Development of Novel Canned Peaches (Fercluse Variety) as a Healthy and Possible Diabetic Food Choice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preliminary Recipe Development
2.3. Methodology
2.4. Identification of Important Attributes for Canned Peaches Acceptability
2.4.1. Texture Profile Analysis
2.4.2. Microbiological Evaluation
2.4.3. In Vitro Digestion
Oral Phase
Gastric Phase
Intestinal Phase
2.4.4. Protein and Reducing Sugar Analysis
2.4.5. Sensory Analysis
2.4.6. Post-Prandial Glucose Evaluation
2.4.7. Statistical Analysis
3. Results
3.1. Selection and Quality of Four Canned-Peaches Samples
Development and Nutritional Value
- Stevia strong (higher amount of Stevia)
- Stevia medium
- Agave and Stevia
- Glucose and sugar
- Water
- Fresh peaches
Peaches | Energy (kcal) | Protein (g) | Carbohydrates (g) | Fructose (g) | Galactose (g) | Glucose (g) | Lactose (g) | Maltose (g) | Sucrose (g) | Fibers (g) | Fat (g) | Saturated Fatty Acid (g) | Unsaturated Fatty Acid (g) | Salt (g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Canned peaches with higher amount of Stevia | 29 | 0.45 | 6.3 | 0.9 | <0.1 | 0.7 | <0.1 | <0.1 | 2.1 | 1.2 | 1.4 | 0.1 | 0.3 | 0.05 |
Canned peaches with Stevia | 28 | 0.3 | 4.9 | 0.8 | <0.1 | 0.7 | <0.1 | <0.1 | 1.9 | 1.2 | 0.3 | 0.1 | 0.2 | 0.03 |
Canned peaches with Agave and Stevia | 45 | 0.3 | 9.6 | 2.2 | <0.1 | 2.1 | <0.1 | <0.1 | 1.9 | 0.9 | 0.4 | 0.1 | 0.3 | 0.05 |
Canned peaches with glucose and sugar | 73 | 0.4 | 16.2 | 2.8 | <0.1 | 2.1 | <0.1 | <0.1 | 11.1 | 1 | 0.1 | 0 | 0.1 | 0.05 |
Canned peaches with water | 28 | 0.5 | 5.1 | 0.7 | <0.1 | 0.7 | <0.1 | <0.1 | 1.9 | 1.2 | 0.4 | 0.2 | 0.2 | 0.02 |
Fresh peaches | 34 | 0.6 | 10 | 0.7 | <0.1 | 0.7 | <0.1 | <0.1 | 2 | 1.3 | 0.3 | 0 | 0.3 | 0.02 |
3.2. Physicochemical Properties
3.3. Microbiological Assay
3.4. Sensory Evaluation by Consumer Panel and Sensory Attribute Intensities via Texture Profile Analysis
3.5. Comparative Evaluation Regarding In Vitro Digestion
3.6. Comparative Evaluation According Postprandial Glucose Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shapran, V.; Britchenko, I. Features of the monetary policy of central banks to combat high inflation. VUZF Rev. 2022, 7, 17. [Google Scholar] [CrossRef]
- Rocha, J.; Oliveira, S.; Viana, C.M.; Ribeiro, A.I. Climate change and its impacts on health, environment and economy. In One Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–279. [Google Scholar]
- Alnour, M.; Altintaş, H.; Rahman, M.N. Unveiling the asymmetric response of global food prices to the energy prices shocks and economic policy uncertainty. World Dev. Sustain. 2023, 3, 100083. [Google Scholar] [CrossRef]
- De Lima Sampaio, S.; Suárez-Recio, M.; Aguiló-Aguayo, I. Influence of Canning on Food Bioactives. In Retention of Bioactives in Food Processing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 177–202. [Google Scholar]
- Singh, B.; Pavithran, N.; Rajput, R. Effects of Food Processing on Nutrients. Curr. J. Appl. Sci. Technol. 2023, 42, 34–49. [Google Scholar]
- Durst, R.W.; Weaver, G.W. Nutritional content of fresh and canned peaches. J. Sci. Food Agric. 2013, 93, 593–603. [Google Scholar] [CrossRef]
- Adkison, E.C.; Biasi, W.B.; Bikoba, V.; Holstege, D.M.; Mitcham, E.J. Effect of canning and freezing on the nutritional content of apricots. J. Food Sci. 2018, 83, 1757–1761. [Google Scholar] [CrossRef]
