Banana Peels: A Genuine Waste or a Wonderful Opportunity?
Abstract
:1. Introduction
2. Dessert Bananas and Cooking Bananas
3. Banana Composition and Waste
3.1. Carbon Footprint and Environmental Impacts of Banana Waste
3.2. Banana Peel
3.2.1. Nutritional Composition of Banana Peel
Component (% of Dry Matter) | Dessert Banana Peel | Plantain Peel (Cooking Banana) | ||||
---|---|---|---|---|---|---|
Cavendish [57] | M. sinensis [58] | Yangambi Km5 [59] | French Clair [57] | M. paradisiaca [58] | Big Ebanga [59] | |
Total dietary fibre | 43.2 (green) 49.7 (ripe) | 4.17 | 49.9 (green) 47.9 (ripe) | 32.9 (green) 46.9 (ripe) | 4.06 | 35.9 (green) 37.3 (ripe) |
Crude protein | 6.3 (green) 8.1 (ripe) | 2.48 | 6.9 (green) 7.9 (ripe) | 8.3 (green) 9.1 (ripe) | 2.23 | 8.1 (green) 8.6 (ripe) |
Starch | 11.1 (green) 3.3 (ripe) | - | 14 (green) 2.6 (ripe) | 35.4 (green) 3.2 (ripe) | - | 39.3(green) 0.1 (ripe) |
Other soluble sugars | 3.7 (green) 32 (ripe) | 67.29 (total sugar) | 1.4 (green) 33.2 (ripe) | 1.7 (green) 42.2 (ripe) | 68.57 (total sugar) | 4.3 (green) 38.3 (ripe) |
Cellulose | - | - | 15.2 (green) 15.6 (ripe) | - | - | 6.4 (green) 6.1 (ripe) |
Crude fat | 3.8 (green) 5.7 (ripe) | 1.24 | 6.3 (green) 10.9 (ripe) | 4.6 (green) 5.9 (ripe) | 1.10 | 2.2 (green) 3.6 (ripe) |
Lignin | - | - | 7.3 (green) 13.3 (ripe) | - | - | 7.9 (green) 15 (ripe) |
Ash | 9.6 (green) 12.8 (ripe) | 3.95 | 10.4 (green) 10.7 (ripe) | 8.8 (green) 8.2 (ripe) | 2.23 | 6.4 (green) 7.4 (ripe) |
Amino acids | 4.3 (green) 4.6 (ripe) | - | - | 5.8 (green) 5.6 (ripe) | - | - |
Minerals | Banana Pulp (M. sinensis) mg/100 g [44] | Banana Peel (M. sinensis) mg/100 g [58] | Banana Peel (M. sapientum) mg/100 g [61] | Banana Peel (Musa ABB) mg/100 g [44] |
---|---|---|---|---|
P | 15.47 | 27.84 | 211.3 | 283.1 |
Fe | 0.06 | 0.07 | 47 | 2.72 |
Mg | 29.39 | 28.62 | 44.5 | 138.12 |
K | 350.39 | 1708.6 | 4.39 | 3502.5 |
Ca | 4.64 | 40.9 | 59.1 | 142.9 |
Na | 7.73 | 9.28 | 115.1 | 43.1 |
Zn | 0.15 | 0.39 | 0.033 | 1.64 |
Cu | 0.10 | 0.06 | 0.51 | 0.007 |
N | 273.88 | 344.79 | 397.5 | - |
Mn | 0.18 | 0.35 | 0.702 | 0.85 |
3.2.2. Traditional Uses of Peel and Pulp
3.3. Bioactive Compounds in Banana Peel
3.3.1. Phenolic Compounds
3.3.2. Carotenoids
3.3.3. Biogenic Amines
3.3.4. Phytosterol
4. Potentials of Banana Peels
4.1. Antioxidant Activity
4.2. Anti-Bacterial Activity
4.3. Anti-Fungal Activity
4.4. Anti-Cancer Activity
4.5. Other Properties
4.6. Pectin Extraction from Banana Peel
4.7. Banana Peel Extract as a Reducing Agent in the Formulation of Silver Nanoparticles
5. Other Uses of Banana Waste
5.1. Lignocellulosic Biomass for Ethanol Production
5.2. A Biosorbent of Water Pollutants
5.3. Use of Banana Peel in Food Sector
6. Limitations and Future Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas Aguirre, J.C.; Quintero Castaño, V.D. Rheological characterization of starch and morphological evaluation of 20 varieties of musaceae (Musa sp.), from the Fedeplátano germplasm bank, Chinchiná—Caldas, Colombia. Acta Agron. 2016, 65, 218–225. [Google Scholar] [CrossRef]
- Alzate Acevedo, S.; Díaz Carrillo, Á.J.; Flórez-López, E.; Grande-Tovar, C.D. Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules 2021, 26, 5282. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Kema, G.H.J.; Ma, L.-J. Impact of diseases on export and smallholder production of banana. Annu. Rev. Phytopathol. 2015, 53, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zaini, H.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana peels as a bioactive ingredient and its potential application in the food industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Rattanapan, C.; Ounsaneha, W. The potential for value-added banana production waste under circular economy concept. Int. J. Environ. Sci. Dev. 2022, 13, 92–96. [Google Scholar] [CrossRef]
- Panigrahi, N.; Thompson, A.J.; Zubelzu, S.; Knox, J.W. Identifying opportunities to improve management of water stress in banana production. Sci. Hortic. 2021, 276, 109735. [Google Scholar] [CrossRef]
- World Population Review. Banana Consumption by Country 2024. 2024. Available online: https://worldpopulationreview.com/country-rankings/banana-consumption-by-country (accessed on 10 January 2025).
