- Gutenberg, B.; Richter, C.F. Frequency of Earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Perez-Oregon, J.; Muñoz-Diosdado, A.; Rudolf-Navarro, A.H.; Guzmán-Sáenz, A.; Angulo-Brown, F. On The Possible Correlation Between the Gutenberg-Richter Parameters of the Frequency-Magnitude Relationship. J. Seismol. 2018, 22, 1025–1035. [Google Scholar] [CrossRef]
- Olsson, R. An Estimation of the Maximum B-Value in The Gutenberg-Richter Relation. Geodynamics 1999, 27, 547–552. [Google Scholar] [CrossRef]
- Bayrak, Y.; Yılmaztürk, A.; Öztürk, S. Lateral Variations of the Modal (A/B) Values for The Different Regions of the World. J. Geodyn. 2002, 34, 653–666. [Google Scholar] [CrossRef]
- Nava, F.A.; Márquez-Ramírez, V.H.; Zúñiga, F.R.; Ávila-Barrientos, L.; Quinteros, C.B. Gutenberg-Richter B-Value Maximum Likelihood Estimation and Sample Size. J. Seismol. 2017, 21, 127–135. [Google Scholar] [CrossRef]
- Godano, C.; Tramelli, A.; Petrillo, G.; Bellucci Sessa, E.; Lippiello, E. The Dependence On the Moho Depth of the B-Value of The Gutenberg–Richter Law. Bull. Seismol. Soc. Am. 2022, 112, 1921–1934. [Google Scholar] [CrossRef]
- Godano, C.; Lippiello, E.; De Arcangelis, L. Variability of The B Value in The Gutenberg–Richter Distribution. Geophys. J. Int. 2014, 199, 1765–1771. [Google Scholar] [CrossRef]
- Bayrak, E.; Yılmaz, Ş.; Softa, M.; Türker, T.; Bayrak, Y. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Nat. Hazards 2015, 76, 1063–1077. [Google Scholar] [CrossRef]
- Yilmaztürk, A.; Bayrak, Y.; Çakir, Ö. Crustal Seismicity in and Around Turkey. Nat. Hazards 1998, 18, 253–267. [Google Scholar] [CrossRef]
- Wiemer, S.; Schorlemmer, D. ALM: An Asperity-Based Likelihood Model for California. Seismol. Res. Lett. 2007, 78, 134–140. [Google Scholar] [CrossRef]
- Senatorski, P. Gutenberg–Richter’s B Value and Earthquake Asperity Models. Pure Appl. Geophys. 2020, 177, 1891–1905. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of The Earth and Associated Phenomenon; Princeton University Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Frohlich, C.; Davis, S.D. Teleseismic B Values; Or, Much Ado About 1.0. J. Geophys. Res. Solid Earth 1993, 98, 631–644. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of The Earth and Associated Phenomena; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Miyamura, S. Magnitude–Frequency Relations and Its Bearing On Geotectonics. Proc. Jpn. Acad. 1962, 38, 27–30. [Google Scholar] [CrossRef]
- Mogi, K. Magnitude-Frequency Relation for Elastic Shocks Accompanying Fractures of Various Materials and Some Related Problems in Earthquakes. Bull. Earthq. Res. Inst. Univ. Tokyo 1962, 40, 831–853. [Google Scholar]
- Tsapanos, T.M. B-Values of Two Tectonic Parts in Circum-Pacific Belt. Pure Appl. Geophys. 1990, 134, 229–242. [Google Scholar] [CrossRef]
- Mcnally, K.C.; James, D.E. Earthquakes and Seismicity. In The Encyclopedia of Solid Earth Geophysics; Springer: Dordrecht, The Netherlands, 1989; pp. 308–315. [Google Scholar]
- Wiemer, S.; Katsumata, K. Spatial Variability of Seismicity Parameters in Aftershock Zones. J. Geophys. Res. 1999, 104, 13135–13151. [Google Scholar] [CrossRef]
- Monterroso, D.A.; Kulhánek, O. Spatial Variations of B-Values in The Subduction Zone of Central America. Geofís. Int. 2003, 42, 575–587. [Google Scholar] [CrossRef]
- Bayrak, Y.; Yilmaztürk, A.; Öztürk, S. Relationships Between Fundamental Seismic Hazard Parameters for The Different Source Regions in Turkey. Nat. Hazards 2005, 36, 445–462. [Google Scholar] [CrossRef]
