Benchmarking Anomaly Detection Methods for Extracardiac Findings in Cardiac MRI
Abstract
:1. Introduction
- Systematic evaluation of AD methods for detecting ECFs in CMR images, considering an extensive set of approaches, including unsupervised, semi-supervised, and open-set supervised methodologies;
- Comparison of these AD benchmarked methods with two fully supervised baselines, allowing a better perception of the effectiveness of these AD methods;
- In-depth discussion of the strengths and weaknesses of AD methods in a challenging dataset, highlighting possible future directions.
2. Related Work
3. Materials and Methods
3.1. CMR Dataset
3.2. Dataset Pre-Processing
3.3. Benchmark Methods
3.4. Models’ Architecture and Tuning
3.5. Post-Processing
3.6. Metrics
3.7. Statistical Analysis
4. Results and Discussion
4.1. Unsupervised Image Reconstruction Methods
4.2. Unsupervised Feature Modeling Methods
4.3. Unsupervised Attention-Based Methods
4.4. Unsupervised Self-Supervised Methods
4.5. One-Class Semi-Supervised Methods
4.6. Open-Set/Weakly Supervised Methods
4.7. Fully Supervised Methods
4.8. General Challenges and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Method | Hyperparameters | |
---|---|---|
U/IR | AE [23] | Latent dimension = 32 |
VAE [36] | Latent dimension = 128 # steps = 20,000 SSIM = False | |
r-VAE [14] | Latent dimension = 128 # steps = 20,000 Restoration LR = 5000 # restoration steps: 20,000 SSIM = True | |
f-anoGAN [38] | SSIM = True | |
H-TAE-S [15] | # steps = 50,000 LR = 1 × 10−5 = 0.9; = 0.999 | |
OS-DDPM [13] | SSIM: True; SSIM kernel : 1; SSIM kernel size: 9; # test timesteps: 200 | |
U/FM | DFR [31] | # steps = 40,000 |
FAE [19] | - | |
RD [26] | # steps = 30,000 | |
ReContrast [29] | # epochs = 30 LR 2 = 1 × 10−6 | |
PaDiM [25] | - | |
CFLOW-AD [28] | Backbone architecture: Resnet-18 LR Scheduler: True # steps = 12,000 | |
U/AB | expVAE [30] | Latent dimension = 128 # steps = 20,000 Target layer: 1 |
AMCons [20] | # steps = 150,000 LR = 1 × 10−5 Level CAMs = Latent dimension = 128 | |
U/S-S | DAE [16] | # steps = 35,200 SSIM = False (coronal subdataset) SSIM = True (sagittal and axial subdatasets) |
CutPaste [32] | - | |
PII [24] | # steps = 3000 | |
SS/OC | DDAD [23] | AE network: MemAE |
WS | BGAD [33] | Data strategy = {0,1} Meta epochs = 180 |
DRA [27] | Batch size = 5 # steps/epoch = 100 % Abnormal training images = {10%, 25%, 50%, 100%} | |
S | SupIC [27] | % Abnormal training images = {10%, 25%, 50%, 100%} Batch size = 48 # steps/epoch = 20; # epochs = 30 LR = 2 × 10−4 Weight decay = 1 × 10−5 LR scheduler step = 10 LR scheduler = 0.1 |
SupIS [40] | % Abnormal training images = {10%, 25%, 50%, 100%} Batch size = 16 # steps = 12,800 Cross entropy loss weight = 1 Soft dice loss weight = 1 LR = LR scheduler step = 128 LR scheduler period = 100 |
References
- Prasad, S.K.; Pennell, D.J. Clinical role of advanced imaging in cardiology. Dialogues Cardiovasc. Med. 2007, 12, 87–101. [Google Scholar]
