Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye
Abstract
:1. Introduction
2. Study Area and Data
2.1. Sinkhole Inventory Map
2.2. Conditioning Factors
2.2.1. Geological and Tectonic Factors
2.2.2. Hydrogeological Factors
2.2.3. Topographical Factors
2.2.4. Meteorological Factors
2.2.5. Environmental and Anthropological Factors
3. Methodology
3.1. Multicollinearity Assessment
3.2. Model Selection and Classification Scheme
3.2.1. Random Forest (RF)
3.2.2. eXtreme Gradient Boosting Machine (XGBoost)
3.2.3. Light Gradient Boosting Machine (LightGBM)
3.3. Performance Metrics
3.4. Enhancing Model Explainability Through SHAP
4. Results
4.1. Multicollinearity Results
4.2. Hyperparameters Tuning
- RF: {n_estimators: 822}, {min_samples_split: 4}, {max_depth: 13}, { min_samples_leaf: 4}
- XGBoost: {n_estimators: 829}, {eta (learning_rate): 0.010394}, {max_depth: 15}, {subsample: 0.992398}
- LightGBM: {n_estimators: 470}, {eta (learning_rate): 0.010939}, {max_depth: 12}, {subsample: 0.851277}
4.3. Predictive Performance of Classifier Models
4.4. SHAP-Driven Feature Significance Analysis
4.5. SHAP Dependence Plots
4.6. Generated Sinkhole Susceptibility Map
5. Discussion
5.1. Comparative Performance of Machine Learning Models in SSM
5.2. Explainable AI in Sinkhole Susceptibility: Insights from SHAP
5.3. Factors Influencing Sinkhole Formation
5.4. Implications for Sustainable Land Management
5.5. Enhancing Risk Management Strategies
5.6. Limitations and Future Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Waele, J.; Gutiérrez, F. Karst Hydrogeology, Geomorphology and Caves; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 1–912. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A Review on Natural and Human-Induced Geohazards and Impacts in Karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Esposito, C.; Belcecchi, N.; Bozzano, F.; Brunetti, A.; Marmoni, G.M.; Mazzanti, P.; Romeo, S.; Cammillozzi, F.; Cecchini, G.; Spizzirri, M. Integration of Satellite-Based A-DInSAR and Geological Modeling Supporting the Prevention from Anthropogenic Sinkholes: A Case Study in the Urban Area of Rome. Geomat. Nat. Hazards Risk 2021, 12, 2835–2864. [Google Scholar] [CrossRef]
- Galve, J.P.; Bonachea, J.; Remondo, J.; Gutiérrez, F.; Guerrero, J.; Lucha, P.; Cendrero, A.; Gutiérrez, M.; Sánchez, J.A. Development and Validation of Sinkhole Susceptibility Models in Mantled Karst Settings. A Case Study from the Ebro Valley Evaporite Karst (NE Spain). Eng. Geol. 2008, 99, 185–197. [Google Scholar] [CrossRef]
- D’Angella, A.; Canora, F.; Spilotro, G. Sinkholes Susceptibility Assessment in Urban Environment Using Heuristic, Statistical and Artificial Neural Network (ANN) Models in Evaporite Karst System: A Case Study from Lesina Marina (Southern Italy). In Engineering Geology for Society and Territory—Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation; Springer: Cham, Switzerland, 2015; pp. 411–414. [Google Scholar] [CrossRef]
- Perrin, J.; Cartannaz, C.; Noury, G.; Vanoudheusden, E. A Multicriteria Approach to Karst Subsidence Hazard Mapping Supported by Weights-of-Evidence Analysis. Eng. Geol. 2015, 197, 296–305. [Google Scholar] [CrossRef]
- Wang, G.; Hao, J.; Wen, H.; Cao, C. A Random Forest Model of Karst Ground Collapse Susceptibility Based on Factor and Parameter Coupling Optimization. Geocarto Int. 2022, 37, 15548–15567. [Google Scholar] [CrossRef]
- Xie, Y.; Zang, B.; Liu, Y.; Liu, B.; Zhang, C.; Lin, Y. Evaluation of the Karst Collapse Susceptibility of Subgrade Based on the AHP Method of ArcGIS and Prevention Measures. Water 2022, 14, 1432. [Google Scholar] [CrossRef]
