Assessment of Pyrethrin Novel Green Extraction Methods from Dalmatian Pyrethrum (Tanacetum cinerariifolium)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction Procedure
2.3.1. Microwave-Assisted Extraction (MAE)
2.3.2. Ultrasound-Assisted Extraction (UAE)
2.3.3. High-Voltage Electric Discharge (HVED)-Assisted Extraction
2.3.4. Deep Eutectic Solvent (DES) Extraction
2.3.5. Subcritical Water Extraction (SWE)
2.3.6. Supercritical CO2 Extraction (SC-CO2)
2.4. Chemical Characterization of the Target Groups of Bioactive Components (Pyrethrins)
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Pyrethrum an organic and natural pesticide. J. Biol. Environ. Sci. 2020, 14, 41–44. [Google Scholar]
- Winney, R. Performance of pyrethroids as domestic insecticides. Int. Pest Control. 1976, 18, 11–14. [Google Scholar]
- Werner, I.; Moran, K. Effects of pyrethroid insecticides on aquatic organisms, Synthetic pyrethroids: Occurrence and behavior in aquatic environments. ACS Symp. Ser. 2008, 991, 310–333. [Google Scholar]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar]
- Xu, H.; Li, W.; Schilmiller, A.L.; Van Eekelen, H.; De Vos, R.C.; Jongsma, M.-A.; Pichersky, E. Pyrethric acid of natural pyrethrin insecticide: Complete pathway elucidation and reconstitution in Nicotiana benthamiana. New Phytol. 2019, 223, 751–765. [Google Scholar] [CrossRef]
- Richterová, Z.; Svobodova, Z. Pyrethroids influence on fish. Slov. Vet. Res. 2012, 49, 63–72. [Google Scholar]
- Grdiša, M.; Carović-Stanko, K.; Kolak, I.; Šatović, Z. Morphological and biochemical diversity of Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.). Agric. Conspec. Sci. 2009, 74, 73–80. [Google Scholar]
- Morris, S.E.; Davies, N.W.; Brown, P.H.; Groom, T. Effect of drying conditions on pyrethrins content. Ind. Crops Prod. 2006, 23, 9–14. [Google Scholar] [CrossRef]
- Dolinsek, J.A.; Kovac, M.; Zel, J.; Camloh, M. Pyrethrum (Tanacetum cinerariifolium) from the northern Adriatic as a potential source of natural insecticide. Ann. Ser. Hist. Nat. 2007, 17, 39–46. [Google Scholar]
- Grdiša, M.; Babić, S.; Periša, M.; Carović-Stanko, K.; Kolak, I.; Liber, Z.; Jug-Dujaković, M.; Šatović, Z. Chemical diversity of the natural populations of Dalmatian Pyrethrum (Tanacetum cinerariifolium (TREVIR.) SCH. BIP.) in Croatia. Chem. Biodivers. 2013, 10, 460–472. [Google Scholar]
- Kolak, I.; Šatović, Z.; Rukavina, H.; Filipaj, B. Dalmatian Pyrethrum (Tanacetum cinerariifolium/Trevir. /Sch. Bip.). Sjemenarstvo 1999, 16, 425–440. [Google Scholar]
- Casida, J.-E.; Quistad, G.B. Golden age of insecticide research: Past, present, or future? Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kasaj, D.; Rieder, A.; Krenn, L.; Kopp, B. Separation and quantitative analysis of natural pyrethrins by high-performance liquid chromatography. Chromatographia 1990, 50, 607–610. [Google Scholar] [CrossRef]