- Salerno, M.; Sharif, B.; Arheden, H.; Kumar, A.; Axel, L.; Li, D.; Neubauer, S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ. Cardiovasc. Imaging 2017, 10, e003951. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Mantini, C.; Mastrodicasa, D.; Bianco, F.; Bucciarelli, V.; Scarano, M.; Mannetta, G.; Gabrielli, D.; Gallina, S.; Petersen, S.E.; Ricci, F.; et al. Prevalence and Clinical Relevance of Extracardiac Findings in Cardiovascular Magnetic Resonance Imaging. J. Thorac. Imaging 2019, 34, 48–55. [Google Scholar] [CrossRef]
- Wickremasinghe, D.H.; Khenkina, N.; Masci, P.G.; King, A.P.; Puyol-Antón, E. Automatic Detection of Extra-Cardiac Findings in Cardiovascular Magnetic Resonance. In Proceedings of the Medical Image Understanding and Analysis, Oxford, UK, 12–14 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 98–107. [Google Scholar]
- Chaosuwannakit, N.; Makarawate, P. Prevalence and clinical significance of incidental extracardiac findings in cardiac magnetic resonance imaging. Kardiochirurgia I Torakochirurgia Pol. J. Thorac. Cardiovasc. Surg. 2018, 15, 241–245. [Google Scholar] [CrossRef]
- Rahman, H.; Shawky, A.; Mehana, E. Prevalence and Clinical Significance of Incidental Extracardiac Findings during Cardiac Magnetic Resonance Imaging: A Retrospective Study. Hong Kong J. Radiol. 2023, 26, 241–245. [Google Scholar]
- Trussell, T.M.; Kocaoglu, M.; Fleck, R.J.; Taylor, M.D.; Zang, H.; Ollberding, N.J.; Lang, S.M. Extracardiac Findings on Cardiac Magnetic Resonance: A Children’s Hospital Experience. Pediatr. Cardiol. 2023, 44, 1201–1208. [Google Scholar] [CrossRef]
- Ufuk, F.; Yavaş, H.; Sağtaş, E.; Kılıç, I.D. The prevalence and clinical significance of incidental non-cardiac findings on cardiac magnetic resonance imaging and unreported rates of these findings in official radiology reports. Pol. J. Radiol. 2022, 87, 207–214. [Google Scholar] [CrossRef]
- Chalapathy, R.; Chawla, S. Deep Learning for Anomaly Detection: A Survey. arXiv 2019, arXiv:1901.03407. [Google Scholar]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Baur, C.; Denner, S.; Wiestler, B.; Navab, N.; Albarqouni, S. Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study. Med. Image Anal. 2021, 69, 101952. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, F.; Bhattacharya, D.; Krüger, J.; Opfer, R.; Schlaefer, A. Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI. In Proceedings of the Medical Imaging with Deep Learning, PMLR, Paris, France, 3–5 July 2024; pp. 1019–1032. [Google Scholar]
- Chen, X.; You, S.; Tezcan, K.C.; Konukoglu, E. Unsupervised lesion detection via image restoration with a normative prior. Med. Image Anal. 2020, 64, 101713. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, A.; Aldahdooh, A.; Albarqouni, S.; Hamidouche, W. Transformer based models for unsupervised anomaly segmentation in brain MR images. In Proceedings of the International MICCAI Brainlesion Workshop, Singapore, 18 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 25–44. [Google Scholar]
