Influence of Knee Angle on Hamstring/Quadriceps Strength Ratio in Male Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Subjects
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
60°/s Flexion Median (Q1–Q3) 2 | 60°/s Extension Median (Q1–Q3) | 60°/s H/Q Ratio 1 Median (Q1–Q3) | 180°/s Flexion Median (Q1–Q3) | 180°/s Extension Median (Q1–Q3) | 180°/s H/Q Ratio Median (Q1–Q3) | |
---|---|---|---|---|---|---|
15° | 69.98 (48.58–88.72) | 63.98 (55.29–76.66) | 1.03 (0.88–1.21) | 55.81 (36.91–86.94) | 67.06 (53.89–85.95) | 0.91 (0.6–1.11) |
30° | 81.82 (72.82–91.31) | 95.17 (86.99–116.95) | 0.83 (0.7–0.87) | 63.28 (48.64–81.38) | 96.95 (71.16–115.27) | 0.7 (0.6–0.77) |
45° | 79.32 (74.36–94.19) | 127.26 (116.34–157.71) | 0.63 (0.55–0.77) | 64.04 (43.19–79.54) | 111.81 (79.24–134.78) | 0.57 (0.51–0.65) |
60° | 76.86 (68.98–90.11) | 149.13 (131.74–168.78) | 0.53 (0.48–0.61) | 56.94 (46.05–69.41) | 115.73 (88.21–132.7) | 0.52 (0.41–0.64) |
75° | 64.51 (58.03–74.44) | 141.16 (107.11–162.51) | 0.47 (0.43–0.62) | 44.44 (36.97–55.86) | 97.68 (72.56–116.37) | 0.53 (0.39–0.64) |
Maximum | 96.10 (80.05–108.73) | 165.38 (149.19–177.24) | 0.6 (0.54–0.65) | 79.34 (65.98–99.12) | 124.43 (92.87–148.26) | 0.65 (0.6–0.74) |
References
- Jones, A.; Jones, G.; Greig, N.; Bower, P.; Brown, J.; Hind, K.; Francis, P. Epidemiology of injury in English Professional Football players: A cohort study. Phys. Ther. Sport 2019, 35, 18–22. [Google Scholar] [CrossRef]
- Eirale, C. Hamstring injuries are increasing in men’s professional football: Every cloud has a silver lining? Br. J. Sports Med. 2018, 52, 1489. [Google Scholar] [CrossRef]
- Grazioli, R.; Lopez, P.; Andersen, L.L.; Machado, C.L.F.; Pinto, M.D.; Cadore, E.L.; Pinto, R.S. Hamstring rate of torque development is more affected than maximal voluntary contraction after a professional soccer match. Eur. J. Sport Sci. 2019, 19, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Ayala, F.; López-Valenciano, A.; Gámez Martín, J.A.; De Ste Croix, M.; Vera-Garcia, F.J.; García-Vaquero, M.D.P.; Ruiz-Pérez, I.; Myer, G.D. A preventive model for hamstring injuries in professional soccer: Learning algorithms. Int. J. Sports Med. 2019, 40, 344–353. [Google Scholar] [CrossRef]
- Lee, J.W.Y.; Mok, K.; Chan, H.C.K.; Yung, P.S.H.; Chan, K. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef]
- Cross, K.M.; Gurka, K.K.; Saliba, S.; Conaway, M.; Hertel, J. Comparison of thigh muscle strain occurrence and injury patterns between male and female high school soccer athletes. J. Sport Rehabil. 2018, 27, 451–459. [Google Scholar] [CrossRef]
- Larruskain, J.; Lekue, J.A.; Diaz, N.; Odriozola, A.; Gil, S.M. A comparison of injuries in elite male and female football players: A five-season prospective study. Scand. J. Med. Sci. Sports 2018, 28, 237–245. [Google Scholar] [CrossRef]
- Bourne, M.N.; Timmins, R.G.; Opar, D.A.; Pizzari, T.; Ruddy, J.D.; Sims, C.; Williams, M.D.; Shield, A.J. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018, 48, 251–267. [Google Scholar] [CrossRef]
- Maniar, N.; Shield, A.J.; Williams, M.D.; Timmins, R.G.; Opar, D.A. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 909–920. [Google Scholar] [CrossRef]
