Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic of End-Firing Optical Fiber
2.2. Bacterial Culture and Growth Conditions, and UV-C LED Irradiation Through the Optical Fiber System
2.3. Statistical Analysis
3. Results
3.1. Effect of UV-C LED Irradiation on Bacterial Reduction
3.2. Time-Dependent Trends in Bacterial Viability
4. Discussion
5. Conclusions
- The 270 nm UV-C LED light, delivered through a thin optical fiber, exhibited time-dependent bactericidal effects against E. faecalis.
- The development of a specialized optical system allowed for precise light transmission, enhancing the disinfection potential of UV-C irradiation.
- UV-C LED-based disinfection represents a promising alternative to conventional endodontic irrigation methods and may contribute to improving the success rates of root canal treatments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weissheimer, T.; Pinto, K.P.; da Silva, E.; Hashizume, L.N.; da Rosa, R.A.; Só, M.V.R. Disinfectant effectiveness of chlorhexidine gel compared to sodium hypochlorite: A systematic review with meta-analysis. Restor. Dent. Endod. 2023, 48, e37. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Marini, R.; Angeretti, A. Penetration ability of different irrigants into dentinal tubules. J. Endod. 1997, 23, 725–727. [Google Scholar] [CrossRef]
- Sundqvist, G.; Figdor, D.; Persson, S.; Sjögren, U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 85, 86–93. [Google Scholar] [CrossRef]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002, 35, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Orstavik, D.; Haapasalo, M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod. Dent. Traumatol. 1990, 6, 142–149. [Google Scholar] [CrossRef]
- Ghorbanzadeh, A.; Aminsobhani, M.; Sohrabi, K.; Chiniforush, N.; Ghafari, S.; Shamshiri, A.R.; Noroozi, N. Penetration Depth of Sodium Hypochlorite in Dentinal Tubules after Conventional Irrigation, Passive Ultrasonic Agitation and Nd:YAG Laser Activated Irrigation. J. Lasers Med. Sci. 2016, 7, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Alfredo, E.; Marchesan, M.A.; Sousa-Neto, M.D.; Brugnera-Júnior, A.; Silva-Sousa, Y.T. Temperature variation at the external root surface during 980-nm diode laser irradiation in the root canal. J. Dent. 2008, 36, 529–534. [Google Scholar] [CrossRef]
- Meire, M.A.; Coenye, T.; Nelis, H.J.; De Moor, R.J. Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int. Endod. J. 2012, 45, 482–491. [Google Scholar] [CrossRef]
- Goya, C.; Yamazaki, R.; Tomita, Y.; Kimura, Y.; Matsumoto, K. Effects of pulsed Nd:YAG laser irradiation on smear layer at the apical stop and apical leakage after obturation. Int. Endod. J. 2000, 33, 266–271. [Google Scholar] [CrossRef]
- de Souza, E.B.; Cai, S.; Simionato, M.R.; Lage-Marques, J.L. High-power diode laser in the disinfection in depth of the root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106, e68–e72. [Google Scholar] [CrossRef]
- Asnaashari, M.; Sadeghian, A.; Hazrati, P. The Effect of High-Power Lasers on Root Canal Disinfection: A Systematic Review. J. Lasers Med. Sci. 2022, 13, e66. [Google Scholar] [CrossRef]
- Kung, J.C.; Wang, W.H.; Chiang, Y.C.; Yang-Wang, Y.T.; Wang, Y.C.; Chen, W.C.; Shih, C.J. The Antibacterial and Remineralization Effect of Silver-Containing Mesoporous Bioactive Glass Sealing and Er-YAG Laser on Dentinal Tubules Treated in a Streptococcus mutans Cultivated Environment. Pharmaceuticals 2021, 14, 1124. [Google Scholar] [CrossRef] [PubMed]
- Meire, M.; De Moor, R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review. Int. Endod. J. 2024, 57, 841–860. [Google Scholar] [CrossRef]
- Roper, M.J.; White, J.M.; Goodis, H.E.; Gekelman, D. Two-dimensional changes and surface characteristics from an erbium laser used for root canal preparation. Lasers Surg. Med. 2010, 42, 379–383. [Google Scholar] [CrossRef]
