Developments, Applications, and Innovations in Agricultural Sciences and Biotechnologies
1. Introduction
2. Advances in Irrigation Technologies and Water Management
2.1. Optimizing Irrigation for Water-Scarce Regions
2.2. Future Directions for Research and Implementation
3. Sustainable Vegetable Cultivation
3.1. The Benefits of Mulched Ridge Cultivation
3.2. Addressing Challenges and Opportunities
4. Plastic Mulching and Fertilization for Dryland Crops
4.1. Optimizing Resource Use in Semiarid Regions
4.2. Toward Sustainable Dryland Farming
5. Intercropping Systems and Resource Utilization
5.1. Enhancing Photosynthetic Efficiency
5.2. Toward Sustainable Agroforestry Practices
6. Phosphorus Fertilization and Crop Quality
6.1. Balancing Nutrient Management and Crop Quality
6.2. Implications for Sustainable Farming
7. Alleviating Abiotic Stress in Crops
7.1. Mitigating Calcium Nitrate Stress in Chinese Flowering Cabbage
7.2. Enhancing Drought Tolerance in Sophora viciifolia
8. Renewable Energy from Agricultural By-Products
8.1. The Energy Potential of Grape Pomace and Distillation Stillage
8.2. Toward Sustainable Energy Solutions
9. Genetic and Metabolic Diversity in Legumes
9.1. Marker-Assisted Breeding for Common Vetch
9.2. Implications for Legume Improvement
10. Seed Biotechnologies for Sustainable Agriculture
10.1. Innovations in Seed Technology
10.2. Toward Sustainable Seed Systems
11. Discussion
12. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Qin, A.; Fan, Z.; Zhang, L. Hybrid Genetic Algorithm–Based BP Neural Network Models Optimize Estimation Performance of Reference Crop Evapotranspiration in China. Appl. Sci. 2022, 12, 10689.
- Wang, S.; Ji, P.; Qiu, X.; Yang, H.; Wang, Y.; Zhu, H.; Wang, M.; Li, H. Effect of Border Width and Micro–Sprinkling Hose Irrigation on Soil Moisture Distribution and Irrigation Quality for Wheat Crops. Appl. Sci. 2022, 12, 10954.
- He, T.; Li, H.; Shi, S.; Liu, X.; Liu, H.; Shi, Y.; Jiao, W.; Zhou, J. Preliminary Results Detailing the Effect of the Cultivation System of Mulched Ridge with Double Row on Solanaceous Vegetables Obtained by Using the 2ZBX–2A Vegetable Transplanter. Appl. Sci. 2023, 13, 1092.
- Fang, Y.; Yu, X.; Hou, H.; Wang, H.; Ma, Y.; Zhang, G.; Lei, K.; Yin, J.; Zhang, X. Growth Response of Tartary Buckwheat to Plastic Mulching and Fertilization on Semiarid Land. Appl. Sci. 2023, 13, 2232.
- Li, T.; Wang, P.; Li, Y.; Li, L.; Kong, R.; Fan, W.; Yin, W.; Fan, Z.; Wu, Q.; Zhai, Y.; et al. Effects of Configuration Mode on the Light–Response Characteristics and Dry Matter Accumulation of Cotton under Jujube–Cotton Intercropping. Appl. Sci. 2023, 13, 2427.
- Koura, E.; Pistikoudi, A.; Tsifintaris, M.; Tsiolas, G.; Mouchtaropoulou, E.; Noutsos, C.; Karantakis, T.; Kouras, A.; Karanikolas, A.; Argiriou, A.; et al. The Effect of Phosphorus Fertilization on Transcriptome Expression Profile during Lentil Pod and Seed Development. Appl. Sci. 2023, 13, 11403.
- Wu, X.; Zhang, Y.; Chu, Y.; Yan, Y.; Wu, C.; Cao, K.; Ye, L. Fulvic Acid Alleviates the Toxicity Induced by Calcium Nitrate Stress by Regulating Antioxidant and Photosynthetic Capacities and Nitrate Accumulation in Chinese Flowering Cabbage Seedlings. Appl. Sci. 2023, 13, 12373.
- Rao, X.; Zhang, Y.; Gao, Y.; Zhao, L.; Wang, P. Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions. Appl. Sci. 2024, 14, 4359.