- Biošić, M.; Varga, F.; Dabić, D.; Topalović, I.; Šatović, Z.; Grdiša, M. Matrix solid-phase dispersion optimization for determination of pyrethrin content in Dalmatian pyrethrum (Tanacetum cinerariifolium/Trevir./Sch. Bip.) by liquid chromatography. Ind. Crop. Prod. 2020, 145, 111999. [Google Scholar] [CrossRef]
- Ban, D.; Sladonja, B.; Lukić, M.; Lukić, I.; Lušetić, V.; Ganić, K.K. Comparison of pyrethrins extraction methods efficiencies. Afr. J. Biotechnol. 2010, 9, 2702–2708. [Google Scholar]
- Grdiša, M.; Varga, F.; Ninčević, T.; Ptiček, B.; Dabić, D.; Biošić, M. The extraction efficiency of maceration, UAE and MSPD in the extraction of pyrethrins from Dalmatian pyrethrum. Agricult. Conspec. Sci. 2020, 85, 257–267. [Google Scholar]
- Otterbach, A.; Wenclawiak, B.W. Ultrasonic/Soxhlet/supercritical fluid extraction kinetics of pyrethrins from flowers and allethrin from paper strips. Fresenius’ J. Anal. Chem. 1999, 365, 472–474. [Google Scholar] [CrossRef]
- Kiriamiti, H.K.; Camy, S.; Gourdon, C.; Condoret, J.S. Pyrethrin extraction from pyrethrum flowers using carbon dioxide. J. Supercrit. Fluids 2003, 26, 193–200. [Google Scholar] [CrossRef]
- Nagar, A.; Chatterjee, A.; Rehman, L.U.; Ahmad, A.; Tandon, S. Comparative extraction and enrichment techniques for pyrethrins from flowers of Chrysanthemum cinerariaefolium. Ind. Crop. Prod. 2015, 76, 955–960. [Google Scholar] [CrossRef]
- Pan, W.H.; Chang, C.-C.; Su, T.T.; Lee, F.; Fuh, M.-R.S. Preparative supercritical fluid extraction of pyrethrin I and II from pyrethrum flower. Talanta 1995, 42, 1745–1749. [Google Scholar] [CrossRef]
- Gallo, M.; Formato, A.; Ianniello, D.; Andolfi, A.; Conte, E.; Ciaravolo, M.; Naviglio, D. Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. J. Supercrit. Fluids 2017, 119, 104–112. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. Mol. Sci. 2020, 13, 8615–8627. [Google Scholar]
- Majid, I.; Khan, S.; Aladel, A.; Dar, A.H.; Adnan, M.; Khan, M.I.; Awadelkareem, A.M.; Ashraf, S.A. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CyTA-J. Food 2023, 21, 101–114. [Google Scholar]
- Barišić, V.; Jozinović, A.; Flanjak, I.; Šubarić, D.; Babić, J.; Miličević, B.; Doko, K.; Ačkar, D. Difficulties with use of cocoa bean shell in food production and high voltage electrical discharge as a possible solution. Sustainability 2020, 12, 3981. [Google Scholar] [CrossRef]
- Molnar, M.; Periš, I.; Komar, M. Choline chloride based deep eutectic solvents as a tuneable medium for synthesis of coumarinyl 1, 2, 4-triazoles: Effect of solvent type and temperature. Eur. J. Org. Chem. 2019, 15, 2688–2694. [Google Scholar] [CrossRef]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical water extraction laboratory plant design and application. Cro. Acad. Eng. 2017, 1, 247–258. [Google Scholar]
- Jokić, S.; Aladić, A.; Ačkar, D.; Jozinović, A.; Babić, J.; Šubarić, D. Supercritical CO2 extraction—A new perspective in the utilisation of food industry by-products. Eng. Power Bull. Croat. Acad. Eng. 2017, 12, 7–12. [Google Scholar]