- Galve, J.P.; Gutiérrez, F.; Remondo, J.; Bonachea, J.; Lucha, P.; Cendrero, A. Evaluating and Comparing Methods of Sinkhole Susceptibility Mapping in the Ebro Valley Evaporite Karst (NE Spain). Geomorphology 2009, 111, 160–172. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, P.; Singh, P. Machine Learning and GIS-RS-Based Algorithms for Mapping the Groundwater Potentiality in the Bundelkhand Region, India. Ecol. Inform. 2023, 74, 101980. [Google Scholar] [CrossRef]
- Bilgilioğlu, S.S.; Bilgilioğlu, H. Aksaray Ili Obruk Duyarlılık Haritasının Coğrafi Bilgi Sistemleri (CBS) ve Analitik Hiyerarşi Süreci (AHS) Yöntemleri Ile Oluşturulması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2023, 12, 612–625. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, X.; Guan, Z.; Luo, W.; Wang, Y. AHP-Based Evaluation of the Karst Collapse Susceptibility in Tailai Basin, Shandong Province, China. Environ. Earth Sci. 2018, 77, 436. [Google Scholar] [CrossRef]
- Taheri, K.; Gutiérrez, F.; Mohseni, H.; Raeisi, E.; Taheri, M. Sinkhole Susceptibility Mapping Using the Analytical Hierarchy Process (AHP) and Magnitude-Frequency Relationships: A Case Study in Hamadan Province, Iran. Geomorphology 2015, 234, 64–79. [Google Scholar] [CrossRef]
- Maleki, M.; Salman, M.; Sahebi Vayghan, S.; Szabo, S. GIS-Based Sinkhole Susceptibility Mapping Using the Best Worst Method. Spat. Inf. Res. 2023, 31, 537–545. [Google Scholar] [CrossRef]
- Taheri, K.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Gutiérrez, F.; Khosravi, K. Sinkhole Susceptibility Mapping: A Comparison between Bayes-Based Machine Learning Algorithms. Land Degrad. Dev. 2019, 30, 730–745. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A.; Abdalla, J.E.D.; Abouleish, M. Land Subsidence and Sinkholes Susceptibility Mapping and Analysis Using Random Forest and Frequency Ratio Models in Al Ain, UAE. Geocarto Int. 2022, 37, 315–331. [Google Scholar] [CrossRef]
- Yilmaz, I. GIS Based Susceptibility Mapping of Karst Depression in Gypsum: A Case Study from Sivas Basin (Turkey). Eng. Geol. 2007, 90, 89–103. [Google Scholar] [CrossRef]
- Kim, Y.J.; Nam, B.H.; Jung, Y.H.; Liu, X.; Choi, S.; Kim, D.; Kim, S. Probabilistic Spatial Susceptibility Modeling of Carbonate Karst Sinkhole. Eng. Geol. 2022, 306, 106728. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Kwak, T.Y.; Chung, C.K. Logistic Regression Model for Sinkhole Susceptibility Due to Damaged Sewer Pipes. Nat. Hazards 2018, 93, 765–785. [Google Scholar] [CrossRef]
- Zhou, G.; Yan, H.; Chen, K.; Zhang, R. Spatial Analysis for Susceptibility of Second-Time Karst Sinkholes: A Case Study of Jili Village in Guangxi, China. Comput. Geosci. 2016, 89, 144–160. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Amiri, M.; Tiefenbacher, J.P. Spatial Modeling of Susceptibility to Subsidence Using Machine Learning Techniques. Stoch. Environ. Res. Risk Assess. 2021, 35, 1689–1700. [Google Scholar] [CrossRef]
- Ozdemir, A. Investigation of Sinkholes Spatial Distribution Using the Weights of Evidence Method and GIS in the Vicinity of Karapinar (Konya, Turkey). Geomorphology 2015, 245, 40–50. [Google Scholar] [CrossRef]
- Bausilio, G.; Annibali Corona, M.; Di Martire, D.; Guerriero, L.; Tufano, R.; Calcaterra, D.; Di Napoli, M.; Francioni, M. Comparison of Two Machine Learning Algorithms for Anthropogenic Sinkhole Susceptibility Assessment in the City of Naples (Italy). In Geotechnical Engineering for the Preservation of Monuments and Historic Sites III—Proceedings of the 3rd International Issmge TC301 Symposium, Naples, Italy, 22–24 June 2022; CRC Press: Boca Raton, FL, USA, 2022; pp. 1112–1123. [Google Scholar] [CrossRef]