- Oliveira, M.; Teixeira, B.M.M.; Toste, R.; Borges, A.D.S. Transforming Wine By–Products into Energy: Evaluating Grape Pomace and Distillation Stillage for Biomass Pellet Production. Appl. Sci. 2024, 14, 7313.
- Avramidou, E.; Sarri, E.; Papadopoulou, E.–A.; Petsoulas, C.; Tigka, E.; Tourvas, N.; Pratsinakis, E.; Ganopoulos, I.; Tani, E.; Aliferis, K.A.; et al. Phenotypic, Genetic, and Metabolite Variability among Genotypes of Vicia sativa L. Appl. Sci. 2024, 14, 9272.
- Tiwari, P.; Park, K.–I. Seed Biotechnologies in Practicing Sustainable Agriculture: Insights and Achievements in the Decade 2014–2024. Appl. Sci. 2024, 14, 11620.
References
- Smith, G.R.; Archer, R. Climate, population, food security: Adapting and evolving in times of global change. Int. J. Sust. Dev. World 2020, 27, 419–423. [Google Scholar] [CrossRef]
- Wanger, T.C.; Raveloaritiana, E.; Zeng, S.Y.; Gao, H.X.; He, X.Q.; Shao, Y.W.; Wu, P.L.; Wyckhuys, K.A.G.; Zhou, W.W.; Zou, Y.; et al. Co—benefits of agricultural diversification and technology for the environment and food security in China. Nat. Food 2024, 5, 965–968. [Google Scholar] [CrossRef]
- Wan, X.Y.; Wu, S.W.; Wei, X.; McConnell, L.L. Plant Biotechnology and Molecular Breeding for Global Food Security. ACS Agric. Sci. Technol. 2024, 4, 521–523. [Google Scholar] [CrossRef]
- Lemke, S.; Tao, X.; Kushner, G.J. Assuring the Food Safety of Crops Developed through Breeding. ACS Agric. Sci. Technol. 2022, 2, 1151–1165. [Google Scholar] [CrossRef]
- Bushnell, D.M. Emerging Alternatives to Mitigate Agricultural Fresh Water and Climate/Ecosystem Issues: Agricultural Revolutions. Water 2024, 16, 3589. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Purohit, S.; Alam, E.; Islam, M.K. Advancements in soil management: Optimizing crop production through interdisciplinary approaches. J. Agr. Food Res. 2024, 18, 101528. [Google Scholar] [CrossRef]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.d.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and Innovations for a Sustainable and Healthy Future—A Critical Review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.X.; Gang, L. Micro—irrigation improves grain yield and resource use efficiency by co–locating the roots and N–fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Ji, L.; You, L.; See, L.; Fritz, S.; Li, C.; Zhang, S.; Li, G. Spatial and temporal changes of vegetable production in China. J. Land Use Sci. 2018, 13, 494–507. [Google Scholar] [CrossRef]
- Jin, X.; Li, D.Y.; Ma, H.; Ji, J.T.; Zhao, K.X.; Pang, J. Development of single row automatic transplanting device for potted vegetable seedlings. Int. J. Agric. Biol. Eng. 2018, 11, 67–75. [Google Scholar] [CrossRef]
- Wang, H.X.; Liu, Y.F.; Song, Q.B.; Lu, Y.; Han, X.R.; Shi, Q.W. Effects of Different Planting Modes on Peanut Photosynthetic Characteristics, Leaf Area Index and Yield in the Sandy Area. Adv. Eng. Res. 2015, 8, 982–986. [Google Scholar]
- Habtamu, T.; Mnuyelet, J. Influences of spacing on yield and root size of carrot (Daucus carota L.) under ridge–furrow production. Open Agric. 2021, 6, 826–835. [Google Scholar]
- Jin, X.; Cheng, Q.; Zhao, B.; Ji, J.; Li, M. Design and test of 2ZYM–2 potted vegetable seedlings transplanting machine. Int. J. Agric. Biol. Eng. 2020, 13, 101–110. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Baartman, J.E.M.; Nunes, J.P.; Keesstra, S.D.; Sadeghi, S.H. Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecol. Indic. 2018, 87, 196–208. [Google Scholar] [CrossRef]
- Hou, H.; Lü, J.; Guo, T.; Zhang, G.; Dong, B.; Zhang, X. Effects of whole field plastic mulching on spring wheat water consumption, yield, and soil water balance in semiarid region. Sci. Agric. Sin. 2014, 47, 4392–4404, (In Chinese with English abstract). [Google Scholar]