- DiVito, E.E.; Colonna, M.P.; Olivi, G. The photoacoustic efficacy of an Er: YAG laser with radial and stripped tips on root canal dentin walls: An SEM evaluation. J. Laser Dent. 2011, 19, 156–161. [Google Scholar]
- Kaitsas, V.; Signore, A.; Fonzi, L.; Benedicenti, S.; Barone, M. Effects of Nd: YAG laser irradiation on the root canal wall dentin of human teeth: A SEM study. Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 2001, 43, 87–92. [Google Scholar]
- Morio, K.A.; Sternowski, R.H.; Brogden, K.A. Dataset of endodontic microorganisms killed at 265 nm wavelength by an ultraviolet C light emitting diode in root canals of extracted, instrumented teeth. Data Brief. 2022, 40, 107750. [Google Scholar] [CrossRef] [PubMed]
- Morio, K.A.; Sternowski, R.H.; Brogden, K.A. Using ultraviolet (UV) light emitting diodes (LED) to create sterile root canals and to treat endodontic infections. Curr. Opin. Biomed. Eng. 2022, 23, 100397. [Google Scholar] [CrossRef]
- Wengraitis, S.; McCubbin, P.; Wade, M.M.; Biggs, T.D.; Hall, S.; Williams, L.I.; Zulich, A.W. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles. Photochem. Photobiol. 2013, 89, 127–131. [Google Scholar] [CrossRef]
- Metzger, Z.; Better, H.; Abramovitz, I. Immediate root canal disinfection with ultraviolet light: An ex vivo feasibility study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 425–433. [Google Scholar] [CrossRef]
- Aung, N.; Aoki, A.; Takeuchi, Y.; Hiratsuka, K.; Katagiri, S.; Kong, S.; Shujaa Addin, A.; Meinzer, W.; Sumi, Y.; Izumi, Y. The Effects of Ultraviolet Light-Emitting Diodes with Different Wavelengths on Periodontopathic Bacteria In Vitro. Photobiomodul Photomed. Laser Surg. 2019, 37, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Q.; Yang, F.; Hong, W.; Bai, Y.; Zhou, Z. Coupling efficiency improvement of light source with a convex lens for space charge managements. Optik 2021, 248, 167999. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, H.; Jia, J.; Gu, Y.; Zhang, Z.; Shen, D.; Chen, X.; Li, Q.; Hong, W.; Cui, X.; et al. High efficiency deep ultraviolet micro-LED and optical fiber coupling for low power charge management applications. Opt. Laser Technol. 2025, 181, 111902. [Google Scholar] [CrossRef]
- Park, E.-H.; Kim, M.-J.; Kwon, Y.-S. Microlens for efficient coupling between LED and optical fiber. IEEE Photonics Technol. Lett. 1999, 11, 439–441. [Google Scholar] [CrossRef]
- Chrepa, V.; Kotsakis, G.A.; Pagonis, T.C.; Hargreaves, K.M. The effect of photodynamic therapy in root canal disinfection: A systematic review. J. Endod. 2014, 40, 891–898. [Google Scholar] [CrossRef]
- Walsh, L.J. The current status of laser applications in dentistry. Aust. Dent. J. 2003, 48, 146–155; quiz 198. [Google Scholar] [CrossRef] [PubMed]
- Montero Magalló, P.; Roger Laparra, I.; Milara, J.; Cortijo, J. Damaging effects of UVA, blue light, and infrared radiation: In vitro assessment on a reconstructed full-thickness human skin. Front. Med. 2023, 10, 1267409. [Google Scholar] [CrossRef]
- Haraguchi, A.; Yoshida, S.; Takeshita, M.; Sumi, Y.; Mitarai, H.; Yuda, A.; Wada, H.; Nishimura, F.; Maeda, H.; Wada, N. Effects of ultraviolet irradiation equipment on endodontic disease–related bacteria. Lasers Dent. Sci. 2022, 6, 31–40. [Google Scholar] [CrossRef]
- Mohsin, M.S.; Avdic, M.; Fitzpatrick, K.; Lanzarini-Lopes, M. UV-C side-emitting optical fiber-based disinfection: A promising approach for infection control in tight channels. Microbiol. Spectr. 2024, 12, e0004024. [Google Scholar] [CrossRef]