- Wang, K.; Xie, X.; Zhang, Y.; Huang, Y.; Zhou, S.; Zhang, W.; Lin, Y.; Fan, H. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem. 2018, 240, 1233–1242. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services. Chemical and Physical Information in Toxicological Profile for Pyrethrins and Pyrethroids; Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003; pp. 131–152. [Google Scholar]
DES Combination | Molar Content | |
---|---|---|
ChClU | Choline chloride: urea | 1: 2 |
ChClmU | Choline chloride: N-methylurea | 1: 3 |
ChCltU | Choline chloride: thiourea | 1: 2 |
ChClG | Choline chloride: glucose | 1: 1 |
ChClF | Choline chloride: fructose | 1: 1 |
ChClX | Choline chloride: xylitol | 1: 1 |
ChClS | Choline chloride: sorbitol | 1: 1 |
ChClB | Choline chloride: butane-1,4-diol | 1: 2 |
ChClE | Choline chloride: ethane-1,2-diol | 1: 2 |
ChClGl | Choline chloride: glycerol | 1: 2 |
ChClA | Choline chloride: acetamide | 1: 2 |
ChClM | Choline chloride: malic acid | 1: 1 |
ChClC | Choline chloride: citric acid | 1: 1 |
ChClMa | Choline chloride: malonic acid | 1: 1 |
ChClO | Choline chloride: oxalic acid | 1: 1 |
ChClLa | Choline chloride: lactic acid | 1: 2 |
ChClL | Choline chloride: levulinic acid | 1: 1 |
Run | Temperature (°C) | Power (W) | Time (min) | Solvent | Solid/Solvent Ratio (g/mL) | Cinerin II ng/mg | Pyrethrin II ng/mg | Jasmolin II ng/mg | Cinerin I ng/mg | Pyrethrin I ng/mg | Jasmolin I ng/mg | Total ng/mg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 30 | 500 | 5 | Water | 1:20 | - | - | - | - | - | - | - |
2 | 50% ethanol | 1:20 | - | 16.20 ± 0.00 | - | - | - | - | 16.20 ± 0.00 * | |||
3 | 80% ethanol | 1:20 | - | 16.60 ± 0.01 | 0.96 ± 0.03 | - | - | - | 17.56 ± 0.04 * | |||
4 | 50% methanol | 1:20 | 0.0 | 17.70 ± 0.11 | 1.08 ± 0.08 | 1.64 ± 0.02 | 0.0 | 20.42 ± 0.21 * | ||||
5 | Acetone | 1:20 | - | - | - | 1.86 ± 0.00 | 0.0 | 0.0 | 1.86 ± 0.00 * | |||
6 | 50 | 500 | 5 | Water | 1:20 | - | - | - | - | - | - | - |
7 | 50% ethanol | 1:20 | - | - | - | - | - | - | - | |||
8 | 80% ethanol | 1:20 | - | 17.00 ± 0.01 | 0.10 ± 0.00 | - | - | - | 17.10 ± 0.02 * | |||
9 | 50% methanol | 1:20 | - | - | - | - | - | - | - | |||
10 | Acetone | 1:10 | - | 10.36 ± 0.10 | 0.57 ± 0.06 | - | - | - | 10.93 ± 0.16 * | |||
11 | 70 | 500 | 5 | Water | 1:20 | - | - | - | - | - | - | - |
12 | 50% ethanol | 1:20 | - | 16.70 ± 0.56 | 0.98 ± 0.08 | - | - | - | 17.68 ± 0.64 * | |||
13 | 80% ethanol | 1:20 | 0.0 | 18.90 ± 0.35 | 1.22 ± 0.04 | 2.05 ± 0.06 | 0.0 | 0.0 | 22.17 ± 0.45 * | |||
14 | 50% methanol | 1:20 | - | - | - | - | - | - | - | |||
15 | Acetone | 1:20 | - | 15.60 ± 0.07 | - | - | - | - | 15.60 ± 0.07 * | |||
16 | 100 | 800 | 5 | Water | 1:20 | - | - | - | - | - | - | - |
17 | 50% ethanol | 1:20 | - | 16.90 ± 0.24 | 0.99 ± 0.00 | - | - | - | 17.89 ± 0.27 * | |||
18 | 80% ethanol | 1:20 | - | 17.30 ± 0.15 | 1.01 ± 0.00 | - | - | - | 18.31 ± 0.18 * | |||
19 | 50% methanol | 1:20 | 0.0 | 18.30 ± 0.10 | 1.15 ± 0.00 | 1.72 ± 0.00 | 0.0 | - | 21.17 ± 0.00 * | |||
20 | Acetone | 1:20 | - | 17.00 ± 0.01 | 1.00 ± 0.00 | - | - | - | 18.00 ± 0.01 * | |||
21 | 120 | 800 | 5 | Water | 1:20 | - | - | - | - | - | - | - |