- Zhang, D.; Du, G.; Sun, Z.; Bai, W.; Wang, Q.; Feng, L.; Zheng, J.; Zhang, Z.; Liu, Y.; Yang, S.; et al. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi–arid climate. Eur. J. Agron. 2018, 94, 1–11. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Koocheki, A.; Mahallati, M.N. Investigation of Biodiversity and Some of the Ecosystem Services in the Intercropping of Corn, Soybean and Marshmallow. Int. J. Plant Prod. 2019, 13, 35–46. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.; Daniell, T.J.; George, T.S.; Hallett, P.D.; White, P.J. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Zhao, X.H.; Dong, Q.Q.; Han, Y.; Zhang, K.Z.; Shi, X.L.; Yang, X.; Yuan, Y.; Zhou, D.; Wang, K.; Wang, X.; et al. Maize/peanut intercropping improves nutrient uptake of side–row maize and system microbial community diversity. BMC Microbiol. 2022, 22, 14. [Google Scholar] [CrossRef]
- Kim, H.J.; Li, X. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. Hortscience 2016, 51, 1001–1009. [Google Scholar] [CrossRef]
- Kayoumu, M.; Iqbal, A.; Muhammad, N.; Li, X.; Li, L.; Wang, X.; Gui, H.; Qi, Q.; Ruan, S.; Guo, R.; et al. Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low–P–tolerant cotton genotypes. Antioxidants 2023, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Sachin, K.S.; Dass, A.; Dhar, S.; Rajanna, G.A.; Singh, T.; Sudhishri, S.; Sannagoudar, M.S.; Choudhary, A.K.; Kushwaha, H.L.; Praveen, B.R.; et al. Sensor—based precision nutrient and irrigation management enhances the physiological performance, water productivity, and yield of soybean under system of crop intensification. Front. Plant Sci. 2023, 14, 1282217. [Google Scholar] [CrossRef] [PubMed]
- Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545–546, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Di Sario, L.; Boeri, P.; Matus, J.T.; Pizzio, G.A. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int. J. Mol. Sci. 2025, 26, 1129. [Google Scholar] [CrossRef]
- Martínez–Moreno, A.; Carmona, J.; Martínez, V.; Garcia–Sánchez, F.; Mestre, T.C.; Navarro–Pérez, V.; Cámara–Zapata, J.M. Reducing nitrate accumulation through the management of nutrient solution in a floating system lettuce (Lactuca sativa, L.). Sci. Hortic. 2024, 336, 113377. [Google Scholar] [CrossRef]
- Zhang, C.L.; Cao, S.; Man, L.L.; Xiang, D.J.; Liu, P. Analysis of PEG stress on drought tolerance and related response genes expression in soybean seedlings of two varieties. Mol. Plant Breed. 2019, 17, 5891–5898. [Google Scholar]
- Cortés, S.; Fernández, E. Differentiation of Spanish Alcoholic Drinks, Orujo, Obtained from Red and White Grape Pomace Distillation: Volatile Composition. Int. J. Food Prop. 2011, 14, 1349–1357. [Google Scholar] [CrossRef]
- Onache, P.A.; Geana, E.-I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Madesis, P.; Abraham, E.M.; Kalivas, A.; Ganopoulos, I.; Tsaftaris, A. Genetic diversity and structure of natural Dactylis glomerata L. populations revealed by morphological and microsatellite–based (SSR/ISSR) markers. Genet. Mol. Res. 2014, 13, 4226–4240. [Google Scholar] [CrossRef]
- Baldodiya, G.M.; Sarma, S.; Sahu, J. Seed biotechnology for improvement of staple crops. In Advances in Seed Production and Management; Tiwari, A.K., Ed.; Springer Nature: Singapore, 2020. [Google Scholar]
- Gebremedhn, H.M.; Weldemichael, M.Y.; Weldekidan, M.B. Advanced biotechnology techniques for disease resistance in soybean: A comprehensive review. Discov. Appl. Sci. 2024, 6, 526. [Google Scholar] [CrossRef]