- Kascenas, A.; Pugeault, N.; O’Neil, A.Q. Denoising autoencoders for unsupervised anomaly detection in brain MRI. In Proceedings of the International Conference on Medical Imaging with Deep Learning, PMLR, Zurich, Switzerland, 6–8 July 2022; pp. 653–664. [Google Scholar]
- Kascenas, A.; Sanchez, P.; Schrempf, P.; Wang, C.; Clackett, W.; Mikhael, S.S.; Voisey, J.P.; Goatman, K.; Weir, A.; Pugeault, N.; et al. The role of noise in denoising models for anomaly detection in medical images. Med. Image Anal. 2023, 90, 102963. [Google Scholar] [CrossRef] [PubMed]
- Lagogiannis, I.; Meissen, F.; Kaissis, G.; Rueckert, D. Unsupervised pathology detection: A deep dive into the state of the art. arXiv 2023, arXiv:2303.00609. [Google Scholar] [CrossRef]
- Meissen, F.; Paetzold, J.; Kaissis, G.; Rueckert, D. Unsupervised anomaly localization with structural feature-autoencoders. In Proceedings of the International MICCAI Brainlesion Workshop, Singapore, 18 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 14–24. [Google Scholar]
- Silva-Rodríguez, J.; Naranjo, V.; Dolz, J. Constrained unsupervised anomaly segmentation. Med. Image Anal. 2022, 80, 102526. [Google Scholar] [CrossRef]
- Tan, J.; Hou, B.; Batten, J.; Qiu, H.; Kainz, B. Detecting outliers with foreign patch interpolation. arXiv 2020, arXiv:2011.04197. [Google Scholar] [CrossRef]
- Wyatt, J.; Leach, A.; Schmon, S.M.; Willcocks, C.G. AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models Using Simplex Noise. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA, USA, 21–24 June 2022; pp. 650–656. [Google Scholar]
- Cai, Y.; Chen, H.; Yang, X.; Zhou, Y.; Cheng, K.T. Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images. Med. Image Anal. 2023, 86, 102794. [Google Scholar] [CrossRef]
- Tan, J.; Hou, B.; Day, T.; Simpson, J.; Rueckert, D.; Kainz, B. Detecting outliers with poisson image interpolation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021, Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 581–591. [Google Scholar]
- Defard, T.; Setkov, A.; Loesch, A.; Audigier, R. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization. In Proceedings of the International Conference on Pattern Recognition, Montréal, QC, Canada, 20–24 August 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 475–489. [Google Scholar]
- Deng, H.; Li, X. Anomaly Detection via Reverse Distillation from One-Class Embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 21–24 June 2022; pp. 9737–9746. [Google Scholar]
- Ding, C.; Pang, G.; Shen, C. Catching Both Gray and Black Swans: Open-Set Supervised Anomaly Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 21–24 June 2022; pp. 7388–7398. [Google Scholar]
- Gudovskiy, D.; Ishizaka, S.; Kozuka, K. CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 98–107. [Google Scholar]
