Design Optimization of a Parallel Robot for Laparoscopic Pancreatic Surgery Using a Genetic Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parallel Robot for Laparoscopic Pancreatic Surgery
2.2. Optimization Framework
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoop, T.F.; Theijse, R.T.; Seelen, L.W.F.; Koerkamp, B.G.; van Eijck, C.H.J.; Wolfgang, C.L.; van Tienhoven, G.; van Santvoort, H.C.; Molenaar, I.Q.; Wilmink, J.W.; et al. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Mizarhi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, P20008. [Google Scholar]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef] [PubMed]
- Shah, O.J.; Singh, M. Developments in pancreatic cancer surgery. Updat. Surg. 2024, 76, 17–22. [Google Scholar] [CrossRef]
- Cuschieri, A.; Jakimowicz, J.J.; van Spreeuwel, J. Laparoscopic Distal 70% Pancreatectomy and Splenectomy for Chronic Pancreatitis. Ann. Surg. 1996, 223, 280–285. [Google Scholar] [CrossRef]
- Deichmann, S.; Wellner, U.; Bolm, L.; Honselmann, K.; Braun, R.; Abdalla, T.; Keck, T. Minimally invasive approaches in pancreatic cancer surgery. Eur. Surg. 2024, 56, 76–85. [Google Scholar] [CrossRef]
- Hays, S.B.; Rojas, A.E.; Hogg, M.E. Robotic pancreas surgery for pancreatic cancer. Int. J. Surg. 2023, 110, 6100–6110. [Google Scholar] [CrossRef]
- Giulianotti, C.; Coratti, A.; Angelini, M.; Sbarna, F.; Cecconi, S.; Tommaso, B.; Caravaglios, G. Robotics in General Surgery: Personal Experience in a Large Community Hospital. Arch. Surg. 2003, 138, 777–784. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Q.; Zhao, G.; Li, M.; Gao, Y. Single-port (SP) robotic pancreatic surgery using the da Vinci SP system: A retrospective study on prospectively collected data in a consecutive patient cohort. Int. J. Surg. 2022, 104, 106782. [Google Scholar] [CrossRef]
- Prata, F.; Ragusa, A.; Tempesta, C.; Iannuzzi, A.; Tedesco, F.; Cacciatore, L.; Raso, G.; Civitella, A.; Tuzzolo, P.; Callè, P.; et al. State of the Art in Robotic Surgery with Hugo RAS System: Feasibility, Safety and Clinical Applications. J. Pers. Med. 2023, 13, 1233. [Google Scholar] [CrossRef]
- Lancellotti, F.; Iqbal, A.; Barrie, J.; Stathakis, P.; Satyadas, T.; Deshpande, R.; Santhalingam, J.; de Liguori-Carino, N.; Sheen, A.; Siriwardena, A.K.; et al. Robotic distal pancreatectomy: Initial experience with the Versius robotic surgical system. Stage 2a IDEAL prospective case series. Clin. Surg. Oncol. 2024, 3, 100063. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; Janusonis, V.; Siaulys, R.; Jasenas, M.; Deduchovas, O.; Venckus, R.; Ezerskiene, V.; Paskeviciute, R.; Kilmaviciute, G. Robotic surgery using Sehance® robotic platform: Single center experience with first 100 cases. J. Robot. Surg. 2020, 14, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Choi, M.; Hwang, H.S.; Lee, W.J.; Kang, C.M. The Revo-I Robotic Surgical System in Advanced Pancreatic Surgery: A Second Non-Randomized Clinical Trial and Comparative Analysis to the da VinciTM System. Yonsei Med. J. 2024, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Hannaford, B.; Rosen, J.; Friedman, D.W.; King, H.; Roan, P.; Cheng, L.; Daniel, G.; Ma, J.; Kosary, S.N.; White, L. Raven-II: An open platform for surgical robotic research. IEEE Trans. Biomed. Eng. 2013, 60, 954–959. [Google Scholar] [CrossRef]
- Wang, H.; Du, Z.; Yan, Z.; Gao, Y. Genetic Algorithm-based Optimal Design Strategy of a Continuum Surgical Manipulator. Int. J. Control Autom. Syst. 2022, 20, 3312–3320. [Google Scholar] [CrossRef]
- Kumar, P.; Ghyar, R.; Ravi, B. Topology Optimization of Compliant Mechanism for Laparoscopic Surgery Instruments. In Proceedings of the RICAI2020: 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence, Shanghai, China, 17–19 October 2020; pp. 450–454. [Google Scholar] [CrossRef]
- Khalifa, A.; Fanni, M.; Moihamed, A.M.; Miyashita, T. Development of a new 3-DOF parallel manipulator for minimally invasive surgery. Int. J. Med. Robot 2018, 14, e1901. [Google Scholar] [CrossRef]