- Nsoh, B.; Katimbo, A.; Guo, H.; Heeren, D.M.; Nakabuye, H.N.; Qiao, X.; Ge, Y.; Rudnick, D.R.; Wanyama, J.; Bwambale, E.; et al. Internet of Things–Based Automated Solutions Utilizing Machine Learning for Smart and Real–Time Irrigation Management: A Review. Sensors 2024, 24, 7480. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Rana, K.S.; Bana, R.S.; Ghasal, P.C.; Choudhary, G.L.; Jakhar, P.; Verma, R.K. Energy budgeting and carbon footprint of pearl millet–mustard cropping system under conventional and conservation agriculture in rainfed semi–arid agro–ecosystem. Energy 2017, 141, 1052–1058. [Google Scholar] [CrossRef]
- Guan, R.; Wu, L.; Li, Y.; Ma, B.; Liu, Y.; Zhao, C.; Wang, Z.; Zhao, Y. Evaluating the Impacts of Fertilization and Rainfall on Multi–Form Phosphorus Losses from Agricultural Fields: A Case Study on the North China Plain. Agronomy 2024, 14, 1922. [Google Scholar] [CrossRef]
- McGreevy, S.R.; Rupprecht, C.D.D.; Niles, D.; Wlek, A.; Carolan, M.; Kallis, G.; Kantamaturapoj, K.; Mangnus, A.; Jehlička, P.; Taherzadeh, O.; et al. Sustainable agrifood systems for a post–growth world. Nat. Sustain. 2022, 5, 1011–1017. [Google Scholar] [CrossRef]
- Nongdam, P. Development of synthetic seed technology in plants and its applications: A review. Int. J. Curr. Sci. 2016, 19, E86–E101. [Google Scholar]
- Qin, A.; Ning, D.; Liu, Z.; Li, S.; Zhao, B.; Duan, A. Impacts of Irrigation Time and Well Depths on Farmers’ Costs and Benefits in Maize Production. Agriculture 2022, 12, 456. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out–migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Bjornlund, H.; Zuo, A.; Wheeler, S.A.; Parry, K.; Pittock, J.; Mdemu, M.; Moyo, M. The dynamics of the relationship between household decision–making and farm household income in small–scale irrigation schemes in southern Africa. Agric. Water Manag. 2019, 213, 135–145. [Google Scholar] [CrossRef]
- Stasiškienė, Ž.; Barbir, J.; Draudvilienė, L.; Chong, Z.K.; Kuchta, K.; Voronova, V.; Leal Filho, W. Challenges and Strategies for Bio–Based and Biodegradable Plastic Waste Management in Europe. Sustainability 2022, 14, 16476. [Google Scholar] [CrossRef]
- Gomes, A.; Gonçalves, B.; Inglês, B.; Silvério, S.; Pinto, C.A.; Saraiva, J.A. Potential Impacts of Artificial Intelligence (AI) in Biotechnology. Appl. Sci. 2024, 14, 11801. [Google Scholar] [CrossRef]
- Souto, C.; Lagos, O.; Holzapfel, E.; Ruybal, C.; Bryla, D.R.; Vidal, G. Evaluating a Surface Energy Balance Model for Partially Wetted Surfaces: Drip and Micro–Sprinkler Systems in Hazelnut Orchards (Corylus Avellana L.). Water 2022, 14, 4011. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, H. Coupling Coordinated Analysis of Digital Village Construction, Economic Growth and Environmental Protection in Rural China. Pol. J. Environ. Stud. 2024, 33, 5925–5941. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; He, Z.; Tang, J. Carbon Emissions and Economic Growth in the Planting Industry: Evidence from China. Sustainability 2025, 17, 2570. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, A.; Ning, D. Developments, Applications, and Innovations in Agricultural Sciences and Biotechnologies. Appl. Sci. 2025, 15, 4381. https://doi.org/10.3390/app15084381
Qin A, Ning D. Developments, Applications, and Innovations in Agricultural Sciences and Biotechnologies. Applied Sciences. 2025; 15(8):4381. https://doi.org/10.3390/app15084381
Chicago/Turabian StyleQin, Anzhen, and Dongfeng Ning. 2025. "Developments, Applications, and Innovations in Agricultural Sciences and Biotechnologies" Applied Sciences 15, no. 8: 4381. https://doi.org/10.3390/app15084381
APA StyleQin, A., & Ning, D. (2025). Developments, Applications, and Innovations in Agricultural Sciences and Biotechnologies. Applied Sciences, 15(8), 4381. https://doi.org/10.3390/app15084381