Player Tracking Data and Psychophysiological Features Associated with Mental Fatigue in U15, U17, and U19 Male Football Players: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Ethical Aspects
2.4. Data Collection
2.5. Variables
2.6. Data Preprocessing and Normalization
2.7. Classifying Algorithms Implementation
2.8. K-Nearest Neighbors Classifier
2.9. Gradient Boosting Classifier
2.10. Support Vector Machine
2.11. Random Forest Classifier
2.12. Decision Tree Classifier
2.13. Model Evaluation
- Accuracy score
- 2.
- Precision
- 3.
- Recall (sensitivity)
- 4.
- F1-score
3. Results
3.1. Variables Selection for ML Algorithm
3.2. Algorithm Performance in Predicting Perceived Exertion
3.3. Performance After Feature Selection
4. Discussion
5. Future Perspectives and Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemente, F.M.; Rabbani, A.; Araújo, J.P. Ratings of perceived recovery and exertion in elite youth soccer players: Interchangeability of 10-point and 100-point scales. Physiol. Behav. 2019, 210, 112641. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.F.T.; Figueira, A.J.; Miranda, M.L.J.; Chtourou, H.; Miranda, J.M.; Brandao, M.R.F. Psychophysiological indicators of fatigue in soccer players: A systematic review. Sci. Sports 2017, 32, 1–13. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Branquinho, L.; Silva, A.J.; Monteiro, A.M.; Barbosa, T.M. Integrating physical and tactical factors in football using positional data: A systematic review. PeerJ 2022, 10, e14381. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Branquinho, L.; Morgans, R.; Silva, A.J.; Monteiro, A.M.; Barbosa, T.M. Resultant equations for training load monitoring during a standard microcycle in sub-elite youth football: A principal components approach. PeerJ 2023, 11, e15806. [Google Scholar] [CrossRef]
- Brink, M.S.; Nederhof, E.; Visscher, C.; Schmikli, S.L.; Lemmink, K.A.P.M. Monitoring load, recovery, and performance in young elite soccer players. J. Strength Cond. Res. 2010, 24, 597. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring accumulated training and match load in football: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3906. [Google Scholar] [CrossRef]
- Vilamitjana, J.J.; Lentini, N.A.; Perez, M.F.; Verde, P.E. Heart Rate Variability as Biomarker of Training Load in Professional Soccer Players. Med. Sci. Sports Exerc. 2014, 46, 842–843. [Google Scholar] [CrossRef]
- Makivic, B.; Nikić, M.D.; Willis, M. Heart Rate Variability (HRV) as a Tool for Diagnostic and Monitoring Performance in Sport and Physical Activities. J. Exerc. Physiol. Online 2013, 16, 103–131. [Google Scholar]
- Nobari, H.; Azarian, S.; Saedmocheshi, S.; Valdés-Badilla, P.; García Calvo, T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023, 9, e19636. [Google Scholar] [CrossRef]
- Pino-Ortega, J.; Oliva-Lozano, J.M.; Gantois, P.; Nakamura, F.Y.; Rico-Gonzalez, M. Comparison of the validity and reliability of local positioning systems against other tracking technologies in team sport: A systematic review. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 236, 73–82. [Google Scholar] [CrossRef]
- Shvets, U.S.; Kniaz, I.O. Python and Data Science. 2021. Available online: https://essuir.sumdu.edu.ua/handle/123456789/86135 (accessed on 23 January 2025).
