Sewer Cleaning Robot: A Visually Assisted Cleaning Robot for Sewers
Abstract
:1. Introduction
2. Hardware System Design of SCR
2.1. Hardware Mechanism Design
2.2. Control System Hardware Parameters
3. Software Algorithm Design
3.1. Defect Detection Modeling in Sewers
3.2. Monocular Visual Localization
3.3. 3-DoF Arm Kinematic Analysis
4. Results of Experiments and Discussions
4.1. Mobile Platform Crossing Test
4.2. Monocular Vision Defect Detection and Localization Experiment
4.3. In-Pipe Obstacle Cleaning Experiments
5. Conclusions
- Key Features:
- –
- A mobile platform with a pressing mechanism to enhance stability and obstacle-crossing capabilities.
- –
- The arm uses cost-effective, structurally stable linear actuators in pitch joints to meet high-load requirements and ensure operational stability.
- –
- The integration of the YOLO defect detection model and a monocular vision localization algorithm for a Detection–Localization–Cleaning mode.
- Advantages:
- –
- Enhances cleaning precision and efficiency through defect detection and target localization algorithms.
- –
- Reduces operator burden and improves decision-making speed in complex pipeline scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Nover, D.; Fan, J.; Yang, G.; Chen, W.; Meng, H.; Liu, C. Floods and associated socioeconomic damages in China over the last century. Nat. Hazards 2016, 82, 401–413. [Google Scholar]
- Kazeminasab, S.; Sadeghi, N.; Janfaza, V.; Razavi, M.; Ziyadidegan, S.; Banks, M.K. Localization, mapping, navigation, and inspection methods in in-pipe robots: A review. IEEE Access 2021, 9, 162035–162058. [Google Scholar] [CrossRef]
- Jang, H.; Kim, T.Y.; Lee, Y.C.; Kim, Y.S.; Kim, J.; Lee, H.Y.; Choi, H.R. A review: Technological trends and development direction of pipeline robot systems. J. Intell. Robot. Syst. 2022, 105, 59. [Google Scholar]
- Moradi, S.; Zayed, T.; Golkhoo, F. Review on computer aided sewer pipeline defect detection and condition assessment. Infrastructures 2019, 4, 10. [Google Scholar] [CrossRef]
- Guo, W.; Soibelman, L.; Garrett Jr, J. Automated defect detection for sewer pipeline inspection and condition assessment. Autom. Constr. 2009, 18, 587–596. [Google Scholar]
- Yin, X.; Chen, Y.; Bouferguene, A.; Zaman, H.; Al-Hussein, M.; Kurach, L. A deep learning-based framework for an automated defect detection system for sewer pipes. Autom. Constr. 2020, 109, 102967. [Google Scholar]
- Fang, X.; Li, Q.; Zhu, J.; Chen, Z.; Zhang, D.; Wu, K.; Ding, K.; Li, Q. Sewer defect instance segmentation, localization, and 3D reconstruction for sewer floating capsule robots. Autom. Constr. 2022, 142, 104494. [Google Scholar] [CrossRef]
- Nguyen, T.; Blight, A.; Pickering, A.; Jackson-Mills, G.; Barber, A.R.; Boyle, J.H.; Richardson, R.; Dogar, M.; Cohen, N. Autonomous control for miniaturized mobile robots in unknown pipe networks. Front. Robot. AI 2022, 9, 997415. [Google Scholar]
- Rayhana, R.; Yun, H.; Liu, Z.; Kong, X. Automated defect-detection system for water pipelines based on CCTV inspection videos of autonomous robotic platforms. IEEE/ASME Trans. Mechatron. 2023, 29, 2021–2031. [Google Scholar]
- Cheng, J.C.; Wang, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 2018, 95, 155–171. [Google Scholar]
- Aitken, J.M.; Evans, M.H.; Worley, R.; Edwards, S.; Zhang, R.; Dodd, T.; Mihaylova, L.; Anderson, S.R. Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: A review. IEEE Access 2021, 9, 140173–140198. [Google Scholar] [CrossRef]
- Summan, R.; Dobie, G.; Guarato, F.; MacLeod, C.; Marshall, S.; Forrester, C.; Pierce, G.; Bolton, G. Image mosaicing for automated pipe scanning. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2015; Volume 1650, pp. 1334–1342. [Google Scholar]
- Mikolajczyk, T. Manufacturing using robot. Adv. Mater. Res. 2012, 463, 1643–1646. [Google Scholar]