- Bianchini, S.; Confuorto, P.; Intrieri, E.; Sbarra, P.; Di Martire, D.; Calcaterra, D.; Fanti, R. Machine Learning for Sinkhole Risk Mapping in Guidonia-Bagni Di Tivoli Plain (Rome), Italy. Geocarto Int. 2022, 37, 16687–16715. [Google Scholar] [CrossRef]
- Sarı, F.; Yalçın, M. Maximum Entropy Model-Based Spatial Sinkhole Occurrence Prediction in Karapınar, Turkey. Kuwait J. Sci. 2023, 50, 1–15. [Google Scholar] [CrossRef]
- Muili, O.; Babaie, H.A. Sinkhole Susceptibility Analysis Using Machine Learning for West Central Florida. Master’s Thesis, Georgia State University, Atlanta, GA, USA, 2024. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Tavus, B.; Er, M.; Ertugrul, G.; Ozdemir, A.; Kaya, A.; Kocaman, S. Integration of an InSAR and ANN for Sinkhole Susceptibility Mapping: A Case Study from Kirikkale-Delice (Turkey). ISPRS Int. J. Geo-Inf. 2021, 10, 119. [Google Scholar] [CrossRef]
- Roscher, R.; Bohn, B.; Duarte, M.F.; Garcke, J. Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access 2020, 8, 42200–42216. [Google Scholar] [CrossRef]
- Rai, A. Explainable AI: From Black Box to Glass Box. J. Acad. Mark. Sci. 2020, 48, 137–141. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Explainable Artificial Intelligence (XAI) for Interpreting the Contributing Factors Feed into the Wildfire Susceptibility Prediction Model. Sci. Total Environ. 2023, 879, 163004. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Taghikhah, F.R.; Maier, H.R. Explainable Artificial Intelligence in Disaster Risk Management: Achievements and Prospective Futures. Int. J. Disaster Risk Reduct. 2023, 98, 104123. [Google Scholar] [CrossRef]
- Roussel, C.; Böhm, K. Geospatial XAI: A Review. ISPRS Int. J. Geo-Inf. 2023, 12, 355. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Zhao, Z.; Liu, X. Performance Comparison of Landslide Susceptibility Mapping under Multiple Machine-Learning Based Models Considering InSAR Deformation: A Case Study of the Upper Jinsha River. Geomat. Nat. Hazards Risk 2023, 14, 2212833. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and Analyzing Flood Susceptibility Using Boosting-Based Ensemble Machine Learning Algorithms with SHapley Additive ExPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Iban, M.C.; Sekertekin, A. Machine Learning Based Wildfire Susceptibility Mapping Using Remotely Sensed Fire Data and GIS: A Case Study of Adana and Mersin Provinces, Turkey. Ecol. Inform. 2022, 69, 101647. [Google Scholar] [CrossRef]
- Sharma, N.; Saharia, M.; Ramana, G.V. High Resolution Landslide Susceptibility Mapping Using Ensemble Machine Learning and Geospatial Big Data. Catena 2024, 235, 107653. [Google Scholar] [CrossRef]
- Dahal, A.; Lombardo, L. Explainable Artificial Intelligence in Geoscience: A Glimpse into the Future of Landslide Susceptibility Modeling. Comput. Geosci. 2023, 176, 105364. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Grekousis, G.; Huang, Y.; Hua, F.; Pan, Z.; Liu, Y. Examining the Importance of Built and Natural Environment Factors in Predicting Self-Rated Health in Older Adults: An Extreme Gradient Boosting (XGBoost) Approach. J. Clean. Prod. 2023, 413, 137432. [Google Scholar] [CrossRef]
- Doǧan, U.; Yilmaz, M. Natural and Induced Sinkholes of the Obruk Plateau and Karapınar-Hotamış Plain, Turkey. J. Asian Earth Sci. 2011, 40, 496–508. [Google Scholar] [CrossRef]
- Sarı, F.; Kahveci, M.; Somay-Altas, M.; Tuşat, E. Evaluating Sinkhole Formation with Multicriteria Decision Analysis: A Case Study in Karapınar-Konya, Turkey. Arab. J. Geosci. 2021, 14, 281. [Google Scholar] [CrossRef]