- Christofi, M.; Mourtzinos, I.; Lazaridou, A.; Drogoudi, P.; Tsitlakidou, P.; Biliaderis, C.G.; Manganaris, G.A. Elaboration of novel and comprehensive protocols toward determination of textural properties and other sensorial attributes of canning peach fruit. J. Texture Stud. 2021, 52, 228–239. [Google Scholar] [CrossRef]
- Wee, M.S.M.; Goh, A.T.; Stieger, M.; Forde, C.G. Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Funct. 2018, 9, 5301–5312. [Google Scholar] [CrossRef]
- Marinelli, F.; Venegas, C.; Pirce, F.; del Carmen Silva Celedón, J.; Navarro, P.; Jarpa-Parra, M.; Fuentes, R. Hardness Analysis of Foods in a Diet Based on the Mediterranean Diet and Adapted to Chilean Gastronomy. Foods 2024, 13, 3061. [Google Scholar] [CrossRef]
- Lamb, F.C.; Farrow, R.P.; Elkins, E.R. Effect of processing on nutritive value of food: Canning. In Handbook of Nutritive Value of Processed Food; CRC Press: Boca Raton, FL, USA, 2019; pp. 11–30. [Google Scholar]
- Freedman, M.R.; Fulgoni, V.L. Canned Vegetable and Fruit Consumption Is Associated with Changes in Nutrient Intake and Higher Diet Quality in Children and Adults: National Health and Nutrition Examination Survey 2001–2010. J. Acad. Nutr. Diet. 2016, 116, 940–948. [Google Scholar] [CrossRef]
- Locke, A.; Schneiderhan, J.; Zick, S.M. Diets for health: Goals and guidelines. Am. Fam. Physician 2018, 97, 721–728. [Google Scholar]
- Mason-D’Croz, D.; Bogard, J.R.; Sulser, T.B.; Cenacchi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: An integrated modelling study. Lancet Planet. Health 2019, 3, e318–e329. [Google Scholar] [CrossRef]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet. Health 2018, 2, e344–e352. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary guidelines for Americans, 2020–2025: Understanding the scientific process, guidelines, and key recommendations. Nutr. Today 2021, 56, 287. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Sansavini, S.; Gradziel, T.M.; Bassi, D.; Crisosto, C.H. Peach: An Introduction. In Peach; CABI GB: Boston, MA, USA, 2023; pp. 1–16. [Google Scholar]
- Paraskevopoulou, C.; Vlachos, D.; Bechtsis, D.; Tsolakis, N. An assessment of circular economy interventions in the peach canning industry. Int. J. Prod. Econ. 2022, 249, 108533. [Google Scholar] [CrossRef]
- Kim, I.-S.; Yang, M.; Lee, O.-H.; Kang, S.-N. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT Food Sci. Technol. 2011, 44, 1328–1332. [Google Scholar] [CrossRef]
- Saraiva, A.; Carrascosa, C.; Ramos, F.; Raheem, D.; Raposo, A. Agave syrup: Chemical analysis and nutritional profile, applications in the food industry and health impacts. Int. J. Environ. Res. Public Health 2022, 19, 7022. [Google Scholar] [CrossRef]
- Schiatti-Sisó, I.P.; Quintana, S.E.; García-Zapateiro, L.A. Stevia (Stevia rebaudiana) as a common sugar substitute and its application in food matrices: An updated review. J. Food Sci. Technol. 2023, 60, 1483–1492. [Google Scholar] [CrossRef]
- Ozuna, C.; Franco-Robles, E. Agave syrup: An alternative to conventional sweeteners? A review of its current technological applications and health effects. LWT 2022, 162, 113434. [Google Scholar] [CrossRef]
- Saura, D.; Vegara, S.; Martí, N.; Valero, M.; Laencina, J. Non-enzymatic browning due to storage is reduced by using clarified lemon juice as acidifier in industrial-scale production of canned peach halves. J. Food Sci. Technol. 2017, 54, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- ISO 22000:2018; Food Safety Management Systems—Requirements for Any Organization in the Food Chain. ISO: Geneva, Switzerland, 2018.