- Silverman, B. Density Estimation for Statistics and Data Analysis; Chapman and Hall/CRC: New York, NY, USA, 1986. [Google Scholar]
- Tormann, T.; Wiemer, S.; Mignan, A. Systematic Survey of High-Resolution B-Value Imaging Along Californian Faults: Inference On Asperities. J. Geophys. Res. 2014, 119, 2029–2054. [Google Scholar] [CrossRef]
- Taroni, M.; Vocalelli, G.; De Polis, A. Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach. Forecasting 2021, 3, 561–569. [Google Scholar] [CrossRef]
- Mitsui, Y. Stable Estimation of the Gutenberg–Richter B-Values by The B-Positive Method: A Case Study of Aftershock Zones for Magnitude-7 Class Earthquakes. Earth Planets Space 2024, 76, 92. [Google Scholar] [CrossRef]
- Guttorp, P.; Hopkins, D. On Estimating Varying B Values. Bull. Seismol. Soc. Am. 1986, 76, 889–895. [Google Scholar] [CrossRef]
- Atsu, J.U. Modelling of Earthquake B-And A-Values Using Least Squares and Maximum Likelihood Estimate Methods in Different Tectonic Regions of the World. Asian Res. J. Math. 2023, 19, 52–60. [Google Scholar]
- Kalyoncuoglu, U.Y. Evaluation of Seismicity and Seismic Hazard Parameters in Turkey and Surrounding Area Using a New Approach to The Gutenberg–Richter Relation. J. Seismol. 2007, 11, 131–148. [Google Scholar] [CrossRef]
- Han, Q.; Wang, L.; Xu, J.; Carpinteri, A.; Lacidogna, G. A Robust Method to Estimate the B-Value of The Magnitude–Frequency Distribution of Earthquakes. Chaos Solitons Fractals 2015, 81, 103–110. [Google Scholar] [CrossRef]
- Yılmaz, N.; Avşar, Ö. Structural Damages of the May 19, 2011, Kütahya–Simav Earthquake in Turkey. Nat. Hazards 2013, 69, 981–1001. [Google Scholar] [CrossRef]
- Mignan, A.; Werner, M.J.; Wiemer, S.; Chen, C.C.; Wu, Y.M. Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs. Bull. Seismol. Soc. Am. 2011, 101, 1371–1385. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Zhuang, J. A Test On Methods for MC Estimation Based On Earthquake Catalog. Earth Planet. Phys. 2018, 2, 150–162. [Google Scholar] [CrossRef]
- Kurt, A.İ.; Özbakır, A.D.; Cingöz, A.; Ergintav, S.; Doğan, U.; Özarpacı, S. Contemporary Velocity Field for Turkey Inferred from Combination of a Dense Network of Long Term GNSS Observations. Turk. J. Earth Sci. 2023, 32, 275–293. [Google Scholar] [CrossRef]
- Scholz, C.H. The Frequency–Magnitude Relation of Microfracturing in Rock and Its Relation to Earthquakes. Bull. Seismol. Soc. Am. 1968, 58, 399–415. [Google Scholar] [CrossRef]
- Letamo, A.; Kavitha, B.; Tezeswi, T.P. Unified Earthquake Catalogue and Mapping of Gutenberg–Richter Parameters for The East African Rift System. Geoenviron. Disasters 2023, 10, 19. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Mapping Spatial Variability of the Frequency-Magnitude Distribution of Earthquakes. Adv. Geophys. 2002, 45, 259–302. [Google Scholar]
- Manakou, M.V.; Tsapanos, T.M. Seismicity and Seismic Hazard Parameters Evaluation in The Island of Crete and Surrounding Area Inferred from Mixed Data Files. Tectonophysics 2000, 321, 157–178. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S. Real-Time Discrimination of Earthquake Foreshocks and Aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- Lacidogna, G.; Borla, O.; De Marchi, V. Statistical Seismic Analysis by b-Value and Occurrence Time of the Latest Earthquakes in Italy. Remote Sens. 2023, 15, 5236. [Google Scholar] [CrossRef]
