Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment
Abstract
:1. Introduction
- Cell proliferation (NRAS, BRAF, NF1).
- Growth and metabolism (STK11, PTEN, KIT).
- Reproductive capacity (TERT).
- Cell cycle regulation (CDKN2A).
- Resistance to apoptosis (TP53).
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
- Observational studies, randomized clinical trials, and registry/database studies.
- Published in English between 2018 and 2024.
- Included human subjects aged 18 years or older.
- Investigated the role of artificial intelligence, machine learning, or deep learning, in the detection, classification, segmentation, or prediction of malignant transformation of choroidal nevi into choroidal melanoma.
- Utilized ophthalmic diagnostic tools, such as US, OCT, or fundus photography.
- Reported measurable performance metrics, such as accuracy, sensitivity, specificity, Dice score, F1 score, or AUC (area under the curve).
- Systematic reviews, narrative reviews, scoping reviews, surveys, editorials, case reports, preprints, conference abstracts, or presentations.
- Did not include human subjects.
- Did not provide data specifically on choroidal nevi, choroidal melanoma, or uveal melanoma.
- Relied solely on genome-based data from gene banking without incorporating ophthalmic imaging modalities.
- Did not utilize artificial intelligence, machine learning, or deep learning techniques.
- Did not utilize US, OCT, or fundus images.
- Articles with full text unavailable.
2.3. Data Extraction
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Overview of Selected Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AJCC | American joint committee on cancer |
AUC | Area under the curve |
AUROC/AUCROC | Area under the receiver operating characteristic curve |
AUPRC | Area under the precision-recall curve |
CFP | Color fundus photography |
CHRPE | Congenital hypertrophy of the retinal pigmented epithelium |
CN | Choroidal nevus |
CNN | Convolutional neural network |
CM | Choroidal melanoma |
COMS | Collaborative ocular melanoma study |
DenseNet | Densely connected convolutional network |
DL | Deep learning |
EU | European Union |
FA | Fluorescein angiography |
FAF | Fundus autofluorescence |
GAN | Generative adversarial network |
GDPR | General data protection regulation |
LASSO | Least absolute shrinkage and selection operator |
LGBM | Light Gradient Boosting Model |
MD-GRU | Multi-dimensional gated recurrent unit |
ML | Machine learning |
NR | Not reported |
OCT | Optical coherence tomography |
PCL | Pigmented choroidal lesion |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ReLU | Rectified linear unit |
ResNet | Residual network |
RPE | Retinal pigment epithelium |
SAINTS | Simple AI Nevus Transformation System |
SCM | Small choroidal melanoma |
SD-OCT | Spectral-domain optical coherence tomography |
SF-FP | Standard-field fundus photography |
SHAP | Shapley additive explanations |
SNP | Single nucleotide polymorphism |
SRF | Subretinal fluid |
SSL | Self-supervised learning |
UBM | Ultrasound biomicroscopy |
UM | Uveal melanoma |
US | Ultrasound |
UWF | Ultra-wide-field |
WF-FP | Wide-field fundus photography |
WHO | World Health Organization |
XAI | Explainable artificial intelligence |
XGBoost | eXtreme Gradient Boosting |
References
- Gelmi, M.C.; Jager, M.J. Uveal melanoma: Current evidence on prognosis, treatment and potential developments. Asia-Pac. J. Ophthalmol. 2024, 13, 100060. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, N.J.; Marinkovic, M.; Bleeker, J.C.; El Filali, M.; Stefansson, E.; Luyten GP, M.; Jager, M.J. Retinal Oximetry is Altered in Eyes with Choroidal Melanoma but not in Eyes with Choroidal Nevi. Retina 2020, 40, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Marous, C.L.; Shields, C.L.; Yu, M.D.; Dalvin, L.A.; Ancona-Lezama, D.; Shields, J.A. Malignant transformation of choroidal nevus according to race in 3334 consecutive patients. Indian J. Ophthalmol. 2019, 67, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.D.; Grossniklaus, H.E. What’s in a Name? Large Choroidal Nevus, Small Choroidal Melanoma, or Indeterminate Melanocytic Tumor. Ocul. Oncol. Pathol. 2021, 7, 235–238. [Google Scholar] [CrossRef]
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef]
- Cheung, A.; Scott, I.U.; Murray, T.G.; Shields, G.L. Distinguishing a choroidal nevus from a choroidal melanoma. EyeNet Magazine, 1 February 2012. [Google Scholar]