- Amarasinghe, N.K.; Wickramasinghe, I.; Wijesekara, I.; Thilakarathna, G.; Deyalage, S.T. Functional, physicochemical, and antioxidant properties of flour and cookies from two different banana varieties (Musa acuminata cv. Pisang awak and Musa acuminata cv. Red dacca). Int. J. Food Sci. 2021, 2021, 6681687. [Google Scholar] [CrossRef]
- Torres, L.C.; Zamora, L.C. Benefits in Latin America and the Caribbean about production of Cavendish AAA banana resistant to black Sigatoka. Rev. Bionatura 2018, 3, 740–744. [Google Scholar] [CrossRef]
- Varma, V.; Bebber, D.P. Climate change impacts on banana yields around the world. Nat. Clim. Chang. 2019, 9, 752–757. [Google Scholar] [CrossRef]
- Heslop-Harrison, J.S.; Schwarzacher, T. Domestication, genomics and the future for banana. Ann. Bot. 2007, 100, 1073–1084. [Google Scholar] [CrossRef]
- Santosh, D.T.; Tiwari, K.N.; Reddy, R.G. Banana bunch covers for quality banana production—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1275–1291. [Google Scholar] [CrossRef]
- Provin, A.P.; Medeiros d’Alva, A.; de Aguiar Dutra, A.R.; Salgueirinho Osório de Andrade Guerra, J.B.; Leal Vieira Cubas, A. Closing the cycle: Circular economy strategies for the textile industry using banana farming waste. J. Clean. Prod. 2024, 470, 143352. [Google Scholar] [CrossRef]
- Tewari, S.; Reshamwala, S.M.S.; Bhatt, L.; Kale, R.D. Vegan leather: A sustainable reality or a marketing gimmick? Environ. Sci. Pollut. Res. 2024, 31, 3361–3375. [Google Scholar] [CrossRef]
- Afzal, M.F.; Khalid, W.; Akram, S.; Khalid, M.A.; Zubair, M.; Kauser, S.; Mohamedahmed, K.A.; Aziz, A.; Siddiqui, S.A. Bioactive profile and functional food applications of banana in food sectors and health: A review. Int. J. Food Prop. 2022, 25, 2286–2300. [Google Scholar] [CrossRef]
- Anirudh, M.K.; Nandhu Lal, A.M.; Harikrishnan, M.P.; Jose, J.; Thasim, J.; Warrier, A.S.; Venkatesh, R.; Vaddevolu, U.B.P.; Kothakota, A. Sustainable seedling pots: Development and characterisation of banana waste and natural fibre-reinforced composites for horticultural applications. Int. J. Biol. Macromol. 2024, 270, 132070. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, S.; Sharma, S.; Agrawal, H. Exploration of the potential application of banana peel for its effective valorization: A review. Indian J. Microbiol. 2023, 63, 398–409. [Google Scholar] [CrossRef]
- Mohd Dom, Z.; Azhar, A.Z.; Masaudin, S.N.A. Utilization of banana peel as functional ingredient in product development. Adv. Agric. Food Res. J. 2023, 4, a0000209. [Google Scholar] [CrossRef]
- Shaukat, N.; Farooq, U.; Akram, K.; Shafi, A.; Hayat, Z.; Naz, A.; Hakim, A.; Hayat, K.; Naseem, S.; Khan, M.Z. Antimicrobial potential of banana peel: A natural preservative to improve food safety. Asian J. Agric. Biol. 2023, 3, 1–6. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmad, S. Banana peel: Characteristics and consideration of its extract for use in meat products preservation: A review. ACS Food Sci. Technol. 2021, 1, 1492–1506. [Google Scholar] [CrossRef]
- Narwal, P.; Kapoor, B.; Negi, N.P. Decoding the chemical repertoire, antimicrobial synergy, and antioxidant mastery of banana pulp and peel extracts. J. Plant Biochem. Biotechnol. 2024, 33, 436–446. [Google Scholar] [CrossRef]
- Roselli, V.; Pugliese, G.; Leuci, R.; Brunetti, L.; Gambacorta, L.; Tufarelli, V.; Piemontese, L. Green methods to recover bioactive compounds from food industry waste: A sustainable practice from the perspective of the circular economy. Molecules 2024, 29, 2682. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Larasati, R.; Wibisono, Y.; Umam, C.; Sutan, S.M.; Hawa, L.C. Extraction of phenol and antioxidant compounds from Kepok banana skin with PEF pre-treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 305, 012065. [Google Scholar] [CrossRef]
- Aguiar Pascoalino, L.; Barros, L.; Barreira, J.C.M.; Oliveira, M.B.P.P.; Reis, F.S. Closing the loop: Exploring apple pomace as a source of bioactive compounds in the framework of circular economy. Sustain. Food Technol. 2025, 3, 81–95. [Google Scholar] [CrossRef]