- Guo, J.; Lu, S.; Jia, L.; Zhang, W.; Li, H. ReContrast: Domain-Specific Anomaly Detection via Contrastive Reconstruction. Adv. Neural Inf. Process. Syst. 2024, 36, 10721–10740. [Google Scholar]
- Liu, W.; Li, R.; Zheng, M.; Karanam, S.; Wu, Z.; Bhanu, B.; Radke, R.J.; Camps, O. Towards Visually Explaining Variational Autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8642–8651. [Google Scholar]
- Shi, Y.; Yang, J.; Qi, Z. Unsupervised anomaly segmentation via deep feature reconstruction. Neurocomputing 2021, 424, 9–22. [Google Scholar] [CrossRef]
- Sohn, K.; Li, C.L.; Yoon, J.; Pfister, T.J. Self-Supervised Learning for Anomaly Detection and Localization. US Patent 11,941,084, 26 March 2024. [Google Scholar]
- Yao, X.; Li, R.; Zhang, J.; Sun, J.; Zhang, C. Explicit Boundary Guided Semi-Push-Pull Contrastive Learning for Supervised Anomaly Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 24490–24499. [Google Scholar]
- Tian, Y.; Pang, G.; Chen, Y.; Singh, R.; Verjans, J.W.; Carneiro, G. Weakly-Supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 4975–4986. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Görnitz, N.; Binder, A.; Müller, E.; Müller, K.R.; Kloft, M. Deep Semi-Supervised Anomaly Detection. arXiv 2019, arXiv:1906.02694. [Google Scholar]
- Kingma, D.P. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 146–157. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 2019, 54, 30–44. [Google Scholar] [PubMed]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840–6851. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Maier-Hein, L.; Reinke, A.; Godau, P.; Tizabi, M.D.; Buettner, F.; Christodoulou, E.; Glocker, B.; Isensee, F.; Kleesiek, J.; Kozubek, M.; et al. Metrics reloaded: Recommendations for image analysis validation. Nat. Methods 2024, 21, 195–212. [Google Scholar] [PubMed]
- García, S.; Herrera, F. Design of Experiments in Computational Intelligence: On the Use of Statistical Inference. In Proceedings of the Hybrid Artificial Intelligence Systems: Third International Workshop, HAIS 2008, Burgos, Spain, 24–26 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 4–14. [Google Scholar]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959–977. [Google Scholar]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
Patient Level | Sequence Level | Image Level | |||||||
---|---|---|---|---|---|---|---|---|---|
# | %Normal | %Abnormal | # | %Normal | %Abnormal | # | %Normal | %Abnormal | |
Coronal | - | - | - | 690 | 61.59 | 38.41 | 11,361 | 90.27 | 9.73 |
Axial | - | - | - | 690 | 62.46 | 37.54 | 12,086 | 87.78 | 12.22 |
Sagittal | - | - | - | 691 | 63.24 | 36.76 | 11,624 | 90.80 | 9.20 |
All | 691 | 49.64 | 50.36 | 2071 | 62.43 | 37.57 | 35,071 | 89.59 | 10.41 |
Method | Coronal | Sagittal | Axial | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
pxAP (%) | spAUROC (%) | spAP (%) | pxAP (%) | spAUROC (%) | spAP (%) | pxAP (%) | spAUROC (%) | spAP (%) | |||
