Research on a Point Cloud Registration Method Based on Dynamic Neighborhood Features
Abstract
:1. Introduction
2. Methods
2.1. Introduction to LiDAR
2.2. Statistical Filtering
2.3. Local Feature Point Selection
2.4. Dynamic Neighborhood Calculation
2.5. Description of Local Features
2.6. Pairing of Feature Points
2.7. Solve Transformation Matrix
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICP | Iterative Closest Point |
LiDAR | Light Detection and Ranging |
RANSAC | Random Sample Consensus |
ISSs | Intrinsic Shape Signatures |
3SDC | 3D Shape Context |
4PCSs | Four-Point Congruent Sets |
K4PCSs | Keypoint-Based Four-Points Congruent Sets |
3D-NDT | 3 Dimensions-Normal Distributions Transform |
NDT | Normal Distributions Transform |
KD | K-Dimensional |
RMSE | Root Mean Square Error |
References
- Marani, R.; Renò, V.; Nitti, M.; D’Orazio, T.; Stella, E. A modified iterative closest point algorithm for 3D point cloud registration. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 515–534. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.; Carlone, L. Teaser: Fast and certifiable point cloud registration. IEEE Trans. Robot. 2020, 37, 314–333. [Google Scholar] [CrossRef]
- Zou, Z.; Lang, H.; Lou, Y.; Lu, J. Plane-based global registration for pavement 3D reconstruction using hybrid solid-state LiDAR point cloud. Autom. Constr. 2023, 152, 104907. [Google Scholar]
- Yang, J.; Cao, Z.; Zhang, Q. A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 2016, 346, 163–179. [Google Scholar]
- Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; SPIE: Boston, MA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- Xu, G.; Pang, Y.; Bai, Z.; Wang, Y.; Lu, Z. A fast point clouds registration algorithm for laser scanners. Appl. Sci. 2021, 11, 3426. [Google Scholar] [CrossRef]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. In Proceedings of the SIGGRAPH ‘08: ACM SIGGRAPH 2008 Papers, Los Angeles, CA, USA, 11–15 August 2008; pp. 1–10. [Google Scholar]
- Theiler, P.W.; Wegner, J.D.; Schindler, K. Keypoint-based 4-points congruent sets–automated marker-less registration of laser scans. ISPRS J. Photogramm. Remote Sens. 2014, 96, 149–163. [Google Scholar]
- Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27 October–1 November 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Xue, S.; Zhang, Z.; Lv, Q.; Meng, X.; Tu, X. Point cloud registration method for pipeline workpieces based on PCA and improved ICP algorithms. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 032188. [Google Scholar]
- Huang, X.; Zhang, J.; Wu, Q.; Fan, L.; Yuan, C. A coarse-to-fine algorithm for matching and registration in 3D cross-source point clouds. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2965–2977. [Google Scholar]
- Sadeghi, H.; Raie, A.A. Approximated Chi-square distance for histogram matching in facial image analysis: Face and expression recognition. In Proceedings of the 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP), Isfahan, Iran, 22–23 November 2017; pp. 188–191. [Google Scholar]
- Pittner, S.; Kamarthi, S.V. Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 83–88. [Google Scholar]
- Zheng, Y.; Li, Y.; Yang, S.; Lu, H. Global-PBNet: A novel point cloud registration for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22312–22319. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, E.; Mu, D.; Ji, S.; Zhang, Z.; Liu, H.; Fu, Z. Optimization of the 3D point cloud registration algorithm based on FPFH features. Appl. Sci. 2023, 13, 3096. [Google Scholar] [CrossRef]