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.M.B.; Freitas, A.; Barros, L.; Ferreira, I.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Yan, X. High-performance liquid chromatography for carbohydrate analysis. In High-Performance Liquid Chromatography (HPLC): Principles, Practices and Procedures; Zhuo, Y., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014. [Google Scholar]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Batista, A.A.; Dutra, I.; Carmo, F.D.; Izidio, N.D.C.; Batista, R.O. Quality in papaya fruit produced with treated domestic sewage. Rev. Cienc. Agron. 2017, 48, 70–80. [Google Scholar] [CrossRef]
- Feldsine, P.T.; Leung, S.C.; Lienau, A.H.; Mui, L.A.; Townsend, D.E. Enumeration of Total Aerobic Microorganisms in Foods by SimPlate® Total Plate Count–Color Indicator Methods and Conventional Culture Methods: Collaborative Study. J. AOAC Int. 2019, 86, 257–274. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Aguirre, J. Important Topics Related to the Kjeldahl Method. In The Kjeldahl Method: 140 Years; Springer: Berlin/Heidelberg, Germany, 2023; pp. 123–145. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Pasidi, E.; Vareltzis, P. Vitamin D3 Bioaccessibility from Supplements and Foods—Gastric pH Effect Using a Static In Vitro Gastrointestinal Model. Molecules 2024, 29, 1153. [Google Scholar] [CrossRef]
- Singh-Ackbarali, D.; Maharaj, R. Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the University of Trinidad and Tobago. J. Curric. Teach. 2014, 3, 10–27. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Bargiota, A.; Barmpa, E.; Outskouni, Z.; Stagos, D.; Trachana, V.; Androutsos, O.; Gortzi, O. Postprandial Glucose Response in Type 2 Diabetes Mellitus Patients and Possible Antioxidant Properties of a Plant-Based Snack Bar. Foods 2024, 13, 4123. [Google Scholar] [CrossRef]
- Fardet, A.; Richonnet, C. Nutrient density and bioaccessibility, and the antioxidant, satiety, glycemic, and alkalinizing potentials of fruit-based foods according to the degree of processing: A narrative review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3233–3258. [Google Scholar] [CrossRef]
- Barbosa-Martin, E.; Moguel-Ceballos, J.E.; Rodriguez-Rosas, C.; Valencia-Rivera, D.E.; Zarza-Garcia, A.L. Effect of the consumption of a fibrous extract of Stevia rebaudiana Bertoni Stems on glycemia. Horiz. Sanit. 2022, 21, 178–186. [Google Scholar] [CrossRef]
- Dodd, H.H.; Williams, S.; Brown, R.; Venn, B. Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am. J. Clin. Nutr. 2011, 94, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Jaywant, S.A.; Singh, H.; Arif, K.M. Sensors and instruments for brix measurement: A review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Tzani, M.; Aznaouridis, S.I. A general machine learning model for assessing fruit quality using deep image features. AI 2023, 4, 812–830. [Google Scholar] [CrossRef]
- Apostolopoulos, C.; Brennan, J. Identification of the Main Textural Characteristics of Canned Peaches and the Effects of Processing Variables; Wiley Online Library: Minneapolis, MN, USA, 1994. [Google Scholar]
- Shetty, S.S.; Shetty, P.K. ω-6/ω-3 fatty acid ratio as an essential predictive biomarker in the management of type 2 diabetes mellitus. Nutrition 2020, 79, 110968. [Google Scholar] [CrossRef]