- Günay, G.; Çörekçioǧlu, I.; Övül, G. Geologic and Hydrogeologic Factors Affecting Sinkhole (Obruk) Development in Central Turkey. Carbonates Evaporites 2011, 26, 3–9. [Google Scholar] [CrossRef]
- Ozdemir, A. Sinkhole Susceptibility Mapping Using a Frequency Ratio Method and GIS Technology Near Karapınar, Konya-Turkey. Procedia Earth Planet. Sci. 2015, 15, 502–506. [Google Scholar] [CrossRef]
- Ozdemir, A. Sinkhole Susceptibility Mapping Using Logistic Regression in Karapınar (Konya, Turkey). Bull. Eng. Geol. Environ. 2016, 75, 681–707. [Google Scholar] [CrossRef]
- Eren, Y.; Parlar, Ş.; Coşkuner, B.; Arslan, Ş. Geological and Morphological Features of the Karapınar Sinkholes (Konya, Central Anatolia, Türkiye). J. Earth Sci. 2024, 35, 1654–1668. [Google Scholar] [CrossRef]
- Arık, F.; Bilgilioğlu, S.S.; İban, M.C.; Delikan, A.; Göçmez, G.; Döğen, A.; Kansun, G.; Gezgin, C.; Bilgilioğlu, H.; Dülger, A. Obruk Teknik Kılavuz; Tosun, Y., Çoruk, F., Arslan, Ş., Akkaya, Y., Gökkaya, E., Gökkaya, E., Eds.; Paradigma Akademi Yayınları: Konya, Türkiye, 2023; ISBN 978-625-6822-12-2. [Google Scholar]
- Törk, K.; Güner, İ.N.; Erduran, B.; Yılmaz, N.P.; Sülükçü, S.; Yeleser, L.; Ateş, Ş.; Mutlu, G.; Sertel, N.; Keleş, S.; et al. Konya Ovası Projesi (KOP) Bölgesinde (Konya, Karaman, Aksaray, Niğde) Karstik Çöküntü Alanlarının Belirlenmesi ve Tehlike Değerlendirmesi Projesi (Report No. 263); Türkiye General Directorate of Mineral Research and Exploration: Ankara, Türkiye, 2019. [Google Scholar]
- Calligaris, C.; Devoto, S.; Galve, J.P.; Zini, L.; Pérez-Peña, J.V. Integration of Multi-Criteria and Nearest Neighbour Analysis with Kernel Density Functions for Improving Sinkhole Susceptibility Models: The Case Study of Enemonzo (NE Italy). Int. J. Speleol. 2017, 46, 191–204. [Google Scholar] [CrossRef]
- Partington, G. Developing Models Using GIS to Assess Geological and Economic Risk: An Example from VMS Copper Gold Mineral Exploration in Oman. Ore Geol. Rev. 2010, 38, 197–207. [Google Scholar] [CrossRef]
- Subedi, P.; Subedi, K.; Thapa, B.; Subedi, P. Sinkhole Susceptibility Mapping in Marion County, Florida: Evaluation and Comparison between Analytical Hierarchy Process and Logistic Regression Based Approaches. Sci. Rep. 2019, 9, 7140. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, P. Water Resources Engineering in Karst; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Valloni, R. Mapping the Susceptibility to Sinkholes in Coastal Areas, Based on Stratigraphy, Geomorphology and Geophysics. Nat. Hazards 2012, 62, 657–676. [Google Scholar] [CrossRef]
- Kim, Y.J.; Nam, B.H.; Youn, H. Sinkhole Detection and Characterization Using LiDAR-Derived DEM with Logistic Regression. Remote Sens. 2019, 11, 1592. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Digital Elevation Data Sources and Structures. In Terrain Analysis; John Wiley and Sons: New York, NY, USA, 2000; pp. 3–5. [Google Scholar]
- Zuo, Y.; Jiang, S.; Wu, S.; Xu, W.; Zhang, J.; Feng, R.; Yang, M.; Zhou, Y.; Santosh, M. Terrestrial Heat Flow and Lithospheric Thermal Structure in the Chagan Depression of the Yingen-Ejinaqi Basin, North Central China. Basin Res. 2020, 32, 1328–1346. [Google Scholar] [CrossRef]
- Jiang, S.; Zuo, Y.; Yang, M.; Feng, R. Reconstruction of the Cenozoic Tectono-Thermal History of the Dongpu Depression, Bohai Bay Basin, China: Constraints from Apatite Fission Track and Vitrinite Reflectance Data. J. Pet. Sci. Eng. 2021, 205, 108809. [Google Scholar] [CrossRef]
- Yu, H.; Arabameri, A.; Costache, R.; Crăciun, A.; Arora, A. Land Subsidence Susceptibility Assessment Using Advanced Artificial Intelligence Models. Geocarto Int. 2022, 37, 18067–18093. [Google Scholar] [CrossRef]