- Alptekin, Ö. Magnitude-Frequency Relationships and Deformation Release for the Earthquakes in and Around Turkey. Ph.D. Thesis, Karadeniz Technical University, Trabzon, Türkiye, 1978; p. 107. [Google Scholar]
- Erdik, M.; Doyuran, V.; Akkaş, N.; Gülkan, P. A Probabilistic Assessment of the Seismic Hazard in Turkey. Tectonophysics 1985, 117, 295–344. [Google Scholar] [CrossRef]
- Kayabalı, K. Modeling of Seismic Hazard for Turkey Using the Recent Neotectonic Data. Eng. Geol. 2002, 63, 221–232. [Google Scholar] [CrossRef]
- Papazachos, C.B.; Kiratzi, A.A. A Detailed Study of the Active Crustal Deformation in The Aegean and Surrounding Area. Tectonophysics 1996, 253, 129–153. [Google Scholar] [CrossRef]
- Polat, O.; Goek, E.; Yilmaz, D. Earthquake Hazard of the Aegean Extension Region (West Turkey). Turk. J. Earth Sci. 2008, 17, 593–614. [Google Scholar]
- Bayrak, Y.; Öztürk, S.; Çınar, H.; Kalafat, D.; Tsapanos, T.M.; Koravos, G.C.; Leventakis, G.A. Estimating Earthquake Hazard Parameters from Instrumental Data for Different Regions in and Around Turkey. Eng. Geol. 2009, 105, 200–210. [Google Scholar] [CrossRef]
- Öztürk, S. A Study On the Correlations Between Seismotectonic B-Value and Dc-Value, And Seismic Quiescence Z-Value in The Western Anatolian Region of Turkey. Austrian J. Earth Sci. 2015, 108, 50–60. [Google Scholar] [CrossRef]
- Öztürk, S.; Bayrak, Y.; Çınar, H.; Koravos, G.C.; Tsapanos, T.M. A Quantitative Appraisal of Earthquake Hazard Parameters Computed from Gumbel I Method for Different Regions in and Around Turkey. Nat. Hazards 2008, 47, 471–495. [Google Scholar] [CrossRef]
- Sayıl, N.; Osmanşahin, İ. An Investigation of Seismicity for Western Anatolia. Nat. Hazards 2008, 44, 51–64. [Google Scholar] [CrossRef]
- Bayrak, Y.; Bayrak, E. Regional variations and correlations of Gutenberg–Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. J. Asian Earth Sci. 2012, 58, 98–107. [Google Scholar] [CrossRef]
- Bayrak, E.; Yılmaz, Ş.; Bayrak, Y. Temporal and Spatial Variations of Gutenberg-Richter Parameter and Fractal Dimension in Western Anatolia, Turkey. J. Asian Earth Sci. 2017, 138, 1–11. [Google Scholar] [CrossRef]
- Akol, B.; Bekler, T. Assessment of The Statistical Earthquake Hazard Parameters for NW Turkey. Nat. Hazards 2013, 68, 837–853. [Google Scholar] [CrossRef]
- Gezer, A.; Bekler, T. 6 Şubat 2017, Mw = 5.4 Ayvacık Depremi Öncesi Ve Sonrası Temel Deprem Tehlike Parametrelerinin Analizi. J. Adv. Res. Nat. Appl. Sci. 2021, 7, 82–99. [Google Scholar] [CrossRef]
- Öncel, A.O.; Wilson, T.H. Space-Time Correlations of Seismotectonic Parameters: Examples from Japan and from Turkey Preceding The Izmit Earthquake. Bull. Seismol. Soc. Am. 2002, 92, 339–349. [Google Scholar] [CrossRef]
- Delouis, B.; Giardini, D.; Lundgren, P.; Salichon, J. Joint Inversion of Insar, GPS, Teleseismic, And Strong-Motion Data for The Spatial and Temporal Distribution of Earthquake Slip: Application to The 1999 Izmit Mainshock. Bull. Seismol. Soc. Am. 2002, 92, 278–299. [Google Scholar] [CrossRef]
- Polat, O.; Haessler, H.; Cisternas, A.; Philip, H.; Eyidogan, H.; Aktar, M.; Frogneu, M.; Comte, D.; Gurbuz, C. The Izmit (Kocaeli) Turkey Earthquake of 17 August 1999: Previous Seismicity, Aftershocks and Seismotectionics. Bull. Seismol. Soc. Am. 2002, 92, 361–375. [Google Scholar] [CrossRef]
- Doğangün, A.; Ural, A.; Sezen, H.; Güney, Y.; Fırat, F.K. The 2011 Earthquake in Simav, Turkey and Seismic Damage to Reinforced Concrete Buildings. Buildings 2013, 3, 173–190. [Google Scholar] [CrossRef]