- Van Bach, N.P.; Hai, Q.D.; Trung, T.B. Optimization of trajectory tracking control of 3-DOF translational robot use PSO method based on inverse dynamics control for surgery application. J. Vibroengineering 2021, 2, 1591–1601. [Google Scholar] [CrossRef]
- Pisla, D.; Calin, V.; Birlescu, I.; Hajjar, N.A.; Gherman, B.; Radu, C.; Plitea, N. Risk Management for the Reliability of Robotic Assisted Treatment of Non-resectable Liver Tumors. Appl. Sci. 2020, 10, 52. [Google Scholar] [CrossRef]
- Pisla, D.; Plitea, N.; Gherman, B.; Pisla, A.; Vaida, C. Kinematical Analysis and Design of a New Surgical Parallel Robot. In Computational Kinematics; Kecskeméthy, A., Müller, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Vaida, C.; Pisla, D.; Schadlbauer, J.; Husty, M.; Plite, N. Kinematic analysis of an innovative medical parallel robot using Study Parameters. In New Trends in Medical and Service Robots: Human Centered Analysis, Control and Design; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–99. [Google Scholar]
- Vaida, C.; Gherman, B.; Tucan, P.; Birlescu, I.; Chablat, D.; Pisla, D. Parallel Robotic System for Minimally Invasive Surgery of the Pancreas, OSIM. Romania. Patent No. A00522/11.09.2024, 11 November 2024. [Google Scholar]
- Vaida, C.; Birlescu, I.; Gherman, B.; Condurache, D.; Chablat, D.; Pisla, D. An analysis of Higher -Order Kinematics Formalism for an Innovative Surgical Parallel Robot. Mech. Mach. Theory 2025, 209, 105986. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch. Computat. Methods Eng. 2022, 29, 5605–5633. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Alridha, A.H.; Alsharify, F.H.A.; Al-Khafaji, Z. A Review of Optimization Techniques: Application and Comparative Analysis. Iraqi J. Comput. Sci. Math. 2024, 5, 122–134. [Google Scholar] [CrossRef]
- Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.; Said, F.E.-Z.; Hassan, H.A.; Gouda, M.M. Inverse Kinamatics Analysis and Real Time Control of 5-Dof Robot Arm Using Pid And Fuzzy Logic Controllers with Friction Modeling. J. Egypt. Soc. Tribol. 2025, 22, 81–121. [Google Scholar] [CrossRef]
- Crenganis, M.; Tera, M.; Biris, C.; Girjob, C. Dynamic Analysis of a 7DOF Robot Using Fuzzy Logic for Inverse Kinematics Problem. Procedia Comput. Sci. 2019, 162, 298–306. [Google Scholar] [CrossRef]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
Optimization Target | Evaluated Parameter | Before Optimization | After Optimization | Result |
---|---|---|---|---|
RCM | Reachability | 5241/6951 points | 6906/6951 points | +23.96% |
Workspace | 9,366,060.48 mm3 | 12,226,455.35 mm3 | +30.54% | |
Links | Reachability | 6142/6951 points | 6899/6951 points | +10.89% |
Workspace | 8,224,547.69 mm3 | 9,240,279.33 mm3 | +12.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucan, P.; Ciocan, A.; Gherman, B.; Radu, C.; Vaida, C.; Hajjar, N.A.; Chablat, D.; Pisla, D. Design Optimization of a Parallel Robot for Laparoscopic Pancreatic Surgery Using a Genetic Algorithm. Appl. Sci. 2025, 15, 4383. https://doi.org/10.3390/app15084383
Tucan P, Ciocan A, Gherman B, Radu C, Vaida C, Hajjar NA, Chablat D, Pisla D. Design Optimization of a Parallel Robot for Laparoscopic Pancreatic Surgery Using a Genetic Algorithm. Applied Sciences. 2025; 15(8):4383. https://doi.org/10.3390/app15084383
Chicago/Turabian StyleTucan, Paul, Andra Ciocan, Bogdan Gherman, Corina Radu, Calin Vaida, Nadim Al Hajjar, Damien Chablat, and Doina Pisla. 2025. "Design Optimization of a Parallel Robot for Laparoscopic Pancreatic Surgery Using a Genetic Algorithm" Applied Sciences 15, no. 8: 4383. https://doi.org/10.3390/app15084383
APA StyleTucan, P., Ciocan, A., Gherman, B., Radu, C., Vaida, C., Hajjar, N. A., Chablat, D., & Pisla, D. (2025). Design Optimization of a Parallel Robot for Laparoscopic Pancreatic Surgery Using a Genetic Algorithm. Applied Sciences, 15(8), 4383. https://doi.org/10.3390/app15084383