- Santo, A.; Del Prete, S.; Di Crescenzo, G.; Rotella, M. Karst Processes and Slope Instability: Some Investigations in the Carbonate Apennine of Campania (Southern Italy). Geol. Soc. Spec. Publ. 2007, 279, 59–72. [Google Scholar] [CrossRef]
- Lumongsod, R.M.G.; Ramos, N.T.; Dimalanta, C.B. Mapping the Karstification Potential of Central Cebu, Philippines Using GIS. Environ. Earth Sci. 2022, 81, 449. [Google Scholar] [CrossRef]
- Green, J.; Marken, W.; Alexander, C.; Alexander, S. Karst Unit Mapping Using Geographic Information System Technology, Mower County, Minnesota, USA. Environ. Geol. 2002, 42, 457–461. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Allen, P.G.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley: New York, NY, USA, 1980; Volume 32. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance Evaluation of the GIS-Based Data Mining Techniques of Best-First Decision Tree, Random Forest, and Naïve Bayes Tree for Landslide Susceptibility Modeling. Sci. Total Environ. 2018, 644, 1006–1018. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X. Modeling Landslide Susceptibility Using LogitBoost Alternating Decision Trees and Forest by Penalizing Attributes with the Bagging Ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef]
- Iban, M.C.; Bilgilioglu, S.S. Snow Avalanche Susceptibility Mapping Using Novel Tree-Based Machine Learning Algorithms (XGBoost, NGBoost, and LightGBM) with EXplainable Artificial Intelligence (XAI) Approach. Stoch. Environ. Res. Risk Assess. 2023, 37, 2243–2270. [Google Scholar] [CrossRef]
- Gutiérrez, F. Sinkhole Hazards. In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Rane, P.R.; Vincent, S. Landslide Susceptibility Mapping Using Machine Learning Algorithms for Nainital, India. Eng. Sci. 2022, 17, 142–155. [Google Scholar] [CrossRef]
- Doctor, K.Z.; Doctor, D.H.; Kronenfeld, B.; Wong, D.W.S.; Brezinski, D.K. Predicting Sinkhole Susceptibility in Frederick Valley, Maryland Using Geographically Weighted Regression; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 243–256. [Google Scholar] [CrossRef]
- Khosravi, K.; Rezaie, F.; Cooper, J.R.; Kalantari, Z.; Abolfathi, S.; Hatamiafkoueieh, J. Soil Water Erosion Susceptibility Assessment Using Deep Learning Algorithms. J. Hydrol. 2023, 618, 129229. [Google Scholar] [CrossRef]
- Tran, T.T.K.; Janizadeh, S.; Bateni, S.M.; Jun, C.; Kim, D.; Trauernicht, C.; Rezaie, F.; Giambelluca, T.W.; Panahi, M. Improving the Prediction of Wildfire Susceptibility on Hawaiʻi Island, Hawaiʻi, Using Explainable Hybrid Machine Learning Models. J. Environ. Manag. 2024, 351, 119724. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Seo, M.B.; Choi, S.M. Application of Genetic Algorithm in Optimization Parallel Ensemble-Based Machine Learning Algorithms to Flood Susceptibility Mapping Using Radar Satellite Imagery. Sci. Total Environ. 2023, 873, 162285. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.M.; Yin, Z.Y. Flood Susceptibility Prediction Using Tree-Based Machine Learning Models in the GBA. Sustain. Cities Soc. 2023, 97, 104744. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP Approach to Quantifying Morphological Impact on Urban Flooding Susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2000; LNCS; Volume 1857, pp. 1–15. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Points of Significance: Ensemble Methods: Bagging and Random Forests. Nat. Methods 2017, 14, 933–934. [Google Scholar] [CrossRef]