- García-González, A.G.; Rivas-García, P.; Escamilla-Alvarado, C.; Ramírez-Cabrera, M.A.; Paniagua-Vega, D.; Galván-Arzola, U.; Cano-Gómez, J.J.; Escárcega-González, C.E. Fruit and vegetable waste as a raw material for obtaining functional antioxidants and their applications: A review of a sustainable strategy. Biofuels Bioprod. Biorefin. 2025, 19, 231–249. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Arraibi, A.A.; Ferreira, I.C.F.R. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G. Banana (General). 2016. Available online: https://www.feedipedia.org/node/4670 (accessed on 17 January 2025).
- Huang, P.-H.; Cheng, Y.-T.; Lu, W.-C.; Chiang, P.-Y.; Yeh, J.-L.; Wang, C.-C.; Liang, Y.-S.; Li, P.-H. Changes in nutrient content and physicochemical properties of cavendish bananas var. Pei Chiao during ripening. Horticulturae 2024, 10, 384. [Google Scholar] [CrossRef]
- Arias, P.; Dankers, C.; Liu, P.; Pilkauskas, P. The World Banana Economy, 1985–2002; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Hikal, W.M.; Said-Al Ahl, H.A.H.; Bratovcic, A.; Tkachenko, K.G.; Sharifi-Rad, J.; Kačániová, M.; Elhourri, M.; Atanassova, M. Banana peels: A waste treasure for human being. Evid. Based Complement. Alternat. Med. 2022, 2022, 7616452. [Google Scholar] [CrossRef]
- Amah, D.; van Biljon, A.; Brown, A.; Perkins-Veazie, P.; Swennen, R.; Labuschagne, M. Recent advances in banana (Musa spp.) biofortification to alleviate vitamin A deficiency. Crit. Rev. Food Sci. Nutr. 2019, 59, 3498–3510. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, M. Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 2013, 62, 809–813. [Google Scholar] [CrossRef]
- Robinson, J.C.; Galán Saúco, V. Taxonomic classification, cultivars and breeding. In Bananas and Plantains; Robinson, J.C., Galán Saúco, V., Eds.; CABI: Wallingford, UK, 2010; pp. 21–49. [Google Scholar] [CrossRef]
- Thangavelu, R.; Saraswathi, M.S.; Uma, S.; Loganathan, M.; Backiyarani, S.; Durai, P.; Edwin Raj, E.; Marimuthu, N.; Kannan, G.; Swennen, R. Identification of sources resistant to a virulent Fusarium wilt strain (VCG 0124) infecting Cavendish bananas. Sci. Rep. 2021, 11, 3183. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Zafar, T.A. Bioactive compounds in banana fruits and their health benefits. Food Qual. Saf. 2018, 2, 183–188. [Google Scholar] [CrossRef]
- Castillo, M.; de Guzman, M.J.K.; Aberilla, J.M. Environmental sustainability assessment of banana waste utilization into food packaging and liquid fertilizer. Sustain. Prod. Consum. 2023, 37, 356–368. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol. Biofuels 2017, 10, 11. [Google Scholar] [CrossRef]
- Kagezi, G.H.; Kangire, A.; Tushemereirwe, W.; Bagamba, F.; Kikulwe, E.; Muhangi, J.; Gold, C.S.; Ragama, P. Banana bacterial wilt incidence in Uganda. Afr. Crop Sci. J. 2006, 14, 83–91. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Almeyda, E.; Ipanaqué, W. Recent developments of artificial intelligence for banana: Application areas, learning algorithms, and future challenges. Eng. Agríc. 2022, 42, e20210144. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R.; Jayasuriya, H.; Al-Attabi, Z. Evaluation of chemical quality attributes in bruised bananas during storage. LWT 2024, 197, 115904. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R.; Jayasuriya, H.; Al-Attabi, Z. Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends Food Sci. Technol. 2023, 134, 177–191. [Google Scholar] [CrossRef]
- Sugianti, C.; Imaizumi, T.; Thammawong, M.; Nakano, K. Recent postharvest technologies in the banana supply chain. Rev. Agric. Sci. 2022, 10, 123–137. [Google Scholar] [CrossRef]
- Khawas, P.; Deka, S.C. Comparative nutritional, functional, morphological, and diffractogram study on culinary banana (Musa ABB) peel at various stages of development. Int. J. Food Prop. 2016, 19, 2832–2853. [Google Scholar] [CrossRef]