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Kampakis, S. Comparison of machine learning methods for predicting the recovery time of professional football players after an undiagnosed injury. MLSA@PKDD/ECML 2013, 1969, 58–68. [Google Scholar]
- Majumdar, A.; Bakirov, R.; Hodges, D.; Scott, S.; Rees, T. Machine Learning for Understanding and Predicting Injuries in Football. Sports Med. Open 2022, 8, 73. [Google Scholar] [CrossRef]
- Ali, A.; Jayaraman, R.; Azar, E.; Maalouf, M. A comparative analysis of machine learning and statistical methods for evaluating building performance: A systematic review and future benchmarking framework. Build. Environ. 2024, 252, 111268. [Google Scholar]
- Simonelli, C.; Formenti, D.; Rossi, A. Subjective recovery in professional soccer players: A machine learning and mediation approach. J. Sports Sci. 2025, 43, 448–455. [Google Scholar] [CrossRef]
- Freitas, D.N.; Mostafa, S.S.; Caldeira, R.; Santos, F.; Fermé, E.; Gouveia, É.R.; Morgado-Dias, F. Predicting noncontact injuries of professional football players using machine learning. PLoS ONE 2025, 20, e0315481. [Google Scholar]
- Díaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.Á.; Ramírez-Bravo, I.; Rubio-Morales, A.; García-Calvo, T. Mental Load and Fatigue Assessment Instruments: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 419. [Google Scholar] [CrossRef]
- Meng, T.; Yang, J.Y.; Huang, D.Y. Intervention of Football Players’ Training Effect Based on Machine Learning. In Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 14–16 January 2022; pp. 592–595. [Google Scholar] [CrossRef]
- Ferraz, R.; Forte, P.; Branquinho, L.; Teixeira, J.; Neiva, H.; Marinho, D.; Marques, M. The Performance during the Exercise: Legitimizing the Psychophysiological Approach. In Exercise Physiology; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Timler, A.; McIntyre, F.; Harris, S.; Hands, B. Does level of motor competence affect the associations between identity health and self-perceptions in adolescents? Hum. Mov. Sci. 2020, 74, 102710. [Google Scholar] [CrossRef]
- Sallen, J.; Andrä, C.; Ludyga, S.; Mücke, M.; Herrmann, C. School Children’s Physical Activity, Motor Competence, and Corresponding Self-Perception: A Longitudinal Analysis of Reciprocal Relationships. J. Phys. Act. Health 2020, 17, 1083–1090. [Google Scholar] [CrossRef]
- De Meester, A.; Barnett, L.M.; Brian, A.; Bowe, S.J.; Jiménez-Díaz, J.; Van Duyse, F.; Irwin, J.M.; Stodden, D.F.; D’Hondt, E.; Lenoir, M.; et al. The Relationship Between Actual and Perceived Motor Competence in Children, Adolescents and Young Adults: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 2001–2049. [Google Scholar] [CrossRef]
- Chang, C.J.; Putukian, M.; Aerni, G.; Diamond, A.B.; Hong, E.S.; Ingram, Y.M.; Reardon, C.L.; Wolanin, A.T. Mental Health Issues and Psychological Factors in Athletes: Detection, Management, Effect on Performance, and Prevention: American Medical Society for Sports Medicine Position Statement. Clin. J. Sport Med. 2020, 30, e61. [Google Scholar] [CrossRef]
- Souter, G.; Lewis, R.; Serrant, L. Men, Mental Health and Elite Sport: A Narrative Review. Sports Med. Open 2018, 4, 57. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Alves, A.R.; Ferraz, R.; Forte, P.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Effects of chronological age, relative age, and maturation status on accumulated training load and perceived exertion in young sub-elite football players. Front. Physiol. 2022, 13, 832202. [Google Scholar] [CrossRef] [PubMed]
- Aldanyowi, S.N.; AlOraini, L.I. Personalizing Injury Management and Recovery: A Cross-Sectional Investigation of Musculoskeletal Injuries and Quality of Life in Athletes. Orthop. Res. Rev. 2024, 16, 137–151. [Google Scholar] [PubMed]