- Stålhammar, G.; Gill, V.T. Digital morphometry and cluster analysis identifies four types of melanocyte during uveal melanoma progression. Commun. Med. 2023, 3, 60. [Google Scholar] [CrossRef]
- Stålhammar, G.; Herrspiegel, C. Long-term relative survival in uveal melanoma: A systematic review and meta-analysis. Commun. Med. 2022, 2, 18. [Google Scholar] [CrossRef]
- Santos-Buitrago, B.; Santos-Garcia, G.; Hernández-Galilea, E. Artificial intelligence for modeling uveal melanoma. Artif. Intell. Cancer 2020, 1, 51–65. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, H.; Lee, S.M.; Choi, E.Y.; Lee, J.; Kim, M. Clinical and Multimodal Imaging Features of Choroidal Nevi in the Korean Population. J. Clin. Med. 2022, 11, 6666. [Google Scholar] [CrossRef]
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal melanoma. Nat. Rev. Dis. Primers 2020, 6, 24. [Google Scholar] [CrossRef]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Honavar, S.G. Artificial intelligence in ophthalmology—Machines think! Indian J. Ophthalmol. 2022, 70, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Chawla, B.; Ganesh, K.B. Applications of Artificial Intelligence in Ocular Oncology. Adv. Ophthalmol. Optom. 2023, 8, 111–122. [Google Scholar] [CrossRef]
- Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Somepalli, G.; Goldblum, M.; Schwarzschild, A.; Bruss, C.B.; Goldstein, T. SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training. arXiv 2021, arXiv:2106.01342. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Isensee, F.; Wald, T.; Ulrich, C.; Baumgartner, M.; Roy, S.; Maier-Hein, K.H.; Jaeger, P.F. nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation. arXiv 2024, arXiv:2404.09556. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, S.; Cheng, T.; Xu, Y.; Lu, L.; He, J.; Yu, T.; Peng, Y.; Zhang, Y.; Zou, H.; et al. RETFound-enhanced community-based fundus disease screening: Real-world evidence and decision curve analysis. npj Digit. Med. 2024, 7, 108. [Google Scholar] [CrossRef]
- Jiang, Y.; He, Y.; Zhang, H. Variable Selection with Prior Information for Generalized Linear Models via the Prior LASSO Method. J. Am. Stat. Assoc. 2016, 111, 355–376. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Zabor, E.C.; Raval, V.; Luo, S.; Pelayes, D.E.; Singh, A.D. A Prediction Model to Discriminate Small Choroidal Melanoma from Choroidal Nevus. Ocul. Oncol. Pathol. 2022, 8, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Valmaggia, P.; Friedli, P.; Hörmann, B.; Kaiser, P.; Scholl HP, N.; Cattin, P.C.; Sandkühler, R.; Maloca, P.M. Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data with Deep Learning. Transl. Vis. Sci. Technol. 2022, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Iddir, S.P.; Ganesh, S.; Yi, D.; Heiferman, M.J. Automated segmentation for early detection of uveal melanoma. Can. J. Ophthalmol. 2024, 59, e784–e791. [Google Scholar] [CrossRef]
- Dadzie, A.K.; Iddir, S.P.; Abtahi, M.; Ebrahimi, B.; Le, D.; Ganesh, S.; Son, T.; Heiferman, M.J.; Yao, X. Colour fusion effect on deep learning classification of uveal melanoma. Eye 2024, 38, 2781–2787. [Google Scholar] [CrossRef]
- Hoffmann, L.; Runkel, C.B.; Künzel, S.; Kabiri, P.; Rübsam, A.; Bonaventura, T.; Marquardt, P.; Haas, V.; Biniaminov, N.; Biniaminov, S.; et al. Using Deep Learning to Distinguish Highly Malignant Uveal Melanoma from Benign Choroidal Nevi. J. Clin. Med. 2024, 13, 4141. [Google Scholar] [CrossRef]
- Tailor, P.D.; Kopinski, P.K.; D’Souza, H.S.; Leske, D.A.; Olsen, T.W.; Shields, C.L.; Shields, J.A.; Dalvin, L.A. Predicting Choroidal Nevus Transformation to Melanoma Using Machine Learning. Ophthalmol. Sci. 2024, 5, 100584. [Google Scholar] [CrossRef]
- Sabazade, S.; Lumia Michalski, M.A.; Bartoszek, J.; Fili, M.; Holmström, M.; Stålhammar, G. Development and Validation of a Deep Learning Algorithm for Differentiation of Choroidal Nevi from Small Melanoma in Fundus Photographs. Ophthalmol. Sci. 2024, 5, 100613. [Google Scholar] [CrossRef]
- Jackson, M.; Kalirai, H.; Hussain, R.N.; Heimann, H.; Zheng, Y.; Coupland, S.E. Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images. Ophthalmol. Sci. 2024, 5, 100647. [Google Scholar] [CrossRef]
- European Parliament. EU AI Act: First Regulation on Artificial Intelligence (n.d.); European Parliament: Strasbourg, France, 2023; Available online: https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (accessed on 25 February 2025).