- Petridis, D.; Ritzoulis, C.; Tzivanos, I.; Vlazakis, E.; Derlikis, E.; Vareltzis, P. Effect of fat volume fraction, sodium caseinate, and starch on the optimization of the sensory properties of frankfurter sausages. Food Sci. Nutr. 2013, 1, 32–44. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Vareltzis, P.; Floros, S.; Androutsos, O.; Bargiota, A.; Gortzi, O. Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods 2023, 12, 2702. [Google Scholar] [CrossRef]
- Gortzi, O.; Dimopoulou, M.; Androutsos, O.; Vraka, A.; Gousia, H.; Bargiota, A. Effectiveness of a Nutrition Education Program for Patients with Type 2 Diabetes Mellitus. Appl. Sci. 2024, 14, 2114. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; Fernandez-Gomez, B.; Cai, W.; Uribarri, J.; Del Castillo, M.D. In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Res. Int. 2019, 118, 72–80. [Google Scholar] [CrossRef]
- ALjahdali, N.; Carbonero, F. Impact of Maillard reaction products on nutrition and health: Current knowledge and need to understand their fate in the human digestive system. Crit. Rev. Food Sci. Nutr. 2019, 59, 474–487. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Srichaikul, K.; Kendall, C.W.C.; Sievenpiper, J.L.; Abdulnour, S.; Mirrahimi, A.; Meneses, C.; Nishi, S.; He, X.; Lee, S.; et al. The relation of low glycaemic index fruit consumption to glycaemic control and risk factors for coronary heart disease in type 2 diabetes. Diabetologia 2011, 54, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Hayat, U.; Li, W.; Bie, H.; Liu, S.; Guo, D.; Cao, K. An Overview on Post-Harvest Technological Advances and Ripening Techniques for Increasing Peach Fruit Quality and Shelf Life. Horticulturae 2023, 10, 4. [Google Scholar] [CrossRef]
- Weber, C.; Simnitt, S.; Lucier, G.; Davis, W.V. Fruit and Tree Nuts Outlook: March 2023; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2023. [Google Scholar]
- Manganaris, G.A.; Gradziel, T.M.; Christofi, M.; Crisosto, C.H. The Peach Canning Industry. In Peach; CABI GB: Boston, MA, USA, 2023; pp. 421–436. [Google Scholar]
- Drosou, F.; Kekes, T.; Boukouvalas, C. Life cycle assessment of the canned fruits industry: Sustainability through waste valorization and implementation of innovative techniques. AgriEngineering 2023, 5, 395–412. [Google Scholar] [CrossRef]
- Poelman, A.A.; Delahunty, C.M.; de Graaf, C. Vegetables and other core food groups: A comparison of key flavour and texture properties. Food Qual. Prefer. 2017, 56, 1–7. [Google Scholar] [CrossRef]
- Rudke, C.R.M.; Zielinski, A.A.F.; Ferreira, S.R.S. From biorefinery to food product design: Peach (Prunus persica) by-products deserve attention. Food Bioprocess Technol. 2023, 16, 1197–1215. [Google Scholar] [CrossRef]
- Basit, A.; Ayaz, S.; Rab, A.; Ullah, I.; Shah, S.T.; Ahmad, I.; Ullah, I.; Khalid, M.A. Effect of stevia (Stevia Rebaudiana L.) leaf extract on the quality and shelf life of lemon (Citrus limon L.). Pure Appl. Biol. 2019, 8, 1456–1468. [Google Scholar] [CrossRef]
- Izzreen, I.; Nawirah Alia, B.; Fatin Nadhirah, H.; Johari, K.; Nafisah, M.; Syida, W. Influence of monk fruit and stevia as natural sweeteners on the hardness, total phenolic content, antioxidant activity, and sensory evaluation of omega dark chocolate. Malays. Cocoa J. 2024, 16, 70–77. [Google Scholar]
- Mujianto, M.; Zalizar, L.; Damat, D.; Relawati, R.; Harahap, B.; Iswahyudi, I.; Sustiyana, S. Effect of the proportion of stevia leaf extract (Stevia rebaudiana B) on the chemical characteristic properties of functional pudding. Environ. Agric. Manag. 2024, 1, 29–40. [Google Scholar] [CrossRef]
- Chughtai, M.F.J.; Pasha, I.; Butt, M.S.; Asghar, M. Biochemical and nutritional attributes of Stevia rebaudiana grown in Pakistan. Prog. Nutr. 2019, 21, 210–222. [Google Scholar]