- Green, B.; Bourne, M.N.; Pizzari, T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2008, 52, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.T.; Timmins, R.G.; Maniar, N.; Rio, E.; Hickey, P.F.; Pitcher, C.A.; Williams, M.D.; Opar, D.A. Pain-free versus pain-threshold rehabilitation following acute hamstring strain injury: A randomized controlled trial. J. Orthop. Sports Phys. Ther. 2020, 50, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Svensson, K.; Eckerman, M.; Alricsson, M.; Magounakis, T.; Werner, S. Muscle injuries of the dominant or non-dominant leg in male football players at elite level. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 933–937. [Google Scholar] [CrossRef] [PubMed]
- DeLang, M.D.; Rouissi, M.; Bragazzi, N.L.; Chamari, K.; Salamh, P.A. Soccer footedness and between-limbs muscle strength: Systematic review and meta-analysis. Int. J. Sport Physiol. Perform. 2019, 14, 551–562. [Google Scholar] [CrossRef]
- Correia, P.; Santos, P.; Mil-Homens, P.; Gomes, M.; Dias, A.; Valamatos, M.J. Rapid hamstrings to quadriceps ratio at long muscle lengths in professional football players with previous hamstring strain injury. Eur. J. Sport Sci. 2020, 20, 1405–1413. [Google Scholar] [CrossRef]
- Guex, K.; Gojanovic, B.; Millet, G.P. Influence of hip-flexion angle on hamstrings isokinetic activity in sprinters. J. Athl. Train. 2012, 47, 390–395. [Google Scholar] [CrossRef]
- Orchard, J.W.; Chaker Jomaa, M.; Orchard, J.J.; Rae, K.; Hoffman, D.T.; Reddin, T.; Driscoll, T. Fifteen-week window for recurrent muscle strains in football: A prospective cohort of 3600 muscle strains over 23 years in professional Australian rules football. Br. J. Sports Med. 2020, 54, 1103–1107. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Ekstrand, J. Injury recurrence is lower at the highest professional football level than at national and amateur levels: Does sports medicine and sports physiotherapy deliver? Br. J. Sports Med. 2016, 50, 751–758. [Google Scholar] [CrossRef]
- Roe, M.; Delahunt, E.; McHugh, M.; Gissane, C.; Malone, S.; Collins, K.; Blake, C. Association between eccentric knee flexor strength and hamstring injury risk in 185 elite Gaelic football players. Scand. J. Med. Sci. Sports 2020, 30, 515–522. [Google Scholar] [CrossRef]
- Chen, C.H.; Xin, Y.; Lee, K.W.; Lin, M.J.; Lin, J.J. Acute effects of different dynamic exercises on hamstring strain risk factors. PLoS ONE 2018, 13, e0191801. [Google Scholar] [CrossRef]
- Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A.P.M. Which screening tools can predict injury to the lower extremities in team sports? A systematic review. Sports Med. 2012, 42, 791–815. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Danneels, L.; Van Tiggelen, D.; Palmans, T.; Witvrouw, E. Proximal neuromuscular control protects against hamstring injuries in male soccer players: A prospective study with electromyography time-series analysis during maximal sprinting. Am. J. Sports Med. 2017, 45, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Schuermans, J.; Van Tiggelen, D.; Palmans, T.; Danneels, L.; Witvrouw, E. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence? Gait Posture 2017, 57, 270–277. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to hamstring injuries in soccer: A prospective study using muscle functional magnetic resonance imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef]
- de Hoyo, M.; Naranjo Orellana, J.; Carrasco Páez, L.; Sanudo, B.; Jiménez-Barroca, J.J.; Domínguez-Cobo, S. Revisión sobre la lesión de la musculatura isquiotibial en el deporte: Factores de riesgo y estrategias para su prevención. Rev. Andal. Med. Deporte 2013, 6, 30–37. [Google Scholar] [CrossRef]
