The Influence of Tooth Primer and Zirconia Cleaners on the Shear Bond Strength of Saliva-Contaminated Zirconia Bonded with Self-Adhesive Resin Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
- No saliva contamination;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Rubbed with distilled water;
- Rinsed with distilled water;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Rubbed with Ivoclean;
- Rinsed with distilled water;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Rubbed with Katana Cleaner;
- Rinsed with distilled water;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Rubbed with Tooth Primer;
- Rinsed with distilled water;
- Panavia SA Luting Multi cement.
- Saliva contamination;
- Rubbed with Tooth Primer;
- Panavia SA Luting Multi cement.
2.2. Resin Composite Rod Preparation
2.3. Saliva Collection
2.4. Bonding Area Preparation
2.5. Saliva Contamination and Surface Modification Procedure
2.6. Cementation
2.7. Shear Bond Strength Test
2.8. Determining Failure Mode
2.9. Statistical Analysis
3. Results
3.1. SBS Test
3.2. Failure Mode Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, J.R.; Benetti, P. Ceramic materials in dentistry: Historical evolution and current practice. Aust. Dent. J. 2011, 56 (Suppl. S1), 84–96. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.A.; Shehab, K.A.; Bushra, S.S.; Hamza, F.S. The effect of aging on the translucency of contemporary zirconia generations: In-vitro study. BMC Oral Health 2024, 24, 744. [Google Scholar] [CrossRef]
- van Schalkwyk, J.H.; Botha, F.S.; van der Vyver, P.J.; de Wet, F.A.; Botha, S.J. Effect of biological contamination on dentine bond strength of adhesive resins. SADJ 2003, 58, 143–147. [Google Scholar]
- Aboush, Y.E. Removing saliva contamination from porcelain veneers before bonding. J. Prosthet. Dent. 1998, 80, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Bishara, S.E.; Oonsombat, C.; Ajlouni, R.; Denehy, G. The effect of saliva contamination on shear bond strength of orthodontic brackets when using a self-etch primer. Angle Orthod. 2002, 72, 554–557. [Google Scholar]
- Cacciafesta, V.; Sfondrini, M.F.; Baluga, L.; Scribante, A.; Klersy, C. Use of a self-etching primer in combination with a resin-modified glass ionomer: Effect of water and saliva contamination on shear bond strength. Am. J. Orthod. Dentofacial. Orthop. 2003, 124, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Klosa, K.; Wolfart, S.; Lehmann, F.; Wenz, H.J.; Kern, M. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disilicate ceramic. J. Adhes. Dent. 2009, 1, 127–135. [Google Scholar]
- Yang, B.; Lange-Jansen, H.C.; Scharnberg, M.; Wolfart, S.; Ludwig, K.; Adelung, R.; Kern, M. Influence of saliva contamination on zirconia ceramic bonding. Dent. Mater. 2008, 24, 508–513. [Google Scholar] [CrossRef]
- Yang, B.; Scharnberg, M.; Wolfart, S.; Quaas, A.C.; Ludwig, K.; Adelung, R.; Kern, M. Influence of contamination on bonding to zirconia ceramic. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 283–290. [Google Scholar] [CrossRef]
- Klaisiri, A.; Suebnukarn, S.; Krajangta, N.; Rakmanee, T.; Sriamporn, T.; Thamrongananskul, N. The effect of morpholine on composite-to-composite repair strength contaminated with saliva. Polymers 2022, 14, 4718. [Google Scholar] [CrossRef]
- Angkasith, P.; Burgess, J.O.; Bottino, M.C.; Lawson, N.C. Cleaning methods for zirconia following salivary contamination. J. Prosthodont. 2016, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Al-Dobaei, E.; Al-Akhali, M.; Polonskyi, O.; Strunskus, T.; Wille, S.; Kern, M. Influence of Cleaning Methods on Resin Bonding to Contaminated Translucent 3Y-TZP ceramic. J. Adhes. Dent. 2020, 22, 383–391. [Google Scholar]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: http://www.iso.org/standard/67596.html (accessed on 1 April 2024).
- ISO 29022:2013; Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: http://www.iso.org/standard/45285.html (accessed on 1 April 2024).