- Arce, G.R. Multistage order statistic filters for image sequence processing. IEEE Trans. Signal Process. 1991, 39, 1146–1163. [Google Scholar] [CrossRef]
- Chan, C.K.; Tan, S.T. Determination of the minimum bounding box of an arbitrary solid: An iterative approach. Comput. Struct. 2001, 79, 1433–1449. [Google Scholar] [CrossRef]
- Gressin, A.; Mallet, C.; Demantké, J.; David, N. Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge. ISPRS J. Photogramm. Remote Sens. 2013, 79, 240–251. [Google Scholar] [CrossRef]
- Biglia, A.; Zaman, S.; Gay, P.; Aimonino, D.R.; Comba, L. 3D point cloud density-based segmentation for vine rows detection and localisation. Comput. Electron. Agric. 2022, 199, 107166. [Google Scholar] [CrossRef]
- Zou, R.; Zhang, Y.; Chen, J.; Li, J.; Dai, W.; Mu, S. Density estimation method of mature wheat based on point cloud segmentation and clustering. Comput. Electron. Agric. 2023, 205, 107626. [Google Scholar] [CrossRef]
- Nurunnabi, A.; West, G.; Belton, D. Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recognit. 2015, 48, 1404–1419. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, Q.; Li, X.; Bi, Q. Point cloud registration algorithm based on curvature feature similarity. Measurement 2021, 177, 109274. [Google Scholar] [CrossRef]
- Heil, C.E.; Walnut, D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef]
- Makovetskii, A.; Voronin, S.; Kober, V.; Voronin, A. Point cloud registration based on multiparameter functional. Mathematics 2021, 9, 2589. [Google Scholar] [CrossRef]
- Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An improved RANSAC for 3D point cloud plane segmentation based on normal distribution transformation cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar]
Specifications | Value |
---|---|
Weight | 265 g |
Dimensions | 65 (L) × 65 (W) × 60 (H) mm |
Communication Interface | 100 BASE-TX Ethernet |
Field of View (FOV) | Horizontal 360°, Vertical −7°~52° |
Point Cloud Output | 200,000 points/second |
Range | 0.1~70 m |
Power | 25 W |
Resolution | <0.15° |
Frame Rate | 10 Hz |
Method | Registered Data | Time/s | Standard Deviations |
---|---|---|---|
K4PCSs method | Bunny | 4.9 | 6.976 |
Dragon | 14.11 | ||
Chair | 22.07 | ||
KD-ICP method | Bunny | 11.86 | 10.15 |
Dragon | 8.64 | ||
Chair | 31.5 | ||
3D-NDT method | Bunny | 8.7 | 2.206 |
Dragon | 7.61 | ||
Chair | 12.78 | ||
Proposed method | Bunny | 5.7 | 2.46 |
Dragon | 4.69 | ||
Chair | 10.36 |
Method | Registered Data | RMSE/mm | Standard Deviations |
---|---|---|---|
K4PCSs method | Bunny | 2.86 | 0.1028 |
Dragon | 3.089 | ||
Chair | 2.882 | ||
KD-ICP method | Bunny | 0.599 | 1.520 |
Dragon | 0.978 | ||
Chair | 4.207 | ||
3D-NDT method | Bunny | 1.587 | 0.7225 |
Dragon | 1.931 | ||
Chair | 3.264 | ||
Proposed method | Bunny | 0.698 | 0.173 |
Dragon | 0.964 | ||
Chair | 1.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, R.; Wang, Z. Research on a Point Cloud Registration Method Based on Dynamic Neighborhood Features. Appl. Sci. 2025, 15, 4036. https://doi.org/10.3390/app15074036
Liu X, Wang R, Wang Z. Research on a Point Cloud Registration Method Based on Dynamic Neighborhood Features. Applied Sciences. 2025; 15(7):4036. https://doi.org/10.3390/app15074036
Chicago/Turabian StyleLiu, Xinrui, Rutao Wang, and Zongsheng Wang. 2025. "Research on a Point Cloud Registration Method Based on Dynamic Neighborhood Features" Applied Sciences 15, no. 7: 4036. https://doi.org/10.3390/app15074036
APA StyleLiu, X., Wang, R., & Wang, Z. (2025). Research on a Point Cloud Registration Method Based on Dynamic Neighborhood Features. Applied Sciences, 15(7), 4036. https://doi.org/10.3390/app15074036