- Dauty, M.; Menu, P.; Fouasson-Chailloux, A.; Ferréol, S.; Dubois, C. Prediction of hamstring injury in professional soccer players by isokinetic measurements. Muscles Ligaments Tendons J. 2016, 6, 116–123. [Google Scholar] [CrossRef]
- Dauty, M.; Menu, P.; Fouasson-Chailloux, A. Cutoffs of isokinetic strength ratio and hamstring strain prediction in professional soccer players. Scand. J. Med. Sci. Sport 2018, 28, 276–281. [Google Scholar] [CrossRef]
- Brockett, C.L.; Morgan, D.L.; Proske, U. Predicting hamstring strain injury in elite athletes. Med. Sci. Sports Exerc. 2004, 36, 379–387. [Google Scholar] [CrossRef]
- Guex, K.J.; Lugrin, V.; Borloz, S.; Millet, G.P. Influence on strength and flexibility of a swing phase-specific hamstring eccentric program in sprinters’ general preparation. J. Strength Cond. Res. 2016, 30, 525–532. [Google Scholar] [CrossRef]
- Small, K.; McNaughton, L.; Greig, M.; Lovell, R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J. Sci. Med. Sport 2010, 13, 120–125. [Google Scholar] [CrossRef]
- Eustace, S.J.; Morris, R.; Tallis, J.; Page, R.M.; Greig, M. The influence of angle-specific torque of the knee flexors and extensors on the angle-specific dynamic control ratio in professional female soccer players. J. Sports Sci. 2022, 40, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Eustace, S.J.; Page, R.M.; Greig, M. Isokinetic strength differences between elite senior and youth female soccer players identifies training requirements. Phys. Ther. Sport 2019, 39, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Risberg, M.A.; Steffen, K.; Nilstad, A.; Myklebust, G.; Kristianslund, E.; Moltubakk, M.M.; Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J. Strength Cond. Res. 2018, 32, 2314–2323. [Google Scholar] [CrossRef]
- Figoni, S.F.; Christ, C.B.; Massey, B.H. Effects of speed, hip and knee angle, and gravity-on hamstring to quadriceps torque ratios. J. Orthop. Sports Phys. Ther. 1998, 9, 287–291. [Google Scholar] [CrossRef]
- Baroni, B.M.; Ruas, C.V.; Ribeiro-Alvares, J.B.; Pinto, R.S. Hamstring-to-quadriceps torque ratios of professional male soccer players: A systematic review. J. Strength Cond. Res. 2020, 34, 281–293. [Google Scholar] [CrossRef]
- Grygorowicz, M.; Michałowska, M.; Walczak, T.; Owen, A.; Grabski, J.K.; Pyda, A.; Piontek, T.; Kotwicki, T. Discussion about different cut-off values of conventional hamstring-to-quadriceps ratio used in hamstring injury prediction among professional male football players. PLoS ONE 2017, 12, e0188974. [Google Scholar] [CrossRef]
- Kellis, E.; Ellinoudis, A.; Kofotolis, N. Effect of hip flexion angle on the hamstring to quadriceps strength ratio. Sports 2019, 7, 43. [Google Scholar] [CrossRef]
- Oteo, J.A.; Benavente, P.; Garzón, M. Securities regulatory force fist in Spanish working age population. Anthropometric influence of variables of the hand and forearm. Rev. Iberoam. Cirugía Mano 2015, 43, 104–110. [Google Scholar] [CrossRef]
Variable | Median (Q1–Q3) 2 | p-Value | Kendall’s W | Post Hoc | p-Value | Wilcoxon’s R |
---|---|---|---|---|---|---|
H/Q ratio 1 at 15° knee flexion | 1.03 (0.88–1.21) | <0.001 * | 0.594 | 15°-30° | 0.105 | - |
15°-45° | <0.001 * | 0.87 | ||||
15°-60° | <0.001 * | 0.86 | ||||
15°-75° | <0.001 * | 0.83 | ||||
15°-conventional | <0.001 * | 0.87 | ||||
H/Q ratio at 30° knee flexion | 0.83 (0.7–0.87) | 30°-15° | 0.105 | - | ||
30°-45° | 0.007 * | 0.86 | ||||