- Dönmez, E.; Tiryakioğlu, İ. Gediz fayı yerkabuğu hareketlerinin gnss gözlemleri ile izlenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2018, 18, 1110–1117. [Google Scholar]
- Meng, L.; Xu, L.; Mohanna, S.; Ji, C.; Ampuero, J.P.; Yunjun, Z.; Chu, R. The 2023 Mw7.8 Kahramanmaraş, Turkey Earthquake: A Multi-Segment Rupture in A Millennium Supercycle. Commun. Earth Environ. 2023, 4, 379. [Google Scholar]
- Xu, L.; Mohanna, S.; Meng, L.; Ji, C.; Ampuero, J.P.; Yunjun, Z.; Liang, C. The Overall-Subshear and Multi-Segment Rupture of The 2023 Mw7.8 Kahramanmaraş, Turkey Earthquake in Millennia Supercycle. Commun. Earth Environ. 2023, 4, 379. [Google Scholar] [CrossRef]
Fault | Trend (RHR) | Dip Angle (C°) | Depth (km) | Magnitude | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Segment | Type | Length (km) | Min | Max | Min | Max | Focal d. | Literature | Estim. Mw | |
Simav Fault Zone | Sındırgı | RL | 35 | 267 | 306 | 87 | 90 | 18 | 16 | 6.89 |
Çaysimav | RL | 54 | 277 | 308 | 7.10 | |||||
Şaphane | RL | 23 | 286 | 312 | 6.69 | |||||
Abide | RL | 33 | 287 | 308 | 6.86 | |||||
Banaz | RL | 24 | 3 | 359 | 6.71 | |||||
Elvanpaşa | RL | 27 | 270 | 298 | 6.76 | |||||
Sinanpaşa | RL | 18 | 303 | 323 | 6.57 | |||||
Gelenbe FZ | East | RL | 35 | 3 | 50 | 6.89 | ||||
West | RL | 36 | 6 | 40 | 6.90 |
Historical Period (AC) | Instrumental Period (1900–) | Focal Mech. | ||||||
---|---|---|---|---|---|---|---|---|
Date | Lat. | Lon. | Mag. | Date | Lat. | Lon. | Mag. | |
94 | 38.75 | 30.5 | VIII | 1905 | 38.81 | 28.52 | 6.1 | - |
1595 | 38.99 | 29.39 | VII | 1924 | 39.51 | 28.4 | 5.5 | - |
1611 | 38.74 | 28.68 | V | 1942 | 39.27 | 28.19 | 5.5 | - |
1728 | 39.09 | 28.97 | V | 1942 | 39.1 | 27.8 | 6.1 | - |
1860 | 39.3 | 29.05 | VIII | 1944 | 38.79 | 29.31 | 5.9 | - |
1862 | 38.8 | 30.5 | VIII | 1969 | 39.14 | 28.48 | 7 | |
1873 | 38.76 | 30.55 | VI | 1969 | 39.25 | 28.44 | 6 | |
1887 | 38.73 | 29.75 | VIII | 1970 | 39.21 | 29.51 | 7.2 | |
1896 | 39.3 | 29.2 | VII | 1970 | 39.03 | 29.76 | 5.8 | |
1897 | 38.93 | 28.2 | VI | 1971 | 39.05 | 29.71 | 6 | |
1899 | 39.4 | 28.13 | VII | 2011 | 39.13 | 29.08 | 5.9 |
Mag. Type | Const | Magnitude | Relationship (%) | Data Count | ||
---|---|---|---|---|---|---|
Coef | Std Err. | Coef | Std Err. | |||
Md | 0.2061 | ±0.069 | 0.9980 | ±0.015 | 98 | 88 |
Ml | −0.1554 | ±0.047 | 1.0483 | ±0.012 | 95 | 411 |
Ms | 1.3900 | ±0.063 | 0.7521 | ±0.013 | 97 | 92 |
Mb | −0.3018 | ±0.080 | 1.1007 | ±0.017 | 98 | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solak, H.İ.; Gezgin, C. Seismic Hazard Evaluation and Strain Dynamics in the Simav Fault Zone: A Comprehensive Analysis of Earthquake Recurrence and Energy Release Patterns. Appl. Sci. 2025, 15, 3039. https://doi.org/10.3390/app15063039
Solak Hİ, Gezgin C. Seismic Hazard Evaluation and Strain Dynamics in the Simav Fault Zone: A Comprehensive Analysis of Earthquake Recurrence and Energy Release Patterns. Applied Sciences. 2025; 15(6):3039. https://doi.org/10.3390/app15063039
Chicago/Turabian StyleSolak, Halil İbrahim, and Cemil Gezgin. 2025. "Seismic Hazard Evaluation and Strain Dynamics in the Simav Fault Zone: A Comprehensive Analysis of Earthquake Recurrence and Energy Release Patterns" Applied Sciences 15, no. 6: 3039. https://doi.org/10.3390/app15063039
APA StyleSolak, H. İ., & Gezgin, C. (2025). Seismic Hazard Evaluation and Strain Dynamics in the Simav Fault Zone: A Comprehensive Analysis of Earthquake Recurrence and Energy Release Patterns. Applied Sciences, 15(6), 3039. https://doi.org/10.3390/app15063039