- Siddique, A.; Rahman, S.M.; Hossain, M.A. Chemical composition of essential oil by different extraction methods and fatty acid analysis of the leaves of Stevia rebaudiana Bertoni. Arab. J. Chem. 2016, 9, S1185–S1189. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Ah-Hen, K.; Vega-Gálvez, A.; Honores, C.; Moraga, N.O. Stevia rebaudiana leaves: Effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum. Nutr. 2016, 71, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Vidyanagar, V. Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. J. Med. Sci. 2006, 6, 321–326. [Google Scholar]
- Di Monaco, R.; Miele, N.A.; Cabisidan, E.K.; Cavella, S. Strategies to reduce sugars in food. Curr. Opin. Food Sci. 2018, 19, 92–97. [Google Scholar] [CrossRef]
- Sutwal, R.; Dhankhar, J.; Kindu, P.; Mehla, R. Development of low calorie jam by replacement of sugar with natural sweetener stevia. Int. J. Cur. Res. Rev. 2019, 11, 10. [Google Scholar] [CrossRef]
- Márquez, C.J.; Caballero, B.L.; Vanegas, K.M. Effect of noncaloric sweeteners on the development of blackberry (Rubus glaucus Benth) jam. Rev. Temas Agrar. 2016, 21, 32–39. [Google Scholar] [CrossRef]
- Castro Escorcia, Y.M.; Blanco Villadiego, D.; Claro Vásquez, M.J.; Altamar Pérez, T.d.J.; Olmos Blanquicett, L.L. Caracterización fisicoquímica de un néctar obtenido a partir del yacón (Smallanthus sonchifolius), pera (Pyrus communis) y stevia (Stevia rebaudiana). Rev. Colomb. Investig. Agroind. 2019, 6, 81–94. [Google Scholar] [CrossRef]
- Zaquinaula, I.R.A. Características fisicoquímicas y sensoriales del néctar de cocona (Solanum sessiliflorum Dunal) con extracto de stevia (Stevia rebaudiana Bertoni). Rev. Cient. Pakamuros 2017, 5, 15. [Google Scholar] [CrossRef]
- Bender, C.; Killermann, K.V.; Rehmann, D.; Weidlich, H.H. Effect of Stevia rebaudiana Bert. addition on the antioxidant activity of red raspberry (Rubus idaeus L.) juices. Beverages 2018, 4, 52. [Google Scholar] [CrossRef]
- Christofi, M. The Effect of Canning Process on Textural Properties, Sensorial Attributes and Bioactive Content of Non-Melting Peach Cultivars. Ph.D. Thesis, Cyprus University of Technology, Limassol, Cyprus, 2021. [Google Scholar]
- Crown, E.; Rovai, D.; Racette, C.M.; Barbano, D.M.; Drake, M.A. Consumer Perception of Sweeteners in Yogurt. J. Dairy Sci. 2024, 107, 10552–10570. [Google Scholar] [CrossRef]
- Ribeiro, A.; Soares, M.; Valério, N.; Lanao, M.; Vázquez, R.; Vilarinho, C.; Carvalho, J. Peach processing wastes stabilization: Effect on the physical-chemical and microbiological properties. In WASTES: Solutions, Treatments and Opportunities IV; CRC Press: Boca Raton, FL, USA, 2023; pp. 452–457. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014, 12, 3894. [Google Scholar]
- Safavieh, M.; Nahar, S.; Zourob, M.; Ahmed, M. Microfluidic biosensors for high throughput screening of pathogens in food. In High Throughput Screening for Food Safety Assessment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 327–357. [Google Scholar]
- Ashwell, M. Stevia, nature’s zero-calorie sustainable sweetener: A new player in the fight against obesity. Nutr. Today 2015, 50, 129. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). 2020/351 of 28 February 2020 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Use of Citric Acid (E 330) in Cocoa and Chocolate Products. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020R0351 (accessed on 10 January 2025).