- Ounsaneha, W.; Buadit, T.; Rattanapan, C. Assessment of human health impact based on life cycle assessment: A case study of Thai retread tire. IOP Conf. Ser. Mat. Sci. Eng. 2019, 773, 012038. [Google Scholar] [CrossRef]
- Roibás, L.; Elbehri, A.; Hospido, A. Evaluating the sustainability of Ecuadorian bananas: Carbon footprint, water usage and wealth distribution along the supply chain. Sustain. Prod. Consum. 2015, 2, 3–16. [Google Scholar] [CrossRef]
- Veliz, K.; Chico-Santamarta, L.; Ramirez, A.D. The environmental profile of Ecuadorian export banana: A life cycle assessment. Foods 2022, 11, 3288. [Google Scholar] [CrossRef] [PubMed]
- Housagul, S.; Sirisukpoka, U.; Boonyawanich, S.; Pisutpaisal, N. Biomethane production from co-digestion of banana peel and waste glycerol. Energy Procedia 2014, 61, 2219–2223. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Optimization of ultrasound-assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. J. Food Process. Preserv. 2017, 41, e13148. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Zhang, P.; Whistler, R.L.; BeMiller, J.N.; Hamaker, B.R. Banana starch: Production, physicochemical properties, and digestibility—A review. Carbohydr. Polym. 2005, 59, 443–458. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Sampath Kumar, K.P.; Bhowmik, D.; Duraivel, S.; Umadevi, M. Traditional and medicinal uses of banana. J. Parmacogn. Phytochem. 2012, 1, 51–63. [Google Scholar]
- Youssef, M.A.; Eman, A.A.; Abeir, M.E. Evaluation the bioactive compounds extracted from dried banana (Musa sp.) peels which obtained by different drying methods. Curr. Sci. Int. 2018, 7, 135–148. [Google Scholar]
- Sinanoglou, V.J.; Tsiaka, T.; Aouant, K.; Mouka, E.; Ladika, G.; Kritsi, E.; Konteles, S.J.; Ioannou, A.-G.; Zoumpoulakis, P.; Strati, I.F.; et al. Quality assessment of banana ripening stages by combining analytical methods and image analysis. Appl. Sci. 2023, 13, 3533. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Pramafisi, G. The properties, modification, and application of banana starch. Polymers 2022, 14, 3092. [Google Scholar] [CrossRef]
- Emaga, T.H.; Andrianaivo, R.H.; Wathelet, B.; Tchango, J.T.; Paquot, M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 2007, 103, 590–600. [Google Scholar] [CrossRef]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L.(plantain) fruit compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef]
- Emaga, T.H.; Bindelle, J.; Agneesens, R.; Buldgen, A.; Wathelet, B.; Paquot, M. Ripening influences banana and plantain peels composition and energy content. Trop. Anim. Health Prod. 2011, 43, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Sial, T.A.; Khan, M.N.; Lan, Z.; Kumbhar, F.; Ying, Z.; Zhang, J.; Sun, D.; Li, X. Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Saf. Environ. Prot. 2019, 122, 366–377. [Google Scholar] [CrossRef]
- Hassan, H.F.; Hassan, U.F.; Usher, O.A.; Ibrahim, A.B.; Tabe, N.N. Exploring the potentials of banana (Musa sapietum) peels in feed formulation. Int. J. Adv. Res. Chem. Sci. 2018, 5, 10–14. [Google Scholar] [CrossRef]
- Nagarajaiah, S.B.; Jamuna Prakash, J.P. Chemical composition and antioxidant potential of peels from three varieties of banana. Asian J. Food Agro-Ind. 2011, 4, 31–46. [Google Scholar]
- Tsamo, C.V.P.; Herent, M.-F.; Tomekpe, K.; Emaga, T.H.; Quetin-Leclercq, J.; Rogez, H.; Larondelle, Y.; Andre, C. Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chem. 2015, 167, 197–204. [Google Scholar] [CrossRef]
- Abiodun-Solanke, A.; Falade, K.O. A review of the uses and methods of processing banana and plantain (Musa spp.) into storable food products. J. Agric. Res. Develop. 2010, 9, 85–166. [Google Scholar] [CrossRef]
- Pereira, A.; Maraschin, M. Banana (Musa spp.) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 2015, 160, 149–163. [Google Scholar] [CrossRef]
