Spatiotemporal Gait Parameters in Community-Dwelling Old-Old Koreans: Impact of Muscle Mass, Physical Performance, and Sarcopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Measurement of Body Composition
2.3. Measurement of Muscle Mass, Physical Performance, and Sarcopenia
2.4. Measurement of Spatiotemporal Gait Parameters
2.5. Fall Efficacy and Balance Confidence
2.6. Other Variables
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshiko, A.; Shiozawa, K.; Niwa, S.; Takahashi, H.; Koike, T.; Watanabe, K.; Katayama, K.; Akima, H. Association of Skeletal Muscle Oxidative Capacity with Muscle Function, Sarcopenia-Related Exercise Performance, and Intramuscular Adipose Tissue in Older Adults. Geroscience 2024, 46, 2715–2727. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Ho, F.K.; Celis-Morales, C. The Joint Association of Sarcopenia and Frailty with Incidence and Mortality Health Outcomes: A Prospective Study. Clin. Nutr. 2021, 40, 2427–2434. [Google Scholar] [CrossRef]
- Beaudart, C.; Rabenda, V.; Simmons, M.; Geerinck, A.; De Carvalho, I.A.; Reginster, J.Y.; Thiyagarajan, J.A.; Bruyère, O. Effects of protein, essential amino acids, β-hydroxy β-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over: A systematic review on the literature. J. Nutr. Health Aging 2018, 22, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Longobucco, Y.; Krumpoch, S.; Lauretani, F.; Angileri, V.; Sieber, C.; Marzetti, E.; Calvani, R.; Cherubini, A.; Landi, R.B.; Freiberger, E.; et al. Gait Characteristics in Community-Dwelling Older Persons with Low Skeletal Muscle Mass and Low Physical Performance. Aging Clin. Exp. Res. 2022, 34, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Mori, K.; Murata, S.; Goda, A.; Kikuchi, Y.; Shiraiwa, K.; Horie, J.; Nakano, H. Gait Characteristics of Dynapenia, Sar-copenia, and Presarcopenia in Community-Dwelling Japanese Older Women: A Cross-Sectional Study. Healthcare 2022, 10, 1905. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Lee, S.; Seo, S.H.; Kim, H.S.; Cha, Y.; Kim, J.T.; Kim, J.W.; Ha, Y.C.; Yoo, J.I. Assessing Physical Abilities of Sarcopenia Patients Using Gait Analysis and Smart Insole for Development of Digital Biomarker. Sci. Rep. 2023, 13, 10602. [Google Scholar] [CrossRef]
- Gonçalves, L.d.S.; da Silva, L.S.L.; Bengamim, C.J.R.; Junior, M.F.T.; Bohn, L.; Abud, G.F.; Ortiz, G.U.; de Freitas, E.C. The effects of different exercise training types on body composition and physical performance in older adults with sarcopenic obesity: A systematic review and meta-analysis. J. Nutr. Health Aging 2023, 27, 1076–1090. [Google Scholar] [CrossRef]
- Kim, B.; Youm, C.; Park, H.; Lee, M.; Choi, H. Association of Muscle Mass, Muscle Strength, and Muscle Function with Gait Ability Assessed Using Inertial Measurement Unit Sensors in Older Women. Int. J. Environ. Res. Public Health 2022, 19, 9901. [Google Scholar] [CrossRef]
- Perez-Lasierra, J.L.; Azpíroz-Puente, M.; Alfaro-Santafé, J.; Almernar-Arasanz, A.J.; Alfaro-Santafé, J.; Gómez-Bernal, A. Sarcopenia Screening Based on the Assessment of Gait with Inertial Measurement Units: A Systematic Review. BMC Geriatr. 2024, 24, 863. [Google Scholar] [CrossRef]