- Lin, N.; Zhang, D.; Feng, S.; Ding, K.; Tan, L.; Wang, B.; Chen, T.; Li, W.; Dai, X.; Pan, J.; et al. Rapid Landslide Extraction from High-Resolution Remote Sensing Images Using SHAP-OPT-XGBoost. Remote Sens. 2023, 15, 3901. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into Geospatial Heterogeneity of Landslide Susceptibility Based on the SHAP-XGBoost Model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Teke, A.; Kavzoglu, T. Exploring the Decision-Making Process of Ensemble Learning Algorithms in Landslide Susceptibility Mapping: Insights from Local and Global Explainable AI Analyses. Adv. Space Res. 2024, 74, 3765–3785. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Dikshit, A.; Kim, H. Spatial Flood Susceptibility Mapping Using an Explainable Artificial Intelligence (XAI) Model. Geosci. Front. 2023, 14, 101625. [Google Scholar] [CrossRef]
- Jas, K.; Dodagoudar, G.R. Explainable Machine Learning Model for Liquefaction Potential Assessment of Soils Using XGBoost-SHAP. Soil Dyn. Earthq. Eng. 2023, 165, 107662. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Gite, S.; Alamri, A.; Park, H.J. A New Method to Promptly Evaluate Spatial Earthquake Probability Mapping Using an Explainable Artificial Intelligence (XAI) Model. Gondwana Res. 2023, 123, 54–67. [Google Scholar] [CrossRef]
- Iban, M.C.; Aksu, O. SHAP-Driven Explainable Artificial Intelligence Framework for Wildfire Susceptibility Mapping Using MODIS Active Fire Pixels: An In-Depth Interpretation of Contributing Factors in Izmir, Türkiye. Remote Sens. 2024, 16, 2842. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Yang, J.; Li, L.; Wang, T. Snow Avalanche Susceptibility Mapping from Tree-Based Machine Learning Approaches in Ungauged or Poorly-Gauged Regions. Catena 2023, 224, 106997. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Fitzsimmons, K.E.; Li, Y.; Kaskaoutis, D.G. Modeling Land Susceptibility to Wind Erosion Hazards Using LASSO Regression and Graph Convolutional Networks. Front. Environ. Sci. 2023, 11, 1187658. [Google Scholar] [CrossRef]
- Shapley, L.S. Stochastic Games*. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [Google Scholar] [CrossRef]
- Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Modeling of Machine Learning with SHAP Approach for Electric Vehicle Charging Station Choice Behavior Prediction. Travel Behav. Soc. 2023, 31, 78–92. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Jenks, G. The Data Model Concept in Statistical Mapping. Int. Yearb.Cartogr. 1967, 7, 186–190. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–562. [Google Scholar] [CrossRef]
- Klimchouk, A. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. In KIP Monographs; National Cave and Karst Research Institute: Carlsbad, NM, USA, 2007. [Google Scholar]
- White, W.B. Karst Hydrology: Recent Developments and Open Questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Parise, M.; Gunn, J. Natural and Anthropogenic Hazards in Karst Areas: An Introduction. Geol. Soc. Spec. Publ. 2007, 279, 1–3. [Google Scholar] [CrossRef]
- Palmer, A.N. Origin and Morphology of Limestone Caves. Geol. Soc. Am. Bull. 1991, 103, 1–21. [Google Scholar] [CrossRef]
- Worthington, S.R.H. A comprehensive strategy for understanding flow in carbonate aquifers. In Karst Modeling; Palmer, A.N., Palmer, M.V., Sasowsky, I.D., Eds.; Karst Water Initiative: Charlottesville, VA, USA, 1999; pp. 30–37. [Google Scholar]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The Processes and Global Significance of Aquifer Degradation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater Flow and Transport Modeling of Karst Aquifers, with Particular Reference to the North Coast Limestone Aquifer System of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The Relation between Karst Spring Discharge and Rainfall by Cross-Correlation Analysis (Campania, Southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Çankal, G.; Alkın, R.C. İklim Değişikliği, Bilinçsiz Tarım ve Afet Yönetimi: Karapınar Obruklarına Bir Bakış. Afet Ve Risk Derg. 2024, 7, 410–425. [Google Scholar] [CrossRef]