- European Union General Data Protection Regulation (GDPR). Available online: https://gdpr.eu/ (accessed on 25 February 2025).
MOLES | TFSOM-UHHD |
---|---|
M: Mushroom shape | T: Thickness > 2 mm |
O: Orange pigment | F: Fluid (subretinal) |
L: Large size | S: Symptoms |
E: Enlargement | O: Orange pigment |
S: Subretinal fluid | M: Margin ≤ 3 mm to disc |
UH: Ultrasonographic hollowness | |
H: Halo absence | |
D: Drusen absence |
Author (Year) | Disease Type | Objective | Imaging Modality | No of Images | No of Patients | XAI | AI Type | AI Algorithm | Performance Metrics |
---|---|---|---|---|---|---|---|---|---|
Zabor (2021) [25] | Small choroidal melanoma, Choroidal nevi | Diagnosis, Prediction, Risk factor identification | CFP US | NR | 123 | NR | ML | LASSO logistic regression | Training data: AUC: 0.880, Optimism-Corrected AUC: 0.849 External data: AUC: 0.861 |
Valmaggia (2022) [26] | Pigmented choroidal lesions | Segmentation | OCT | 121 | 71 | NR | DL | MD-GRU, V-Net, nnU-Net | MD-GRU (3D): Recall: 0.60 ± 0.31, Dice: 0.62 ± 0.23 V-Net (3D): Recall: 0.61 ± 0.25, Dice: 0.59 ± 0.24 nnU-Net (3D): Recall: 0.77 ± 0.22, Dice: 0.78 ± 0.13 |
Ma (2024) [27] | Uveal melanoma, Choroidal nevi, CHRPE | Segmentation | UWF | 516 | 479 | NR | DL | DeepLabv3 | Lesion-based segmentation: Dice (UM): 0.87, Dice (CN): 0.81, Dice (CHRPE): 0.85 Image-based segmentation: Dice (UM): 0.86, Dice (CN): 0.81, Dice (CHRPE): 0.85 Lesion detection per image: Sensitivity (UM): 1.00 Sensitivity (CN): 0.90 Sensitivity (CHRPE): 0.87 Detection without lesions per image: Sensitivity (UM): 0.77 Sensitivity (CN): 0.67 Sensitivity (CHRPE): 0.77 Specificity: 0.93 |
Dadzie (2024) [28] | Uveal melanoma, Choroidal nevi | Classification | UWF | 798 | 438 | NR | DL | DenseNet121 | Best models for 2-step pipeline Red only (Control vs. Lesion): Accuracy: 80.45%, F1 Score: 0.7984, AUC: 0.8548 Red only (UM vs. nevi): Accuracy: 88.12%, F1 Score: 0.8218 AUC: 0.9069 Intermediate fusion (control vs. lesion): Accuracy: 83.31%, F1 Score: 0.8523, AUC: 0.8999 Intermediate fusion (UM vs. nevi): Accuracy: 92.24%, F1 Score: 0.8788, AUC: 0.9781 Best models for multi-class classification: Red only: Accuracy: 83.03%, F1 Score: 0.7364, AUC: 0.8605 Intermediate fusion: Accuracy: 89.31%, F1 Score: 0.8471, AUC: 0.9467 |
Hoffmann (2024) [29] | Choroidal nevi, Untreated choroidal melanoma, Irradiated choroidal melanoma | Diagnosis | CFP | 762 | NR | NR | DL | ResNet50, EfficientNet B4, Vision transformer (SAM weights), ConvNext Base | Multi-class classification ResNet50: Accuracy: 92.65% EfficientNet B4: Accuracy: 86.67% Vision transformer (SAM weights): Accuracy: 79.41% ConvNext Base: Accuracy: 77.94% Final binary classification Accuracy: 90.9%, AUC: 0.99 Final multi-class classification Accuracy: 84.8%, AUC: 0.96 |