- Khaliq, A.; Amreen; Jameel, N.; Krauth, S.J. Knowledge and practices on the prevention and management of diarrhea in children under-2 years among women dwelling in urban slums of Karachi, Pakistan. Matern. Child Health J. 2022, 26, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- García, O.P.; Martínez, M.; Romano, D.; Camacho, M.; de Moura, F.F.; Abrams, S.A.; Khanna, H.K.; Dale, J.L.; Rosado, J.L. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women. Food Nutr. Res. 2015, 59, 25976. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli-Kakhki, M.; Motavasselian, M.; Mosaddegh, M.; Esfahani, M.M.; Kamalinejad, M.; Nematy, M.; Eslami, S. Omega-3 and omega-6 content of medicinal foods for depressed patients: Implications from the Iranian Traditional Medicine. Avicenna J. Phytomed. 2014, 4, 225–230. [Google Scholar]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Stanislas, G.; Douraguia, E.; Gonthier, M.-P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016, 212, 225–233. [Google Scholar] [CrossRef]
- Alexandra Pazmiño-Durán, E.; Giusti, M.M.; Wrolstad, R.E.; Glória, M.B.A. Anthocyanins from banana bracts (Musa X paradisiaca) as potential food colorants. Food Chem. 2001, 73, 327–332. [Google Scholar] [CrossRef]
- Rao, U.S.M.; Mohd, K.S.; Muhammad, A.; Ahmad, B.A.; Mohamad, M.; Ali, R.M. Taxonomical, phytochemical and pharmacological reviews of Musa sapientum var. paradisiaca. Res. J. Pharm. Technol. 2014, 7, 1356–1361. [Google Scholar]
- Lewis, D.A.; Fields, W.N.; Shaw, G.P. A natural flavonoid present in unripe plantain banana pulp (Musa sapientum L. var. paradisiaca) protects the gastric mucosa from aspirin-induced erosions. J. Ethnopharmacol. 1999, 65, 283–288. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, X.; Zeng, F. Biological functions and health benefits of flavonoids in fruits and vegetables: A contemporary review. Foods 2025, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Someya, S.; Yashiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa cavendish). Food Chem. 2002, 79, 351–354. [Google Scholar] [CrossRef]
- Tsamo, C.V.P.; Herent, M.-F.; Tomekpe, K.; Emaga, T.H.; Quetin-Leclercq, J.; Rogez, H.; Larondelle, Y.; Andre, C.M. Effect of boiling on phenolic profiles determined using HPLC/ESI-LTQ-Orbitrap-MS, physico-chemical parameters of six plantain banana cultivars (Musa sp). J. Food Comp. Anal. 2015, 44, 158–169. [Google Scholar] [CrossRef]
- Van den Berg, H.; Faulks, R.; Granado, H.F.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Southon, S.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 2000, 80, 880–912. [Google Scholar] [CrossRef]
- Bufka, J.; Vaňková, L.; Sýkora, J.; Křížková, V. Exploring carotenoids: Metabolism, antioxidants, and impacts on human health. J. Funct. Foods 2024, 118, 106284. [Google Scholar] [CrossRef]
- Aquino, C.F.; Salomão, L.C.C.; Pinheiro-Sant’Ana, H.M.; Ribeiro, S.M.R.; De Siqueira, D.L.; Cecon, P.R. Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages. Rev. Ceres 2018, 65, 217–226. [Google Scholar] [CrossRef]
- Davey, M.W.; Keulemans, J.; Swennen, R. Methods for the efficient quantification of fruit provitamin A contents. J. Chromatogr. A 2006, 1136, 176–184. [Google Scholar] [CrossRef]
- Wójcik, W.; Łukasiewicz, M.; Puppel, K. Biogenic amines: Formation, action and toxicity—A review. J. Sci. Food Agric. 2021, 101, 2634–2640. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Ademakinwa, A.N.; Agunbiade, M.O. Banana peel wastes as a source of tyrosinase useful in the production of l-DOPA. Sustain. Chem. Pharm. 2022, 30, 100853. [Google Scholar] [CrossRef]
- Marangoni, F.; Poli, A. Phytosterols and cardiovascular health. Pharmacol. Res. 2010, 61, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Dubey, P.K.; Mishra, A.A.; Ashka, F. Valorisation of banana peel and mango peel as functional ingredients in baked products: A review. Int. J. Food Sci. Technol. 2024, 59, 5938–5950. [Google Scholar] [CrossRef]