- Tugeumwolachot, T.; Seki, H.; Tsuji, T.; Hiramitsu, T. Development of a compact sewerage robot with multi-DOF cutting tool. Artif. Life Robot. 2021, 26, 404–411. [Google Scholar] [CrossRef]
- Abidin, A.S.Z.; Zaini, M.H.; Pauzi, M.F.A.M.; Sadini, M.M.; Chie, S.C.; Mohammadan, S.; Jamali, A.; Muslimen, R.; Ashari, M.F.; Jamaludin, M.S.; et al. Development of cleaning device for in-pipe robot application. Procedia Comput. Sci. 2015, 76, 506–511. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.H.; Jeong, M.S.; Suh, J.H.; Chung, G.B.; Han, K.R.; Choi, I.S. Development of pipe cleaning robot for the industry pipe facility. J. Korea Robot. Soc. 2017, 12, 65–77. [Google Scholar]
- Jung, C.D.; Chung, W.J.; Ahn, J.S.; Kim, M.S.; Shin, G.S.; Kwon, S.J. Optimal mechanism design of in-pipe cleaning robot. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 1327–1332. [Google Scholar]
- Tugeumwolachot, T.; Seki, H.; Tsuji, T.; Hiramitsu, T. Development of a multi-dof cutting tool with a foldable supporter for compact in-pipe robot. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–9 August 2022; pp. 587–592. [Google Scholar]
- SEWER Robotics. Available online: https://www.sewerrobotics.com/ (accessed on 15 January 2025).
- IMS ROBOTICS. Available online: https://www.ims-robotics.de/en/home/ (accessed on 15 January 2025).
- S1E. Robotic. Available online: https://www.s1e.co.uk/ (accessed on 15 January 2025).
- Sulthana, S.F.; Vibha, K.; Kumar, S.; Mathur, S.; Mohile, T.A. Modelling and design of a drain cleaning robot. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 24–29 February 2020; IOP Publishing: Bristol, UK, 2020; Volume 912, p. 022049. [Google Scholar]
- Awasthi, T.; Purohit, A.; Shah, U.; Sakya, G. A novel design of a drain cleaning robotic vehicle. In Automation and Computation; CRC Press: Boca Raton, FL, USA, 2023; pp. 420–426. [Google Scholar]
- Zhao, X.; Xiao, N.; Cai, Z.; Xin, S. YOLOv5-Sewer: Lightweight Sewer Defect Detection Model. Appl. Sci. 2024, 14, 1869. [Google Scholar] [CrossRef]
- Workspace, N. Storm Drain Model Dataset. Available online: https://universe.roboflow.com/new-workspace-zyqyt/storm-drain-model (accessed on 15 January 2025).
- Rootdataset. Pipe Root Dataset. Available online: https://universe.roboflow.com/rootdataset/pipe_root (accessed on 15 January 2025).
- Yougao, L.; Wei, H. Identification and feature extraction of drainage pipeline cracks based on SVD and edge recognition method. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; pp. 1184–1188. [Google Scholar]
- Ming, Y.; Meng, X.; Fan, C.; Yu, H. Deep learning for monocular depth estimation: A review. Neurocomputing 2021, 438, 14–33. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Chen, Y.; Yang, B.; Liu, D. A triangulation-based visual localization for field robots. IEEE/CAA J. Autom. Sin. 2022, 9, 1083–1086. [Google Scholar]
Parameter | Value |
---|---|
Size | 1210 mm |
Weight | 42 kg |
Adaptable Pipe Radius | 280–780 mm |
Operation Length Range | 50 m |
Signal Type | 485/CAN |
Operation Method | Joystick, Keyboard |
Turning Limitation | Limited to minor deviations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, B.; Zhang, L.; Cai, Z. Sewer Cleaning Robot: A Visually Assisted Cleaning Robot for Sewers. Appl. Sci. 2025, 15, 3426. https://doi.org/10.3390/app15073426
Xiong B, Zhang L, Cai Z. Sewer Cleaning Robot: A Visually Assisted Cleaning Robot for Sewers. Applied Sciences. 2025; 15(7):3426. https://doi.org/10.3390/app15073426
Chicago/Turabian StyleXiong, Bo, Lei Zhang, and Zhaoyang Cai. 2025. "Sewer Cleaning Robot: A Visually Assisted Cleaning Robot for Sewers" Applied Sciences 15, no. 7: 3426. https://doi.org/10.3390/app15073426
APA StyleXiong, B., Zhang, L., & Cai, Z. (2025). Sewer Cleaning Robot: A Visually Assisted Cleaning Robot for Sewers. Applied Sciences, 15(7), 3426. https://doi.org/10.3390/app15073426