- Takada, A.; Matsushita, K.; Horioka, S.; Furuichi, Y.; Sumi, Y. Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health 2017, 17, 96. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Wang, Y.C.; Kung, J.C.; Shih, C.J. Antibacterial silver-containing mesoporous bioglass as a dentin remineralization agent in a microorganism-challenged environment. J. Dent. 2021, 106, 103563. [Google Scholar] [CrossRef]
- Sungurtekin-Ekci, E.; Ozdemir-Ozenen, D.; Duman, S.; Acuner, I.C.; Sandalli, N. Antibacterial surface properties of various fluoride-releasing restorative materials in vitro. J. Appl. Biomater. Funct. Mater. 2015, 13, e169–e173. [Google Scholar] [CrossRef]
- Kim, J.S.; Shin, D.H. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor. Dent. Endod. 2013, 38, 36–42. [Google Scholar] [CrossRef]
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Mahmoudi, S.; et al. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fan, W.; Fan, B. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro. BMC Microbiol. 2021, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, A.S.; Nitisusanta, L.I.; Iqbal, K.; Daood, U.; Beng, L.T.; Neo, J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. J. Mech. Behav. Biomed. 2013, 17, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hui, D.; Du, C.; Sun, H.; Peng, W.; Pu, X.; Li, Z.; Sun, J.; Zhou, C. Preparation and application of chitosan biomaterials in dentistry. Int. J. Biol. Macromol. 2021, 167, 1198–1210. [Google Scholar] [CrossRef]
- Martu, M.A.; Luchian, I.; Mares, M.; Solomon, S.; Ciurcanu, O.; Danila, V.; Rezus, E.; Foia, L. The Effectiveness of Laser Applications and Photodynamic Therapy on Relevant Periodontal Pathogens (Aggregatibacter actinomycetemcomitans) Associated with Immunomodulating Anti-rheumatic Drugs. Bioengineering 2023, 10, 61. [Google Scholar] [CrossRef]
- Panhoca, V.H.; Corrêa, T.Q.; Bagnato, V.S. New possibilities on the application of violet light in dentistry combining aesthetics and microbiological control: Report of two clinical cases. J. Dent. Health Oral Res. 2022, 3, 1–10. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Mean Diff | p-Value | Group Mean * | Group Std * |
---|---|---|---|---|---|
0 s | 10 s | −0.014 | 1.000 | 0.681 | 0.040 |
0 s | 120 s | −0.432 | 0.000 | 0.681 | 0.040 |
0 s | 180 s | −0.467 | 0.000 | 0.681 | 0.040 |
0 s | 30 s | −0.035 | 0.981 | 0.681 | 0.040 |
0 s | 60 s | −0.133 | 0.099 | 0.681 | 0.040 |
0 s | 90 s | −0.141 | 0.071 | 0.681 | 0.040 |
10 s | 120 s | −0.418 | 0.000 | 0.667 | 0.065 |
10 s | 180 s | −0.453 | 0.000 | 0.667 | 0.065 |
10 s | 30 s | −0.021 | 0.999 | 0.667 | 0.065 |
10 s | 60 s | −0.119 | 0.169 | 0.667 | 0.065 |
10 s | 90 s | −0.127 | 0.122 | 0.667 | 0.065 |
120 s | 180 s | −0.035 | 0.981 | 0.250 | 0.036 |
120 s | 30 s | 0.396 | 0.000 | 0.250 | 0.036 |
120 s | 60 s | 0.299 | 0.000 | 0.250 | 0.036 |
120 s | 90 s | 0.290 | 0.000 | 0.250 | 0.036 |
180 s | 30 s | 0.432 | 0.000 | 0.215 | 0.022 |
180 s | 60 s | 0.334 | 0.000 | 0.215 | 0.022 |
180 s | 90 s | 0.326 | 0.000 | 0.215 | 0.022 |
30 s | 60 s | −0.097 | 0.345 | 0.646 | 0.053 |
30 s | 90 s | −0.106 | 0.262 | 0.646 | 0.053 |
60 s | 90 s | −0.009 | 1.000 | 0.549 | 0.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, M.-J.; Choi, Y.-S.; Seo, D.-G. Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber. Appl. Sci. 2025, 15, 4504. https://doi.org/10.3390/app15084504
Jeon M-J, Choi Y-S, Seo D-G. Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber. Applied Sciences. 2025; 15(8):4504. https://doi.org/10.3390/app15084504
Chicago/Turabian StyleJeon, Mi-Jeong, Yu-Sung Choi, and Deog-Gyu Seo. 2025. "Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber" Applied Sciences 15, no. 8: 4504. https://doi.org/10.3390/app15084504
APA StyleJeon, M.-J., Choi, Y.-S., & Seo, D.-G. (2025). Bactericidal Effects of Ultraviolet-C Light-Emitting Diode Prototype Device Through Thin Optical Fiber. Applied Sciences, 15(8), 4504. https://doi.org/10.3390/app15084504