- Aquino, C.F.; Salomão, L.C.C.; Ribeiro, S.M.R.; De Siqueira, D.L.; Cecon, P.R. Carbohydrates, phenolic compounds and antioxidant activity in pulp and peel of 15 banana cultivars. Rev. Bras. Frutic. 2016, 38, e-090. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; Salama, Z.A.; Gaafar, A.A.; Aly, H.F.; Bou-Elella, F.A.; Ahmed, H.A. Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. J. Chem. Pharmaceut. Res. 2016, 8, 46–55. [Google Scholar]
- El-Zawawy, N.A. Antioxidant, antitumor, antimicrobial studies and quantitative phytochemical estimation of ethanolic extracts of selected fruit peels. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 298–309. [Google Scholar]
- Waghmare, J.S.; Kurhade, A.H. GC-MS analysis of bioactive components from banana peel (Musa sapientum peel). Eur. J. Exp. Biol. 2014, 4, 10–15. [Google Scholar]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Rasidek, N.A.M.; Nordin, M.F.M.; Shameli, K. Formulation and evaluation of semisolid jelly produced by Musa acuminata Colla (AAA Group) peels. Asian Pac. J. Trop. Biomed. 2016, 6, 55–59. [Google Scholar] [CrossRef]
- Mokbel, M.S.; Hashinaga, F. Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am. J. Biochem. Biotechnol. 2005, 1, 125–131. [Google Scholar] [CrossRef]
- Kapadia, S.P.; Pudakalkatti, P.S.; Shivanaikar, S. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study. Contemp. Clin. Dent. 2015, 6, 496–499. [Google Scholar] [CrossRef]
- Kavitha, V.; Manonmani, G.; Devakumar, J. Antimicrobial efficacy of fresh and dried banana peel extracts: An in vitro study. Drug Invent. Today 2019, 11, 1237. [Google Scholar]
- Semangoen, T.; Chotigawin, R.; Sangnim, T.; Chailerd, N.; Pahasup-anan, T.; Huanbutta, K. Evaluation of banana peel extract (Musa sapientum L.) as a natural antimicrobial for livestock farming. J. Sustain. Agric. Environ. 2024, 3, e12118. [Google Scholar] [CrossRef]
- Lino, P.; Corrêa, C.; Archondo, M.; Leite-Dellova, D. Evaluation of post-surgical healing in rats using a topical preparation based on extract of Musa sapientum epicarp. Rev. Bras. De Farmacogn. 2011, 21, 491–496. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Okorondu, S.I.; Akujobi, C.O.; Nwachukwu, I.N. Antifungal properties of Musa paradisiaca (plantain) peel and stalk extracts. Int. J. Biol. Chem. Sci. 2012, 6, 1527–1534. [Google Scholar] [CrossRef]
- Kamal, A.M.; Taha, M.S.; Mousa, A.M. The radioprotective and anticancer effects of banana peels extract on male mice. J. Food Nutr. Res. 2019, 7, 827–835. [Google Scholar] [CrossRef]
- Dahham, S.S.; Agha, M.T.; Tabana, Y.M.; Abdul Majid, A.M.S. Antioxidant activities and anticancer screening of extracts from banana fruit (Musa sapientum). Acad. J. Cancer Res. 2015, 8, 28–34. [Google Scholar]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Das, P.P.; Sandberg, E.N.; Atanasov, A.G.; Bishayee, A. Cancer preventive and therapeutic potential of banana and its bioactive constituents: A systematic, comprehensive, and mechanistic review. Front. Oncol. 2021, 11, 697143. [Google Scholar] [CrossRef] [PubMed]
- Navghare, V.V.; Dhawale, S.C. In vitro antioxidant, hypoglycemic and oral glucose tolerance test of banana peels. Alex. J. Med. 2017, 53, 237–243. [Google Scholar] [CrossRef]
- Vasu, P.; Khan, N.D.; Khan, Z.H.; Mular, S.M. In vitro antidiabetic activity of methanolic extract of Citrus limon, Punica granatum, Musa acuminata peel. Int. J. Appl. Res. 2017, 3, 804–806. [Google Scholar]
- Rao, U.S.M.; Ahmad, B.A.; Mohd, K.S.; Zin, T. Antiulcer activity of Musa paradisiaca (banana) tepal and skin extracts in ulcer induced Albino mice. Malay. J. Anal. Sci. 2016, 20, 1203–1216. [Google Scholar] [CrossRef]
- Bansal, J.; Malviya, R.; Malaviya, T.; Bhardwaj, V.; Sharma, P.K. Evaluation of banana peel pectin as excipient in solid oral dosage form. Glob. J. Pharmacol. 2014, 8, 275–278. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of pectin extracted from banana peels of different varieties. Food Sci. Biotechnol. 2017, 27, 623–629. [Google Scholar] [CrossRef]