30°-60° | <0.001 * | 0.8 | ||||
30°-75° | <0.001 * | 0.75 | ||||
30°-conventional | <0.001 * | 0.84 | ||||
H/Q ratio at 45° knee flexion | 0.63 (0.55–0.77) | 45°-15° | <0.001 * | 0.87 | ||
45°-30° | 0.007 * | 0.86 | ||||
45°-60° | 0.064 | - | ||||
45°-75° | <0.001 * | 0.51 | ||||
45°-conventional | 0.396 | - | ||||
H/Q ratio at 60° knee flexion | 0.53 (0.48–0.61) | 60°-15° | <0.001 * | 0.86 | ||
60°-30° | <0.001 * | 0.8 | ||||
60°-45° | 0.064 | - | ||||
60°-75° | 0.537 | - | ||||
60°-conventional | 0.316 | - | ||||
H/Q ratio at 75° knee flexion | 0.47 (0.43–0.62) | 75°-15° | <0.001 * | 0.83 | ||
75°-30° | <0.001 * | 0.75 | ||||
75°-45° | <0.001 * | 0.51 | ||||
75°-60° | 0.537 | - | ||||
75°-conventional | 0.105 | - | ||||
Conventional H/Q ratio | 0.6 (0.54–0.65) | Conventional-15° | <0.001 * | 0.87 | ||
Conventional-30° | <0.001 * | 0.84 | ||||
Conventional-45° | 0.396 | - | ||||
Conventional-60° | 0.316 | - | ||||
Conventional-75° | 0.105 | - |
Variable | Median (Q1–Q3) 2 | p-Value | Kendall’s W | Post Hoc | p-Value | Wilcoxon’s R |
---|---|---|---|---|---|---|
H/Q ratio 1 at 15° knee flexion | 0.91 (0.6–1.11) | <0.001 * | 0.357 | 15°-30° | 0.226 | - |
15°-45° | <0.001 * | 0.69 | ||||
15°-60° | 0.006 * | 0.64 | ||||
15°-75° | 0.026 * | 0.59 | ||||
15°-conventional | 0.04 * | 0.58 | ||||
H/Q ratio at 30° knee flexion | 0.7 (0.6–0.77) | 30°-15° | 0.226 | - | ||
30°-45° | <0.001 * | 0.86 | ||||
30°-60° | 0.013 * | 0.68 | ||||
30°-75° | 0.044 * | 0.61 | ||||
30°-conventional | 1.0 | - | ||||
H/Q ratio at 45° knee flexion | 0.57 (0.51–0.65) | 45°-15° | <0.001 * | 0.69 | ||
45°-30° | <0.001 * | 0.86 | ||||
45°-60° | 1.0 | - | ||||
45°-75° | 1.0 | - | ||||
45°-conventional | <0.001 * | 0.8 | ||||
H/Q ratio at 60° knee flexion | 0.52 (0.41–0.64) | 60°-15° | 0.006 * | 0.64 | ||
60°-30° | 0.013 * | 0.68 | ||||
60°-45° | 1.0 | - | ||||
60°-75° | 1.0 | - | ||||
60°-conventional | 0.032 * | 0.56 | ||||
H/Q ratio at 75° knee flexion | 0.53 (0.39–0.64) | 75°-15° | 0.026 * | 0.59 | ||
75°-30° | 0.044 * | 0.61 | ||||
75°-45° | 1.0 | - | ||||
75°-60° | 1.0 | - | ||||
75°-conventional | 0.130 | - | ||||
Conventional H/Q ratio | 0.65 (0.6–0.74) | Conventional-15° | 0.04 * | 0.58 | ||
Conventional-30° | 1.0 | - | ||||
Conventional-45° | <0.001 * | 0.8 | ||||
Conventional-60° | 0.032 * | 0.56 | ||||
Conventional-75° | 0.130 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coto Martín, R.; Pérez Mallada, N.; Martínez Beltrán, M.J.; Ríos Arroyo, I.; Cuéllar Marín, L. Influence of Knee Angle on Hamstring/Quadriceps Strength Ratio in Male Soccer Players. Appl. Sci. 2025, 15, 3040. https://doi.org/10.3390/app15063040
Coto Martín R, Pérez Mallada N, Martínez Beltrán MJ, Ríos Arroyo I, Cuéllar Marín L. Influence of Knee Angle on Hamstring/Quadriceps Strength Ratio in Male Soccer Players. Applied Sciences. 2025; 15(6):3040. https://doi.org/10.3390/app15063040
Chicago/Turabian StyleCoto Martín, Raúl, Néstor Pérez Mallada, María Jesús Martínez Beltrán, Inmaculada Ríos Arroyo, and Lucía Cuéllar Marín. 2025. "Influence of Knee Angle on Hamstring/Quadriceps Strength Ratio in Male Soccer Players" Applied Sciences 15, no. 6: 3040. https://doi.org/10.3390/app15063040
APA StyleCoto Martín, R., Pérez Mallada, N., Martínez Beltrán, M. J., Ríos Arroyo, I., & Cuéllar Marín, L. (2025). Influence of Knee Angle on Hamstring/Quadriceps Strength Ratio in Male Soccer Players. Applied Sciences, 15(6), 3040. https://doi.org/10.3390/app15063040