U/IR | AE [23] | 3.30 ± 0.25 ♯ | 67.76 ± 5.03 | 66.57 ± 4.91 *♯ | 3.75 ± 0.15 ♯ | 56.24 ± 5.97 *♯ | 56.78 ± 5.45 *♯ | 3.80 ± 0.36 ♯ | 71.93 ± 2.83 *♯ | 72.23 ± 2.63 *♯ | |
VAE [36] | 1.30 ± 0.26 ♯ | 69.11 ± 4.79 | 68.12 ± 5.46 * | 1.79 ± 0.12 ♯ | 58.56 ± 5.83 *♯ | 57.80 ± 4.81 *♯ | 2.09 ± 0.30 ♯ | 72.09 ± 3.47 *♯ | 72.45 ± 2.47 *♯ | ||
r-VAE [14] | 2.46 ± 0.53 ♯ | 68.64 ± 4.65 | 69.30 ± 6.08 | 3.40 ± 0.48 ♯ | 66.83 ± 5.13 | 65.51 ± 4.33 ♯ | 3.59 ± 0.66 ♯ | 70.66 ± 6.84 *♯ | 69.03 ± 7.41 *♯ | ||
f-anoGAN [38] | 1.31 ± 0.28 ♯ | 69.81 ± 4.92 | 68.20 ± 6.42 * | 1.76 ± 0.15 ♯ | 62.71 ± 4.75 ♯ | 60.65 ± 4.03 *♯ | 1.85 ± 0.37 ♯ | 69.45 ± 3.93 *♯ | 68.13 ± 2.83 *♯ | ||
H-TAE-S [15] | 1.53 ± 0.21 ♯ | 59.02 ± 4.88 *♯ | 62.39 ± 4.14 *♯ | 1.35 ± 0.11 ♯ | 53.36 ± 5.95 *♯ | 52.77 ± 4.21 *♯ | 1.04 ± 0.20 ♯ | 63.86 ± 3.00 *♯ | 61.01 ± 3.30 *♯ | ||
OS-DDPM [13] | 16.14 ± 2.66 | 73.12 ± 4.00 | 75.75 ± 4.89 | 16.71 ± 2.53 | 74.83 ± 4.40 | 78.49 ± 3.65 | 15.25 ± 1.90 | 78.55 ± 4.67 | 77.22 ± 5.53 ♯ | ||
U/FM | DFR [31] | 2.73 ± 0.90 ♯ | 70.11 ± 1.92 | 69.01 ± 3.58 * | 2.99 ± 0.21 ♯ | 59.56 ± 5.71 *♯ | 60.71 ± 3.73 *♯ | 7.53 ± 2.09 ♯ | 60.14 ± 4.85 *♯ | 61.15 ± 4.91 *♯ | |
FAE [19] | 8.15 ± 2.45 | 71.97 ± 3.29 | 73.87 ± 4.90 | 11.40 ± 2.75 | 64.53 ± 5.73 ♯ | 64.35 ± 4.11 *♯ | 8.87 ± 2.64 ♯ | 68.61 ± 5.73 *♯ | 67.65 ± 5.92 *♯ | ||
RD [26] | 2.94 ± 1.00 ♯ | 71.15 ± 3.24 | 72.18 ± 4.67 | 3.95 ± 0.38 ♯ | 65.39 ± 5.74 ♯ | 65.96 ± 3.90 ♯ | 8.78 ± 2.78 ♯ | 74.77 ± 4.25 ♯ | 73.29 ± 4.00 *♯ | ||
ReContrast [29] | 5.63 ± 2.27 ♯ | 68.27 ± 3.09 | 69.11 ± 3.29 * | 9.98 ± 2.11 | 64.86 ± 4.39 ♯ | 67.05 ± 3.07 ♯ | 13.54 ± 4.40 | 78.96 ± 3.02 | 77.77 ± 3.15 | ||
CFLOW-AD [28] | 1.24 ± 0.29 ♯ | 65.20 ± 3.54 * | 62.14 ± 4.79 *♯ | 1.74 ± 0.13 ♯ | 55.98 ± 5.87 *♯ | 57.76 ± 4.01 *♯ | 3.58 ± 1.10 ♯ | 52.49 ± 5.03 *♯ | 54.72 ± 4.78 *♯ | ||
PaDiM [25] | 2.33 ± 0.65 ♯ | 69.47 ± 3.36 | 68.44 ± 4.94 * | 3.87 ± 0.51 ♯ | 62.11 ± 5.96 *♯ | 62.12 ± 4.17 *♯ | 4.88 ± 0.88 ♯ | 63.59 ± 6.25 *♯ | 63.68 ± 5.81 *♯ | ||
U/AB | expVAE [30] | 0.94 ± 0.19 ♯ | 55.00 ± 3.17 *♯ | 55.13 ± 3.46 *♯ | 1.04 ± 0.19 ♯ | 53.59 ± 6.39 *♯ | 55.54 ± 4.01 *♯ | 1.24 ± 0.12 ♯ | 45.06 ± 4.57 *♯ | 47.51 ± 3.91 *♯ | |
AMCons [20] | 0.84 ± 0.13 ♯ | 61.69 ± 4.29 *♯ | 58.44 ± 3.43 *♯ | 1.06 ±0.08 ♯ | 51.93 ± 6.22 *♯ | 51.14 ± 4.61 *♯ | 1.09 ± 0.14 ♯ | 52.70 ± 3.20 *♯ | 56.07 ± 4.69 *♯ | ||
U/S-S | DAE [16] | 9.91 ± 3.39 | 74.87 ± 4.06 | 76.14 ± 4.49 | 12.21 ± 1.57 | 74.39 ± 3.29 | 77.57 ± 2.25 | 11.27 ± 3.10 ♯ | 79.14 ± 5.01 | 80.38 ± 4.62 | |
CutPaste [32] | 1.12 ± 0.23 ♯ | 42.85 ± 5.14 *♯ | 44.55 ± 4.34 *♯ | 1.32 ± 0.10 ♯ | 41.70 ± 7.49 *♯ | 47.32 ± 6.50 *♯ | 4.02 ± 0.94 ♯ | 71.27 ± 4.97 *♯ | 72.84 ± 4.98 *♯ | ||
PII [24] | 8.95 ± 4.65 | 67.65 ± 4.41 | 68.98 ± 4.59 | 6.41 ± 2.24 ♯ | 63.29 ± 2.91 ♯ | 64.94 ± 3.20 *♯ | 11.25 ± 5.32 ♯ | 75.41 ± 2.86 | 76.47 ± 2.57 ♯ | ||
SS/OC | DDAD [23] | 5.89 ± 0.75 | 66.60 ± 6.26 | 67.88 ± 7.18 * | 4.45 ± 0.19 ♯ | 63.58 ± 5.42 ♯ | 64.00 ± 3.22 *♯ | 4.08 ± 0.72 ♯ | 54.66 ± 6.39 *♯ | 54.02 ± 5.66 *♯ | |