- Venkatanagaraju, E.; Bharathi, N.; Sindhuja, R.H.; Chowdhury, R.R.; Sreelekha, Y. Extraction and purification of pectin from agro-industrial wastes. In Pectins-Extraction, Purification, Characterization and Applications; Masuelli, M., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Ibrahim, H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Rad. Res. Appl. Sci. 2015, 8, 265–275. [Google Scholar] [CrossRef]
- Navaladian, S.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2006, 2, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Solano-Ruiz, E.; Berrú, R.S.; Ocotlán-Flores, J.; Saniger, J.M. Synthesis of silver nanoparticles by sonochemical induced reduction application in SERS. J. Nano Res. 2010, 9, 77–81. [Google Scholar] [CrossRef]
- El-Faham, A.; Elzatahry, A.A.; Al-Othman, Z.A.; Elsayed, E.A. Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity. Int. J. Nanomed. 2014, 9, 1167–1174. [Google Scholar] [CrossRef]
- Sreeram, K.J.; Nidhin, M.; Nair, B.U. Microwave assisted template synthesis of silver nanoparticles. Bull. Mater. Sci. 2008, 31, 937–942. [Google Scholar] [CrossRef]
- Kokila, T.; Ramesh, P.S.; Geetha, D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 2015, 5, 911–920. [Google Scholar] [CrossRef]
- Narayanamma, A. Natural synthesis of silver nanoparticles by banana peel extract and as an antibacterial agent. IOSR J. Polymer Textile Eng. 2016, 3, 17–25. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Crops and Livestock Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://www.fao.org/faostat/en/#data/QCL/metadata (accessed on 28 December 2024).
- Guerrero, A.B.; Aguado, P.L.; Sánchez, J.; Curt, M.D. GIS-based assessment of banana residual biomass potential for ethanol production and power generation: A case study. Waste Biomass Valor. 2016, 7, 405–415. [Google Scholar] [CrossRef]
- Oji, C.; Okoro, I.; Nnaji, J. Optimization of bioethanol production from banana peels: An alternative energy source. J. Chem. Soc. Nigeria 2024, 49, 487–499. [Google Scholar] [CrossRef]
- Guerrero, A.B.; Ballesteros, I.; Ballesteros, M. The potential of agricultural banana waste for bioethanol production. Fuel 2018, 213, 176–185. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.-Q.; Lee, C. The waste treatment and recycling efficiency of industrial waste processing based on two-stage data envelopment analysis with undesirable inputs. J. Clean. Prod. 2020, 242, 118279. [Google Scholar] [CrossRef]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Ali, I.; Alothman, Z.A.; Alwarthan, A. Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 2017, 241, 123–129. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, Q.; Cui, Y.; Xie, F.; Li, W.; Li, Y.; Chen, M. Adsorption properties of activated carbon from reed with a high adsorption capacity. Ecol. Eng. 2017, 102, 443–450. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef] [PubMed]
- Akpomie, K.G.; Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett. 2020, 18, 1085–1112. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hussain, M.; Mahmood, K.; Wajid, A.; Yusof, M.; Alias, Y.; Yusoff, I. Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent. Desalin. Water Treat. 2013, 51, 4530–4545. [Google Scholar] [CrossRef]
- Al-Shaalan, N.H.; Ali, I.; Alothman, Z.A.; Al-Wahaibi, L.H.; Alabdulmonem, H. High performance removal and simulation studies of diuron pesticide in water on MWCNTs. J. Mol. Liq. 2019, 289, 111039. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Datta, S.; Dhanjal, D.S.; Sharma, K.; Samuel, J.; Singh, J. Current advancement and future prospect of biosorbents for bioremediation. Sci. Total Environ. 2020, 709, 135895. [Google Scholar] [CrossRef]
- Vilardi, G.; Di Palma, L.; Verdone, N. Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chin. J. Chem. Eng. 2018, 26, 455–464. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Iftekhar, S.; Ramasamy, D.L.; Srivastava, V.; Asif, M.B.; Sillanpää, M. Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: A critical review. Chemosphere 2018, 204, 413–430. [Google Scholar] [CrossRef]