- Salamone, L.M.; Fuerst, T.; Visser, M.; Cauley, J.A.; Nevitt, M.; Tylavsky, F.; Lohman, T.G. Measurement of Fat Mass Using DEXA: A Validation Study in Elderly Adults. J. Appl. Physiol. 2000, 89, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, 85–94. [Google Scholar] [CrossRef]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait Photoelectric System for the Assessment of Spatio-temporal Gait Parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Richman, D.; Powell, L. Falls Efficacy as a Measure of Fear of Falling. J. Gerontol. 1990, 45, P239–P243. [Google Scholar] [CrossRef]
- Jang, S.R.; Cho, S.I.; Oh, S.W.; Lee, E.S.; Baik, H.W. The Validity and Reliability of Korean Fall Efficacy (FES) and Activities-Specific Balance Confidence Scale (ABC). Ann. Geriatr. Med. Res. 2003, 7, 255–268. [Google Scholar]
- Huh, J.; Lim, S.; Lee, D. Development of the Korean Falls Efficacy Scale (FES-K) for the Elderly. Korean J. Phys. Educ. 2010, 49, 193–201. [Google Scholar]
- Powell, L.E.; Myers, A.M. The Activities-Specific Balance Confidence (ABC) Scale. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 28–34. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. [Google Scholar] [CrossRef]
- Ramari, C.; Hvid, L.G.; de David, A.C.; Dalgas, U. The Importance of Lower-Extremity Muscle Strength for Lower-Limb Functional Capacity in Multiple Sclerosis: Systematic Review. Ann. Phys. Rehabil. Med. 2020, 63, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Tanaka, S.; Iwnmoto, Y.; Kawano, T.; Yamasaki, M.; Tanaka, R. Reductions in Muscle Strength and Range of Motion Cause Locomotion Disability via Locomotion-Related Functional Limitation in Japanese Older Adults: A Cross-Sectional Study. J. Aging Res. 2021, 2021, 6627767. [Google Scholar] [CrossRef]
- Liu, D.; Fan, Y.B.; Tao, X.H.; Pan, W.L.; Wu, Y.X.; Wang, X.H.; He, Y.Q.; Xiao, W.F.; Li, Y.S. Mitochondrial Quality Control in Sarcopenia: Updated Overview of Mechanisms and Interventions. Aging Dis. 2021, 12, 2016–2030. [Google Scholar] [CrossRef]
- Yang, S.; Li, T.; Yang, H.; Wang, J.; Liu, M.; Wang, S.; He, Y.; Jiang, B. Association between Muscle Strength and Health-Related Quality of Life in a Chinese Rural Elderly Population: A Cross-Sectional Study. BMJ Open 2020, 10, e026560. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Saini, J.; Singh, S.; Nathani, R.; Thangamuthu, K.; Suresh, M.; Atkinson, E.J.; Achenbach, S.J.; Gompel, J.V.; et al. Determinants of Muscle Function and Health-Related Quality of Life in Patients with En-Dogenous Hypercortisolism: A Cross-Sectional Study. Eur. J. Endocrinol. 2023, 188, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.; Fulk, G.D.; Beets, M.W.; Herter, T.M.; Fritz, S.L. Self-Selected Walking Speed Is Predictive of Daily Am-Bulatory Activity in Older Adults. J. Aging Phys. Act. 2016, 24, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between muscle strength and muscle mass, and their association with walking speed. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef]
- Lindemann, U. Spatiotemporal Gait Analysis of Older Persons in Clinical Practice and Research. Z. Gerontol. Geriatr. 2020, 53, 171–178. [Google Scholar] [CrossRef]
- Doi, T.; Nakakubo, S.; Tsutsumimoto, K.; Kurita, S.; Ishii, H.; Shimada, H. Spatiotemporal gait characteristics and risk of mortality in community-dwelling older adults. Maturitas 2021, 151, 31–35. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Lee, S.W.; Leung, J.; Kwok, T.; Woo, J. Age-associated decline of muscle mass, grip strength and gait speed: A 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr. Gerontol. Int. 2014, 14, 76–84. [Google Scholar] [CrossRef]