- Wiewelhove, T.; Schneider, C.; Kellmann, M.; Pfeiffer, M.; Meyer, T.; Ferrauti, A. Recovery management in sport: Overview and outcomes of a nine-year multicenter research program. Int. J. Sports Sci. Coach. 2024, 19, 1223–1233. [Google Scholar]
- Preatoni, E.; Bergamini, E.; Fantozzi, S.; Giraud, L.I.; Bustos, A.S.O.; Vannozzi, G.; Camomilla, V. The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review. Sensors 2022, 22, 3225. [Google Scholar] [CrossRef]
- Rico-González, M.; Pino-Ortega, J.; Méndez, A.; Clemente, F.; Baca, A. Machine learning application in soccer: A systematic review. Biol. Sport 2022, 40, 249–263. [Google Scholar] [CrossRef]
- Reyaz, N.; Ahamad, G.; Khan, N.J.; Naseem, M. Machine Learning in Sports Talent Identification: A Systematic Review. In Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 24–25 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Beato, M.; Devereux, G.; Stiff, A. Validity and Reliability of Global Positioning System Units (STATSports Viper) for Measuring Distance and Peak Speed in Sports. J. Strength Cond. Res. 2018, 32, 2831–2837. [Google Scholar] [CrossRef]
- Branquinho, L.C.; Ferraz, R.; Marques, M.C. The continuous and fractionated game format on the training load in small sided games in soccer. Open Sports Sci. J. 2020, 13, 81–85. [Google Scholar] [CrossRef]
- Akubat, I.; Patel, E.; Barrett, S.; Abt, G. Methods of monitoring the training and match load and their relationship to changes in fitness in professional youth soccer players. J. Sports Sci. 2012, 30, 1473–1480. [Google Scholar] [CrossRef]
- Aquino, R.; Carling, C.; Maia, J.; Vieira, L.H.P.; Wilson, R.S.; Smith, N.; Almeida, R.; Gonçalves, L.G.C.; Kalva-Filho, C.A.; Garganta, J.; et al. Relationships between running demands in soccer match-play, anthropometric, and physical fitness characteristics: A systematic review. Int. J. Perform. Anal. Sport 2020, 20, 534–555. [Google Scholar] [CrossRef]
- Cabral, L.L.; Nakamura, F.Y.; Stefanello, J.M.F.; Pessoa, L.C.V.; Smirmaul, B.P.C.; Pereira, G. Initial validity and reliability of the Portuguese Borg rating of perceived exertion 6-20 scale. Meas. Phys. Educ. Exerc. Sci. 2020, 24, 103–114. [Google Scholar] [CrossRef]
- Python. Welcome to Python.org. Python.Org. 8 March 2023. Available online: https://www.python.org/ (accessed on 20 March 2025).
- Unpingco, J. Python for Probability, Statistics, and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1. [Google Scholar]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. Survey on categorical data for neural networks. J. Big Data 2020, 7, 28. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S. The generalized sigmoid activation function: Competitive supervised learning. Inf. Sci. 1997, 99, 69–82. [Google Scholar] [CrossRef]
- Benureau, F.C.Y.; Rougier, N.P. Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into Scientific Contributions. Front. Neuroinform. 2018, 11, 69. [Google Scholar] [CrossRef]
- Haslwanter, T. An Introduction to Statistics with Python with Applications in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef]
- Jierula, A.; Wang, S.; Oh, T.-M.; Wang, P. Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Appl. Sci. 2021, 11, 2314. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Song, Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Beéck, T.O.D.; Jaspers, A.; Brink, M.S.; Frencken, W.G.P.; Staes, F.; Davis, J.J.; Helsen, W.F. Predicting Future Perceived Wellness in Professional Soccer: The Role of Preceding Load and Wellness. Int. J. Sports Physiol. Perform. 2019, 14, 1074–1080. [Google Scholar] [CrossRef]
- Naidu, S.A.; Fanchini, M.; Cox, A.; Smeaton, J.; Hopkins, W.G.; Serpiello, F.R. Validity of Session Rating of Perceived Exertion Assessed via the CR100 Scale to Track Internal Load in Elite Youth Football Players. Int. J. Sports Physiol. Perform. 2019, 14, 403–406. [Google Scholar] [CrossRef]