23 | 80% ethanol | 1:20 | 0.0 | 18.9 ± 0.02 | 1.15 ± 0.00 | 2.08 ± 0.00 | 0.0 | 0.0 | 22.13 ± 0.02 * | |||
24 | 50% methanol | 1:20 | 0.0 | 18.1 ± 0.20 | 1.16 ± 0.02 | 1.76 ± 0.02 | 0.0 | 0.0 | 21.02 ± 0.24 * | |||
25 | 50 | 500 | 5 | Acetone | 1:20 | 0.0 | 14.7 ± 0.03 | 3.86 ± 0.02 | 2.15 ± 0.00 | 0.0 | 0.0 | 20.71 ± 0.05 * |
26 | Acetone | 1:20 | 0.0 | 18.9 ± 0.10 | 1.15 ± 0.00 | 1.89 ± 0.01 | 0.0 | 0.0 | 21.94 ± 0.11 * | |||
27 | Acetone | 1:20 | 0.0 | 19.1 ± 0.01 | 1.16 ± 0.01 | 1.90 ± 0.01 | 0.0 | 0.0 | 22.16 ± 0.01 * |
Run | Temperature (°C) | Time (min) | Solvent | Solid/Solvent ratio (g/mL) | Cinerin II ng/mg | Pyrethrin II ng/mg | Jasmolin II ng/mg | Cinerin I ng/mg | Pyrethrin I ng/mg | Jasmolin I ng/mg | Total ng/mg |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 30 | Water | 1:20 | - | - | - | - | - | - | - |
2 | 50 | 30 | 50% Ethanol | 1:20 | - | 8.25 ± 0.04 | - | - | - | - | 8.25 ± 0.04 |
3 | 50 | 30 | 50% Methanol | 1:20 | - | 18.67 ± 0.10 | 0.91 ± 0.02 | 0.80 ± 0.01 | 80.72 ± 0.12 | - | 101.10 ± 0.25 |
4 | 50 | 30 | Acetone | 1:20 | - | 18.05 ± 0.00 | 0.15 ± 0.00 | 2.60 ± 0.03 | 72.66 ± 0.06 | 0.03 ± 0.03 | 93.49 ± 0.09 |
5 | 50 | 30 | 80% Ethanol | 1:20 | - | - | - | 0.96 ± 0.02 | 76.33 ± 0.18 | - | 77.29 ± 0.20 |
6 | 70 | 30 | Water | 1:20 | - | - | - | - | - | - | - |
7 | 70 | 30 | 80% Ethanol | 1:20 | - | 27.67 ± 0.10 | 1.52 ± 0.00 | 2.41 ± 0.02 | 73.05 ± 0.40 | - | 104.65 ± 0.53 |
8 | 70 | 30 | 80% Methanol | 1:20 | 0.01 | 20.89 ± 0.01 | 1.49 ± 0.01 | 2.66 ± 0.08 | 72.49 ± 0.51 | - | 97.53 ± 0.61 |
Run | Cinerin II ng/mg | Pyrethrin II ng/mg | Jasmolin II ng/mg | Cinerin I ng/mg | Pyrethrin I ng/mg | Jasmolin I ng/mg | Total ng/mg |
---|---|---|---|---|---|---|---|
1 | 10.30 ± 0.01 | 48.22 ± 0.13 | 5.33 ± 0.16 | 9.95 ± 0.18 | 46.72 ± 0.46 | 3.85 ± 0.13 | 124.37 ± 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maršić-Lučić, J.; Jokić, S.; Molnar, M.; Jakovljević Kovač, M.; Banožić, M.; Hrabar, J.; Mladineo, I. Assessment of Pyrethrin Novel Green Extraction Methods from Dalmatian Pyrethrum (Tanacetum cinerariifolium). Appl. Sci. 2025, 15, 3845. https://doi.org/10.3390/app15073845
Maršić-Lučić J, Jokić S, Molnar M, Jakovljević Kovač M, Banožić M, Hrabar J, Mladineo I. Assessment of Pyrethrin Novel Green Extraction Methods from Dalmatian Pyrethrum (Tanacetum cinerariifolium). Applied Sciences. 2025; 15(7):3845. https://doi.org/10.3390/app15073845
Chicago/Turabian StyleMaršić-Lučić, Jasna, Stela Jokić, Maja Molnar, Martina Jakovljević Kovač, Marija Banožić, Jerko Hrabar, and Ivona Mladineo. 2025. "Assessment of Pyrethrin Novel Green Extraction Methods from Dalmatian Pyrethrum (Tanacetum cinerariifolium)" Applied Sciences 15, no. 7: 3845. https://doi.org/10.3390/app15073845
APA StyleMaršić-Lučić, J., Jokić, S., Molnar, M., Jakovljević Kovač, M., Banožić, M., Hrabar, J., & Mladineo, I. (2025). Assessment of Pyrethrin Novel Green Extraction Methods from Dalmatian Pyrethrum (Tanacetum cinerariifolium). Applied Sciences, 15(7), 3845. https://doi.org/10.3390/app15073845