- Liu, L.K.; Lee, W.J.; Liu, C.L.; Chen, L.Y.; Lin, M.H.; Peng, L.N.; Chen, L.K. Age-Related Skeletal Muscle Mass Loss and Physical Performance in Taiwan: Implications to Diagnostic Strategy of Sarcopenia in Asia. Geriatr. Gerontol. Int. 2013, 13, 964–971. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y.; Hayashida, I.; Kusabiraki, T.; Tamaki, J. Sarcopenia and Falls in Community-Dwelling Elderly Subjects in Japan: Defining Sarcopenia According to Criteria of the European Working Group on Sarcopenia in Older People. Arch. Gerontol. Geriatr. 2014, 59, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Nakakubo, S.; Tsutsumimoto, K.; Kim, M.J.; Kurita, S.; Ishii, H.; Shimada, H. Spatio-temporal gait variables pre-dicted incident disability. J. Neuroeng. Rehabil. 2020, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Huang, Y.; Wang, J.; Su, H.; Tang, H.; Wang, Y. A Novel Digital Biomarker of Sarcopenia in Frail Elderly: New Combination of Gait Parameters under Dual-Task Walking. Front. Aging Neurosci. 2023, 15, 1087318. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, B.; Huang, G.; Zhang, G.; Ding, Z.; Li, Z.; Sinclar, J.; Fan, Y. Sarcopenia: Body composition and gait analysis. Front. Aging Neurosci. 2022, 14, 909551. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Z.; Han, S.; Lv, C.; Zhang, B. The influence of gait speed on the stability of walking among the elderly. Gait Posture 2016, 47, 31–36. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Blizzard, L.; McGinley, J.L.; Schmidt, M.D.; Srikanth, V.K. Sensorimotor factors affecting gait variability in older people—A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 386–392. [Google Scholar] [CrossRef]
Group | AMMI | SPPB | Description |
---|---|---|---|
Normal | Men: ≥7.0 kg/m2 Women: ≥5.4 kg/m2 | >9 score | Adequate muscle mass and physical performance |
Low Muscle Mass (Low MM) | Men: <7.0 kg/m2 Women: <5.4 kg/m2 | >9 score | Reduced muscle mass, normal performance |
Poor Physical Performance (Poor PP) | Men: ≥7.0 kg/m2 Women: ≥5.4 kg/m2 | ≤9 score | Adequate muscle mass, impaired performance |
Sarcopenia | Men: <7.0 kg/m2 Women: <5.4 kg/m2 | ≤9 score | Reduced muscle mass and impaired performance |
Variable | Normal (n = 53) | Low MM (n = 69) | Poor PP (n = 64) | Sarcopenia (n = 56) | p Value |
---|---|---|---|---|---|
Age (years) | 78.1 ± 3.5 d | 78.1 ± 4.0 c,d | 80.1 ± 3.7 b | 80.2 ± 5.2 a,b | 0.002 |
Sex, n (%) | |||||
Male | 8 (15.1) | 19 (27.5) | 9 (14.1) | 11 (19.6) | 0.194 |
Female | 45 (84.9) | 50 (72.5) | 55 (85.9) | 45 (80.4) | |
Education (years) | 5.7 ± 4.2 | 7.8 ± 4.5 c | 5.2 ± 4.6 b | 5.9 ± 4.7 | 0.005 |
BMI (kg/m2) | 26.8 ± 2.6 b,d | 23.3 ± 3.4 a,c | 25.9 ± 2.7 b,d | 23.5 ± 2.4 a,c | <0.001 |
WC (cm) | 102.3 ± 12.1 b,d | 95.2 ± 14.3 a | 98.2 ± 13.5 | 95.4 ± 12.5 a | 0.016 |
SBP (mmHg) | 130.3 ± 15.9 | 131.1 ± 12.7 | 130.8 ± 14.2 | 130.5 ± 14.9 | 0.991 |
DBP (mmHg) | 70.2 ± 9.1 | 71.3 ± 8.7 | 71.1 ± 9.3 | 70.8 ± 8.2 | 0.914 |
AMMI (kg/m2) | 6.4 ± 0.7 b,d | 5.6 ± 0.7 a,c | 6.3 ± 0.8 b,d | 5.4 ± 0.8 a,c | <0.001 |
SPPB (score) | 10.7 ± 0.7 c,d | 10.7 ± 0.6 c,d | 8.3 ± 0.9 a,b | 8.1 ± 1.0 a,b | <0.001 |
Smoking status, n (%) | |||||
Non/past smoking | 53 (100) | 67 (97.1) | 61 (95.3) | 54 (96.4) | 0.184 |
Current smoking | 0 | 2 (2.9) | 3 (4.7) | 2 (3.6) | |
Alcohol consumption, n (%) | |||||
Non-drinker | 36 | 54 | 46 | 45 | 0.291 |
≤1 time/month | 6 | 5 | 2 | 5 | |
≥2 times/month | 11 | 10 | 16 | 6 | |