- Mahindrakar, K.V.; Rathod, V.K. Utilization of banana peels for removal of strontium (II) from water. Environ. Technol. Innov. 2018, 11, 371–383. [Google Scholar] [CrossRef]
- El-Din, G.A.; Amer, A.A.; Malsh, G.; Hussein, M. Study on the use of banana peels for oil spill removal. Alex. Eng. J. 2018, 57, 2061–2068. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Islas-Hernandez, J.J.; Osorio-Díaz, P.; Rendón-Villalobos, R.; Utrilla-Coello, R.G.; Angulo, O.; Bello-Pérez, L.A. Pasta with unripe banana flour: Physical, texture, and preference study. J. Food Sci. 2009, 74, S263–S267. [Google Scholar] [CrossRef]
- Segundo, C.; Román, L.; Lobo, M.; Martinez, M.M.; Gómez, M. Ripe banana flour as a source of antioxidants in layer and sponge cakes. Plant Foods Hum. Nutr. 2017, 72, 365–371. [Google Scholar] [CrossRef]
- Ho, L.-H.; Abdul Aziz, N.A.; Azahari, B. Physico-chemical characteristics and sensory evaluation of wheat bread partially substituted with banana (Musa acuminata × balbisiana cv. Awak) pseudo-stem flour. Food Chem. 2013, 139, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Eshak, N.S. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Ann. Agric. Sci. 2016, 61, 229–235. [Google Scholar] [CrossRef]
- Yancy, W.S., Jr.; Foy, M.; Chalecki, A.M.; Vernon, M.C.; Westman, E.C. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr. Metab. 2005, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Persia, F.; Aswathy, P.S.; Chandran, J.; Sajeev, M.S.; Jayamurthy, P.; Nisha, P. Plantain peel—A potential source of antioxidant dietary fibre for developing functional cookies. J. Food Sci. Technol. 2015, 52, 6355–6364. [Google Scholar] [CrossRef]
- Rehman, S.-u.; Nadeem, M.; Ahmad, F.; Mushtaq, Z. Biotechnological production of xylitol from banana peel and its impact on physicochemical properties of rusks. J. Agric. Sci. Technol. 2013, 15, 747–756. [Google Scholar]
- Ahmed, Z.; El-Sharnouby, G.A.; El-Waseif, M.A. Use of banana peel as a by-product to increase the nutritive value of the cake. J. Food Dairy Sci. 2021, 12, 87–97. [Google Scholar] [CrossRef]
- Borges, A.d.M.; Pereira, J.; Júnior, A.S.; de Lucena, E.M.P.; de Sales, J.C. Stability of cake pre-mixture made with 60% of green banana flour. Ciênc. Agrotecnol. 2010, 34, 173–181. [Google Scholar] [CrossRef]
- Amini Khoozani, A.; Birch, J.; Bekhit, A.E.-D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zaini, H.B.; Bin Sintang, M.D.; Pindi, W. The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. Food Sci. Nutr. 2020, 8, 5497–5507. [Google Scholar] [CrossRef] [PubMed]
- Devatkal, S.K.; Kumboj, R.; Paul, D. Comparative antioxidant effect of BHT and water extracts of banana and sapodilla peels in raw poultry meat. J. Food Sci. Technol. 2014, 51, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Santhoskumar, A.U.; Vaishnavi, R.; Karunakaran, T.; Chitra, N.J. Studies on mechanical properties and biodegradation of edible food wrapper from banana peel. Asian J. Adv. Basic Sci. 2019, 7, 1–4. [Google Scholar] [CrossRef]
- Sarkar, D.; Prajapati, S.; Poddar, K.; Sarkar, A. Ethanol production by Klebsiella sp. SWET4 using banana peel as feasible substrate. Biomass Conv. Bioref. 2022, 12, 1479–1491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, M.; Gangan, S.; Panchal, S.K. Banana Peels: A Genuine Waste or a Wonderful Opportunity? Appl. Sci. 2025, 15, 3195. https://doi.org/10.3390/app15063195
Yasin M, Gangan S, Panchal SK. Banana Peels: A Genuine Waste or a Wonderful Opportunity? Applied Sciences. 2025; 15(6):3195. https://doi.org/10.3390/app15063195
Chicago/Turabian StyleYasin, Mursleen, Shreya Gangan, and Sunil K. Panchal. 2025. "Banana Peels: A Genuine Waste or a Wonderful Opportunity?" Applied Sciences 15, no. 6: 3195. https://doi.org/10.3390/app15063195
APA StyleYasin, M., Gangan, S., & Panchal, S. K. (2025). Banana Peels: A Genuine Waste or a Wonderful Opportunity? Applied Sciences, 15(6), 3195. https://doi.org/10.3390/app15063195