Factors | Abbreviation | Data Source | Explanation | |
---|---|---|---|---|
Topographic | Elevation | ELV | General Directorate of Mapping | It is produced from contour lines obtained as vectors from standard topographic maps. |
Slope | SLP | |||
Aspect | ASP | |||
Curvature | CRV | |||
Plan curvature | PLC | |||
Profile curvature | PRC | |||
Proximity to drainage | PDR | |||
Stream power index | SPI | |||
Topographic wetness index | TWI | |||
Meteorological | Monthly average precipitation | MAP | Observations of 32 meteorological stations obtained from the Turkish General Directorate of Meteorology | |
Monthly average temperature | MAT | |||
Monthly average water vapor pressure | MAW | |||
Environmental and anthropological | Well density | WDS | General Directorate of State Hydraulic Works (DSI) | It was produced by performing density analysis (14,317 water wells). |
Land use | LDU | Corine Dataset | It is produced from vector data. | |
Proximity to settlements | PST | Environmental Plan obtained from Turkey Ministry of Environment and Urbanization | It is produced from vector data. | |
Proximity to roads | PRD | Environmental Plan obtained from Turkey Ministry of Environment and Urbanization | It is produced from vector data. | |
NDVI | NDVI | Landsat satellite image | It is produced from Landsat satellite image. | |
Soil depth | SDP | The Ministry of Agriculture and Forestry | It is produced from vector data. | |
Geological Tectonics | Lithology | LTG | General Directorate of Mineral Research and Exploration and field studies | It is produced from vector data. |
Proximity to faults | PTF | It is produced from vector data. | ||
Hydrogeological | Groundwater level | GWL | Laboratory studies | It is produced from geochemical analyses of 519 water well samples |
Groundwater decline (dry and wet spell) | GWD | |||
Differences in Potassium (dry and wet spell) | DPT | |||
Differences in Sodium (dry and wet spell) | DSD | |||
Differences in Sulfate (dry and wet spell) | DSU | |||
Differences in Magnesium (dry and wet spell) | DMG | |||
Differences in Calcium (dry and wet spell) | DCA | |||
Differences in Chloride (dry and wet spell) | DCH | |||
Differences in Bicarbonate (dry and wet spell) | DBC | |||
Differences in Total ion (dry and wet spell) | DTI | |||
Differences in Dissolved CO2 (dry and wet spell) | DDC | |||
Differences in Dissolved O2 (dry and wet spell) | DDO | |||
Differences in Conductivity (dry and wet spell) | DCT | |||
Differences in PH (dry and wet spell) | DPH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilgilioğlu, S.S.; Gezgin, C.; Iban, M.C.; Bilgilioğlu, H.; Gündüz, H.I.; Arslan, Ş. Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye. Appl. Sci. 2025, 15, 3139. https://doi.org/10.3390/app15063139
Bilgilioğlu SS, Gezgin C, Iban MC, Bilgilioğlu H, Gündüz HI, Arslan Ş. Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye. Applied Sciences. 2025; 15(6):3139. https://doi.org/10.3390/app15063139
Chicago/Turabian StyleBilgilioğlu, Süleyman Sefa, Cemil Gezgin, Muzaffer Can Iban, Hacer Bilgilioğlu, Halil Ibrahim Gündüz, and Şükrü Arslan. 2025. "Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye" Applied Sciences 15, no. 6: 3139. https://doi.org/10.3390/app15063139
APA StyleBilgilioğlu, S. S., Gezgin, C., Iban, M. C., Bilgilioğlu, H., Gündüz, H. I., & Arslan, Ş. (2025). Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye. Applied Sciences, 15(6), 3139. https://doi.org/10.3390/app15063139