- Wu, J.; Sabag-Daigle, A.; Metz, T.O.; Deatherage Kaiser, B.L.; Gopalan, V.; Behrman, E.J.; Wysocki, V.H.; Ahmer, B.M. Measurement of fructose–asparagine concentrations in human and animal foods. J. Agric. Food Chem. 2018, 66, 212–217. [Google Scholar] [CrossRef] [PubMed]
- EU. Regulation (EC) No 1924/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2006, 409, 23. [Google Scholar]
- Tašić, J.; Takács, M.; Kovács, L. Control engineering methods for blood glucose levels regulation. Acta Polytech. Hung. 2022, 19, 127–152. [Google Scholar] [CrossRef]
- Zare, M.; Zeinalabedini, M.; Koujan, S.E.; Bellissimo, N.; Azadbakht, L. Effect of stevia on blood glucose and HbA1C: A meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 103092. [Google Scholar] [CrossRef] [PubMed]
- Kossiva, L.; Kakleas, K.; Christodouli, F.; Soldatou, A.; Karanasios, S.; Karavanaki, K. Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients 2024, 16, 3162. [Google Scholar] [CrossRef]
- Gupta, E.; Purwar, S.; Sundaram, S.; Rai, G.K. Nutritional and therapeutic values of Stevia rebaudiana: A review. J. Med. Plants Res. 2013, 7, 3343–3353. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, G.; Shu, B.; Huang, F.; Dong, L.; Zhang, R.; Su, D. Comparison of the phenolic profiles and physicochemical properties of different varieties of thermally processed canned lychee pulp. RSC Adv. 2020, 10, 6743–6751. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Vareltzis, P.; Gortzi, O. A Systematic Review of the Twelve Most Popular Bean Varieties, Highlighting Their Potential as Functional Foods Based on the Health Benefits Derived from Their Nutritional Profiles, Focused on Non-Communicable Diseases. Appl. Sci. 2024, 14, 10215. [Google Scholar] [CrossRef]
- Bento, C.; Goncalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus persica): Phytochemicals and health benefits. Food Rev. Int. 2022, 38, 1703–1734. [Google Scholar] [CrossRef]
- Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients 2018, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Masoodi, H.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P. Stevia, sucralose and sucrose added to a maqui-Citrus beverage and their effects on glycemic response in overweight subjects: A randomized clinical trial. LWT 2021, 144, 111173. [Google Scholar] [CrossRef]
- Stamataki, N.S.; Crooks, B.; Ahmed, A.; McLaughlin, J.T. Effects of the daily consumption of stevia on glucose homeostasis, body weight, and energy intake: A randomised open-label 12-week trial in healthy adults. Nutrients 2020, 12, 3049. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, S.; Jeppesen, P.B.; Holst, J.J.; Hermansen, K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004, 53, 73–76. [Google Scholar] [CrossRef]
- Chowdhury, A.I.; Rahanur Alam, M.; Raihan, M.M.; Rahman, T.; Islam, S.; Halima, O. Effect of stevia leaves (Stevia rebaudiana Bertoni) on diabetes: A systematic review and meta-analysis of preclinical studies. Food Sci. Nutr. 2022, 10, 2868–2878. [Google Scholar] [CrossRef]