- Teixeira, J.; Forte, P.; Ferraz, R.; Branquinho, L.; Silva, A.; Barbosa, T.; Monteiro, A. Methodological Procedures for Non-Linear Analyses of Physiological and Behavioural Data in Football. In Exercise Physiology; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Wen, Y. Optimization design of biomechanical parameters based on advanced mathematical modelling. Mol. Cell. Biomech. 2024, 21, 463. [Google Scholar]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar]
- Hessels, R.S.; Niehorster, D.C.; Holleman, G.A.; Benjamins, J.S.; Hooge, I.T.C. Wearable Technology for “Real-World Research”: Realistic or Not? Perception 2020, 49, 611–615. [Google Scholar] [CrossRef]
- Sabato, T.M.; Walch, T.J.; Caine, D.J. The elite young athlete: Strategies to ensure physical and emotional health. Open Access J. Sports Med. 2016, 7, 99–113. [Google Scholar] [PubMed]
- Ramos-Cano, J.; Martín-García, A.; Rico-González, M. Training intensity management during microcycles, mesocycles, and macrocycles in soccer: A systematic review. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 17543371221101228. [Google Scholar] [CrossRef]
- Rico-González, M.; Pino-Ortega, J.; Praça, G.M.; Clemente, F.M. Practical Applications for Designing Soccer’ Training Tasks From Multivariate Data Analysis: A Systematic Review Emphasizing Tactical Training. Percept. Mot. Ski. 2022, 129, 892–931. [Google Scholar] [CrossRef]
Variable | Correlation | p-Value | Statistically Significant |
---|---|---|---|
TD | 0.034 | 0.538 | No |
HSRr | −0.031 | 0.574 | No |
HMLD | 0.055 | 0.328 | No |
AvS | 0.142 | 0.010 | Yes |
SPR | 0.024 | 0.668 | No |
DSL | 0.062 | 0.295 | No |
sRPE_CR10 | 0.098 | 0.114 | No |
ACC | −0.045 | 0.432 | No |
DEC | −0.052 | 0.375 | No |
Cal | 0.082 | 0.175 | No |
TS | −0.027 | 0.627 | No |
Weight | 0.059 | 0.311 | No |
Height | −0.046 | 0.421 | No |
BMI | 0.073 | 0.222 | No |
Algorithm | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Average Metric |
---|---|---|---|---|---|
KNN | 20.41 | 15.54 | 20.41 | 17.44 | 18.45 |
XGBoost | 25.51 | 24.72 | 25.51 | 24.30 | 25.01 |
SVM | 23.47 | 13.68 | 23.47 | 16.73 | 19.34 |
RF | 28.57 | 25.31 | 28.57 | 25.86 | 27.08 |
DT | 32.65 | 31.83 | 32.65 | 31.67 | 32.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, J.E.; Afonso, P.; Schneider, A.; Branquinho, L.; Maio, E.; Ferraz, R.; Nascimento, R.; Morgans, R.; Barbosa, T.M.; Monteiro, A.M.; et al. Player Tracking Data and Psychophysiological Features Associated with Mental Fatigue in U15, U17, and U19 Male Football Players: A Machine Learning Approach. Appl. Sci. 2025, 15, 3718. https://doi.org/10.3390/app15073718
Teixeira JE, Afonso P, Schneider A, Branquinho L, Maio E, Ferraz R, Nascimento R, Morgans R, Barbosa TM, Monteiro AM, et al. Player Tracking Data and Psychophysiological Features Associated with Mental Fatigue in U15, U17, and U19 Male Football Players: A Machine Learning Approach. Applied Sciences. 2025; 15(7):3718. https://doi.org/10.3390/app15073718
Chicago/Turabian StyleTeixeira, José E., Pedro Afonso, André Schneider, Luís Branquinho, Eduardo Maio, Ricardo Ferraz, Rafael Nascimento, Ryland Morgans, Tiago M. Barbosa, António M. Monteiro, and et al. 2025. "Player Tracking Data and Psychophysiological Features Associated with Mental Fatigue in U15, U17, and U19 Male Football Players: A Machine Learning Approach" Applied Sciences 15, no. 7: 3718. https://doi.org/10.3390/app15073718
APA StyleTeixeira, J. E., Afonso, P., Schneider, A., Branquinho, L., Maio, E., Ferraz, R., Nascimento, R., Morgans, R., Barbosa, T. M., Monteiro, A. M., & Forte, P. (2025). Player Tracking Data and Psychophysiological Features Associated with Mental Fatigue in U15, U17, and U19 Male Football Players: A Machine Learning Approach. Applied Sciences, 15(7), 3718. https://doi.org/10.3390/app15073718