Comorbidity, n (%) | |||||
0 | 2 (3.8) | 12 (17.4) | 11 (17.2) | 9 (16.1) | 0.276 |
1 | 23 (43.4) | 32 (46.4) | 26 (40.6) | 19 (33.9) | |
≥2 | 28 (42.8) | 25 (36.2) | 27 (42.2) | 28 (50.0) | |
FES (score) | 94.5 ± 6.2 c,d | 92.8 ± 10.6 c,d | 85.9 ± 14.1 a,b | 89.3 ± 11.7 a,b | <0.001 |
ABC (score) | 87.8 ± 7.5 c,d | 85.3 ± 13.9 c,d | 76.7 ± 17.1 a,b | 75.5 ± 16.8 a,b | <0.001 |
Parameters | Normal (n = 53) | Low MM (n = 69) | Poor PP (n = 64) | Sarcopenia (n = 56) | p Value |
---|---|---|---|---|---|
Gait speed (m/s) | 1.25 ± 0.16 d | 1.26 ± 0.17 d | 1.31 ± 0.23 | 1.41 ± 0.29 a,b | <0.001 |
Stride length (cm) | 115.7 ± 9.8 c,d | 114.8 ± 8.0 c,d | 108.5 ± 11.4 a,b,d | 103.2 ± 9.6 a,b,c | <0.001 |
Double-limb stance (%) | 23.9 ± 2.7 c,d | 24.1 ± 2.6 c,d | 26.2 ± 3.6 a,b | 26.4 ± 3.4 a,b | <0.001 |
Gait speed variability | 3.3 ± 1.8 c,d | 4.6 ± 2.9 | 4.8 ± 3.0 a | 5.6 ± 3.1 a | <0.001 |
Stride length variability | 2.3 ± 1.3 b,c,d | 3.5 ± 3.4 a | 3.5 ± 2.4 a | 3.8 ± 2.0 a | 0.001 |
Double-limb stance variability | 5.1 ± 3.7 | 6.6 ± 3.9 | 5.9 ± 4.8 | 6.4 ± 3.4 | 0.180 |
Gait Parameters | β | 95% CI | p Value | |
---|---|---|---|---|
AMMI (kg/m2) | Double-limb stance | −0.155 | −0.080–−0.002 | 0.037 |
SPPB (score) | Gait speed | −0.205 | −1.690–−0.035 | 0.001 |
Double-limb stance | −0.287 | −0.198–−0.016 | <0.001 | |
Sarcopenia (score) | Gait speed | −0.120 | −1.519–−0.023 | 0.043 |
Stride length | 0.283 | 0.020–0.057 | <0.001 | |
Double-limb stance | −0.244 | −0.171–−0.046 | 0.001 |
Gait Parameters | AUC (95% CI) | p Value | Sensitivity | Specificity | |
---|---|---|---|---|---|
Low MM | Double-limb stance | 0.502 (0.429–0.576) | 0.949 | 12.0% | 87.2% |
Stride length | 0.430 (0.357–0.502) | 0.059 | 24.0% | 95.7% | |
Gait speed | 0.549 (0.477–0.622) | 0.185 | 29.6% | 84.6% | |
Poor PP | Double-limb stance | 0.698 (0.633–0.763) | <0.001 | 65.8% | 66.3% |
Stride length | 0.269 (0.329–0.417) | <0.001 | 42.4% | 58.2% | |
Gait speed | 0.585 (0.431–0.578) | 0.022 | 0.200 | 98.3% | |
Sarcopenia | Double-limb stance | 0.647 (0.568–0.726) | 0.001 | 69.1% | 59.4% |
Stride length | 0.236 (0.170–0.302) | <0.001 | 46.4% | 59.1% | |
Gait speed | 0.618 (0.530–0.707) | 0.007 | 40.0% | 81.8% |
AUC (95% CI) | p Value | Sensitivity | Specificity | |
---|---|---|---|---|
Gait speed + double-limb stance | 0.702 (0.622–0.781) | <0.001 | 78.9% | 76.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Kim, T.; Kim, D.; Park, Y.-M.; Cho, J. Spatiotemporal Gait Parameters in Community-Dwelling Old-Old Koreans: Impact of Muscle Mass, Physical Performance, and Sarcopenia. Appl. Sci. 2025, 15, 4379. https://doi.org/10.3390/app15084379
Jin Y, Kim T, Kim D, Park Y-M, Cho J. Spatiotemporal Gait Parameters in Community-Dwelling Old-Old Koreans: Impact of Muscle Mass, Physical Performance, and Sarcopenia. Applied Sciences. 2025; 15(8):4379. https://doi.org/10.3390/app15084379
Chicago/Turabian StyleJin, Youngyun, Taewan Kim, Donghyun Kim, Young-Min Park, and Jinkyung Cho. 2025. "Spatiotemporal Gait Parameters in Community-Dwelling Old-Old Koreans: Impact of Muscle Mass, Physical Performance, and Sarcopenia" Applied Sciences 15, no. 8: 4379. https://doi.org/10.3390/app15084379
APA StyleJin, Y., Kim, T., Kim, D., Park, Y.-M., & Cho, J. (2025). Spatiotemporal Gait Parameters in Community-Dwelling Old-Old Koreans: Impact of Muscle Mass, Physical Performance, and Sarcopenia. Applied Sciences, 15(8), 4379. https://doi.org/10.3390/app15084379