- Ritu, M.; Nandini, J. Nutritional composition of Stevia rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J. Sci. Food Agric. 2016, 96, 4231–4234. [Google Scholar] [CrossRef]
- Dyson, P. Low Carbohydrate Diets and Type 2 Diabetes: What is the Latest Evidence? Diabetes Ther. 2015, 6, 411–424. [Google Scholar] [CrossRef]
- Rashid, Z.; Ahngar, T.A.; Nazir, A.; Dar, Z.; Khuroo, N.; Majeed, S.; Naseer, S.; Bashir, S.; Rakshanda, A.; Iqbal, S. Research Technology of Stevia. Cut. Edge Res. Agric. Sci. 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Miličić, V.; Thorarinsdottir, R.; Dos Santos, M.; Turnšek Hančič, M. Commercial aquaponics approaching the European market: To consumers’ perceptions of aquaponics products in Europe. Water 2017, 9, 80. [Google Scholar] [CrossRef]
- Garcia-Lopez, E.G.; Sayago-Ayerdi, S.G.; de los Angeles, V.-V.; De Lourdes Garcia-Magana, M.; Aldrate-Herrera, P.I.; Montalvo-Gonzalez, E. Guava purees with addition of agave fructans and natural sweeteners as potential functional products. J. Food Nutr. Res. 2017, 56, 265. [Google Scholar]
- Gaddie, E. Sensory Evaluation of Black Bean Brownies Prepared with Sugar Substitutes. 2022. Available online: https://scholarlycommons.obu.edu/scholars_day_conference/2022/posters/39/ (accessed on 10 January 2025).
- Belščak-Cvitanović, A.; Komes, D.; Dujmović, M.; Karlović, S.; Biškić, M.; Brnčić, M.; Ježek, D. Physical, bioactive and sensory quality parameters of reduced sugar chocolates formulated with natural sweeteners as sucrose alternatives. Food Chem. 2015, 167, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Brothers, C.J. Nutritional content of non-dairy frozen desserts. Nutrients 2022, 14, 4150. [Google Scholar] [CrossRef] [PubMed]
- Stamatovska, V.; Karakasova, L.; Babanovska-Milenkovska, F.; Nakov, G.; Blazevska, T.; Durmishi, N. Production and characterization of plum jams with different sweeteners. J. Hyg. Eng. Des. 2017, 6, 67–77. [Google Scholar]
- Li, X.; Zhang, A.; Atungulu, G.; McHugh, T.; Delwiche, M.; Lin, S.; Zhao, L.; Pan, Z. Characterization and multivariate analysis of physical properties of processing peaches. Food Bioprocess Technol. 2014, 7, 1756–1766. [Google Scholar] [CrossRef]
- Lyu, J.; Yu, X.; Wang, F.; Xie, J.; Bi, J. Cell wall modifications during storage: Changes in the texture behavior of the canned yellow peach. Innov. Food Sci. Emerg. Technol. 2024, 91, 103549. [Google Scholar] [CrossRef]
- Kyroglou, S.; Ritzoulis, C.; Theocharidou, A.; Vareltzis, P. Physicochemical Factors Affecting the Rheology and Stability of Peach Puree Dispersions. ChemEngineering 2024, 8, 119. [Google Scholar] [CrossRef]
Ingredients | Stevia Strong | Stevia Medium | Agave Stevia | Glucose/Sugar | Water |
---|---|---|---|---|---|
Peaches | 340 | 340 | 340 | 340 | 340 |
Stevia | 0.4 | 0.3 | 0.15 | - | - |
Agave syrup | - | - | 30 | - | - |