Tailor (2024) [30] | Choroidal nevi, Choroidal melanoma | Prediction of transformation | CFP FAF SD-OCT B-scan US | NR | 2870 | SHAP | ML | XGBoost (SAINTS), LGBM, Random Forest, Extra Tree | XGBoost (SAINTS): AUROC (test): 0.864 (95% CI: 0.864–0.865) AUPRC (test): 0.244 (95% CI: 0.243–0.246) AUROC (validation): 0.931 (95% CI: 0.930–0.931) AUPRC (validation): 0.533 (95% CI: 0.531–0.535) LGBM: AUROC (test): 0.831 (95% CI: 0.831–0.832) AUPRC (test): 0.171 (95% CI: 0.169–0.172) AUROC (validation): 0.815 (95% CI: 0.814–0.815) AUPRC (validation): 0.277 (95% CI: 0.276–0.279) Random Forest: AUROC (test): 0.812 (95% CI: 0.811–0.813) AUPRC (test): 0.122 (95% CI: 0.121–0.123) AUROC (validation): 0.866 (95% CI: 0.866–0.867) AUPRC (validation): 0.418 (95% CI: 0.417–0.420) Extra Tree: AUROC (test): 0.826 (95% CI: 0.826–0.827) AUPRC (test): 0.119 (95% CI: 0.118–0.119) AUROC (validation): 0.915 (95% CI: 0.915–0.916) AUPRC (validation): 0.511 (95% CI: 0.509–0.513) Predicting performance for SAINTS In testing data: AUC: 0.910 (0.910–0.910) F1 score: 0.344 (0.342–0.345) Sensitivity: 0.635 (0.633–0.638) Specificity: 0.981(0.978–0.982) External validation: AUC: 0.889 (0.889–0.890) F1 score: 0.535 (0.534–0.536) Sensitivity: 0.869 (0.868–0.870) Specificity: 0.98 (0.982–0.986) |
Sabazade (2024) [31] | Small choroidal melanoma, Choroidal nevi | Classification, Segmentation | WF-FP SF-FP | 802 | 688 | NR | DL | U-net | In testing data: AUC: 0.88 (95% CI, 0.82–0.95) Sensitivity: 100%, Specificity: 74% External validation: AUC: 0.88 (95% CI, 0.74–1.00), Sensitivity: 80%, Specificity: 81% |
Jackson (2024) [32] | Uveal (choroidal) melanoma, Choroidal nevi | Classification | CFP | 27181 | 4255 | NR | DL | RETFound | Binary classification: Accuracy: 0.83, Specificity: 0.87, Sensitivity: 0.79, F1 score: 0.84, AUCROC: 0.90 Multi-class classification: Accuracy: 0.82, Specificity: 0.85, Sensitivity: 0.73, F1 score: 0.72, AUCROC: 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamanli, K.-E.; Maliagkani, E.; Petrou, P.; Papageorgiou, E.; Georgalas, I. Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment. Appl. Sci. 2025, 15, 3565. https://doi.org/10.3390/app15073565
Karamanli K-E, Maliagkani E, Petrou P, Papageorgiou E, Georgalas I. Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment. Applied Sciences. 2025; 15(7):3565. https://doi.org/10.3390/app15073565
Chicago/Turabian StyleKaramanli, Konstantina-Eleni, Eirini Maliagkani, Petros Petrou, Elpiniki Papageorgiou, and Ilias Georgalas. 2025. "Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment" Applied Sciences 15, no. 7: 3565. https://doi.org/10.3390/app15073565
APA StyleKaramanli, K.-E., Maliagkani, E., Petrou, P., Papageorgiou, E., & Georgalas, I. (2025). Artificial Intelligence in Decoding Ocular Enigmas: A Literature Review of Choroidal Nevus and Choroidal Melanoma Assessment. Applied Sciences, 15(7), 3565. https://doi.org/10.3390/app15073565