WS | BGAD [33] | 11.49 ± 3.16 | 67.72 ± 1.78 | 69.42 ± 1.86 * | 21.62 ± 4.06 | 73.44 ± 2.20 | 76.14 ± 2.35 | 25.84 ± 2.84 | 81.39 ± 2.65 | 82.74 ± 3.07 | |
DRA [27] | 10% | - | 60.93 ± 3.86 *♯ | 63.22 ± 3.69 *♯ | - | 63.27 ± 1.86 ♯ | 66.79 ± 2.50 ♯ | - | 64.26 ± 3.72 *♯ | 67.43 ± 2.91 *♯ | |
25% | - | 66.32 ± 4.65 * | 68.25 ± 4.39 * | - | 66.91 ± 4.69 | 70.61 ± 3.97 | - | 67.75 ± 7.23 *♯ | 72.66 ± 6.25 *♯ | ||
50% | - | 72.66 ± 3.77 | 74.92 ± 4.13 | - | 67.96 ± 2.44 | 71.93 ± 2.29 | - | 76.14 ± 5.58 | 80.46 ± 4.39 | ||
100% | - | 74.05 ± 1.55 | 74.91 ± 2.68 | - | 71.92 ± 1.94 | 75.25 ± 1.58 | - | 85.50 ± 1.56 | 87.68 ± 1.39 | ||
S | SupIC | 10% | - | 54.23 ± 4.41 *♯ | 57.58 ± 3.01 *♯ | - | 54.12 ± 5.18 *♯ | 59.34 ± 4.70 *♯ | - | 55.97 ± 6.79 *♯ | 61.69 ± 6.85 *♯ |
25% | - | 55.28 ± 5.45 *♯ | 60.70 ± 5.71 *♯ | - | 63.03 ± 3.89 ♯ | 68.40 ± 3.43 | - | 69.32 ± 3.46 *♯ | 75.06 ± 2.70 ♯ | ||
50% | - | 63.82 ± 3.33 * | 67.42 ± 1.62 * | - | 65.34 ± 3.11 ♯ | 69.25 ± 3.79 | - | 77.67 ± 3.10 | 81.05 ± 2.14 | ||
100% | - | 71.88 ± 0.98 | 74.49 ± 2.35 | - | 69.92 ± 2.22 | 74.00 ± 1.97 | - | 82.61 ± 3.61 | 84.97 ± 3.47 | ||
SupIS | 10% | 2.54 ± 0.74 ♯ | 64.39 ± 3.89 *♯ | 62.93 ± 3.38 *♯ | 3.70 ± 2.42 ♯ | 61.80 ± 5.09 *♯ | 64.58 ± 5.56 *♯ | 7.72 ± 1.83 ♯ | 71.36 ± 5.12 *♯ | 73.28 ± 4.10 *♯ | |
25% | 8.70 ± 3.52 | 70.62 ± 1.62 | 71.06 ± 1.79 | 16.47 ± 4.78 | 69.30 ± 6.25 | 73.32 ± 5.13 | 25.63 ± 6.22 | 76.03 ± 3.90 ♯ | 79.21 ± 3.64 | ||
50% | 12.80 ± 3.24 | 71.24 ± 3.36 | 71.81 ± 3.69 | 27.41 ± 6.83 | 72.72 ± 4.93 | 77.33 ± 3.57 | 38.58 ± 5.91 | 81.78 ± 2.98 | 84.02 ± 2.43 | ||
100% | 16.72 ± 4.96 | 70.03 ± 4.23 | 72.66 ± 4.46 | 33.75 ± 7.16 | 74.07 ± 4.68 | 77.69 ± 4.05 | 45.39 ± 6.51 | 87.42 ± 1.91 | 89.23 ± 1.43 | ||
Random | 1.33 ± 0.19 | 50.00 ± 0.00 | 50.00 ± 0.00 | 1.29 ± 0.09 | 50.00 ± 0.00 | 50.00 ± 0.00 | 1.38 ± 0.15 | 50.00 ± 0.00 | 50.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, E.; Costa, P.M.; Silva, C.; Pereira, V.H.; Fonseca, J.C.; Queirós, S. Benchmarking Anomaly Detection Methods for Extracardiac Findings in Cardiac MRI. Appl. Sci. 2025, 15, 4027. https://doi.org/10.3390/app15074027
Pinto E, Costa PM, Silva C, Pereira VH, Fonseca JC, Queirós S. Benchmarking Anomaly Detection Methods for Extracardiac Findings in Cardiac MRI. Applied Sciences. 2025; 15(7):4027. https://doi.org/10.3390/app15074027
Chicago/Turabian StylePinto, Edgar, Patrícia M. Costa, Catarina Silva, Vitor H. Pereira, Jaime C. Fonseca, and Sandro Queirós. 2025. "Benchmarking Anomaly Detection Methods for Extracardiac Findings in Cardiac MRI" Applied Sciences 15, no. 7: 4027. https://doi.org/10.3390/app15074027
APA StylePinto, E., Costa, P. M., Silva, C., Pereira, V. H., Fonseca, J. C., & Queirós, S. (2025). Benchmarking Anomaly Detection Methods for Extracardiac Findings in Cardiac MRI. Applied Sciences, 15(7), 4027. https://doi.org/10.3390/app15074027