Sugar | - | - | - | 35 | - |
Citric oxide | 1.5 | 1.5 | 1.5 | 1.5 | - |
Ascorbic acid | 0.5 | 0.5 | 0.5 | 0.5 | - |
Glucose | - | - | - | 30 | - |
Aeration temperature (°C) | 92 | 93 | 93 | 92 | 93 |
Aeration time (min) | 17.5 | 18 | 16 | 14 | 18 |
Pasteurization temperature (°C) | 95 | 96 | 95 | 94 | 96 |
Pasteurization time (min) | 28 | 30 | 26 | 25 | 30 |
Canned Peaches | Total Viable Count | Yeasts | Molds | Total Coliforms | Escherichia coli | Coagulase-positive staphylococci | Clostridium perfringens | Bacillus cereus | Lactobacillus spp. |
---|---|---|---|---|---|---|---|---|---|
1 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <20 | <10 |
2 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <20 | <10 |
3 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <20 | <10 |
4 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <20 | <10 |
5 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <20 | <10 |
Canned Peach | Hardness (g) | Cohesiveness | Springiness % | Adhesion (mJ) | Chewiness (g) |
---|---|---|---|---|---|
Sugar Free with higher amount of Stevia | 552.3 ± 153.1 A | 0.14 ± 0.01 B | 30.61 ± 2.64% B | 0.52 ± 0.04 B | 23.8 ± 6.1 B |
Sugar Added | 585.4 ± 172.8 A | 0.20 ± 0.03 A | 46.54 ± 4.52% A | 0.67 ± 0.14 A | 53.1 ± 17.3 A |
Canned Peaches | Initial (g Protein/100 g Sample) | Intestinal (g Protein/100 g Sample) | Bioaccessibility Index |
---|---|---|---|
Sugar free with higher amount of Stevia | 0.45 ± 0.02 A,a | 0.48 ± 0.03 A,b | 1.09 ± 0.17 A |
Sugar added | 0.40 ± 0.01 A,a | 0.32 ± 0.01 B,a | 0.80 ± 0.13 B |
Canned Peaches | Initial (g Glucose/g Sample) | Intestinal (g Glucose/g Sample) | Bioaccessibility Index |
---|---|---|---|
Sugar free with higher amount of Stevia | 6.4 ± 0.1 B,a | 6.4 ± 0.2 B,a | 1.00 ± 0.05 A |
Sugar added | 15.8 ± 0.1 A,a | 10.8 ± 0.2 A,b | 0.68 ± 0.01 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papachristoudis, I.P.; Dimopoulou, M.; Kyroglou, S.; Vareltzis, P.; Gortzi, O. Development of Novel Canned Peaches (Fercluse Variety) as a Healthy and Possible Diabetic Food Choice. Appl. Sci. 2025, 15, 3336. https://doi.org/10.3390/app15063336
Papachristoudis IP, Dimopoulou M, Kyroglou S, Vareltzis P, Gortzi O. Development of Novel Canned Peaches (Fercluse Variety) as a Healthy and Possible Diabetic Food Choice. Applied Sciences. 2025; 15(6):3336. https://doi.org/10.3390/app15063336
Chicago/Turabian StylePapachristoudis, Ioannis Prodromos, Maria Dimopoulou, Smaro Kyroglou, Patroklos Vareltzis, and Olga Gortzi. 2025. "Development of Novel Canned Peaches (Fercluse Variety) as a Healthy and Possible Diabetic Food Choice" Applied Sciences 15, no. 6: 3336. https://doi.org/10.3390/app15063336
APA StylePapachristoudis, I. P., Dimopoulou, M., Kyroglou, S., Vareltzis, P., & Gortzi, O. (2025). Development of Novel Canned Peaches (Fercluse Variety) as a Healthy and Possible Diabetic Food Choice. Applied Sciences, 15(6), 3336. https://doi.org/10.3390/app15063336