- Matinlinna, J.P.; Lassila, L.V. Enhanced resin-composite bonding to zirconia framework after pretreatment with selected silane monomers. Dent. Mater. 2011, 27, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Vanderlei, A.; Passos, S.P.; Özcan, M.; Bottino, M.A.; Valandro, L.F. Durability of adhesion between feldspathic ceramic and resin cements: Effect of adhesive resin, polymerization mode of resin cement, and aging. J. Prosthodont. 2013, 22, 196–202. [Google Scholar] [CrossRef]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The effect of resin bonding on long-term success of high-strength ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kassardjian, V.; Varma, S.; Andiappan, M.; Creugers, N.H.J.; Bartlett, D. A systematic review and meta analysis of the longevity of anterior and posterior all-ceramic crowns. J. Dent. 2016, 55, 1–6. [Google Scholar] [CrossRef]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar]
- van den Breemer, C.R.; Gresnigt, M.M.; Cune, M.S. Cementation of glass-ceramic posterior restorations: A systematic review. Biomed. Res. Int. 2015, 2015, 148954. [Google Scholar] [CrossRef]
- Thammajaruk, P.; Inokoshi, M.; Chong, S.; Guazzato, M. Bonding of composite cements to zirconia: A systematic review and meta-analysis of in vitro studies. J. Mech. Behav. Biomed. Mater. 2018, 80, 258–268. [Google Scholar] [CrossRef]
- Maciel, L.C.; Amaral, M.; Queiroz, D.A.; Baroudi, K.; Silva-Concílio, L.R. The effect of repeated surface treatment of zirconia on its bond strength to resin cement. J. Adv. Prosthodont. 2020, 12, 291–298. [Google Scholar] [CrossRef]
- Sriamporn, T.; Thamrongananskul, N.; Klaisiri, A. The effectiveness of various functional monomers in self-adhesive resin cements on prosthetic materials. J. Int. Soc. Prevent. Communit. Dent. 2022, 12, 332–335. [Google Scholar] [CrossRef]
- Klaisiri, A.; Maneenacarith, A.; Jirathawornkul, N.; Suthamprajak, P.; Sriamporn, T.; Thamrongananskul, N. The effect of multiple applications of phosphate-containing primer on shear bond strength between zirconia and resin composite. Polymers 2022, 14, 4174. [Google Scholar] [CrossRef] [PubMed]
- Akrawatcharawittaya, P.; Sriamporn, T.; Vuddhakanok, S.; Thamrongananskul, N.; Klaisiri, A. The effect of a dual cure activator on self-adhesive resin cements and zirconia shear bond strength. Ceramics 2024, 7, 1237–1246. [Google Scholar] [CrossRef]
- Rigney, M.; Funkenbusch, E.; Carr, P. Physical and chemical characterization of microporous zirconia. J. Chromatogr. A 1990, 499, 291–304. [Google Scholar] [CrossRef]
- Pilo, R.; Kaitsas, V.; Zinelis, S.; Eliades, G. Interaction of zirconia primers with yttria-stabilized zirconia surfaces. Dent. Mater. 2016, 32, 353–362. [Google Scholar] [CrossRef]
- Skovgaard, M.; Almdal, K.; Van Lelieveld, A. Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification. J. Mater. Sci. 2011, 46, 1824–1829. [Google Scholar] [CrossRef]
- Noronha, M.D.S.; Fronza, B.M.; André, C.B.; de Castro, E.F.; Soto-Montero, J.; Price, R.B.; Giannini, M. Effect of zirconia decontamination protocols on bond strength and surface wettability. J. Esthet. Restor. Dent. 2020, 32, 521–552. [Google Scholar] [CrossRef]
- Phark, J.H.; Duarte, S., Jr.; Kahn, H.; Blatz, M.B.; Sadan, A. Influence of contamination and cleaning on bond strength to modified zirconia. Dent. Mater. 2009, 25, 1541–1550. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Altak, A.; Abdulmajeed, A.; Rodgers, B.; Lawson, N. Cleaning zirconia surface prior to bonding: A comparative study of different methods and solutions. J. Prosthodont. 2022, 31, 239–244. [Google Scholar] [CrossRef]
- Ishii, R.; Tsujimoto, A.; Takamizawa, T.; Tsubota, K.; Suzuki, T.; Shimamura, Y.; Miyazaki, M. Influence of surface treatment of contaminated zirconia on surface free energy and resin cement bonding. Dent. Mater. J. 2015, 34, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K. Influence of cleaning methods on resin bonding to saliva-contaminated zirconia. J. Esthet. Restor. Dent. 2018, 30, 259–264. [Google Scholar] [CrossRef]
- Awad, M.M.; Alhalabi, F.; Alzahrani, K.M.; Almutiri, M.; Alqanawi, F.; Albdiri, L.; Alshehri, A.; Alrahlah, A.; Ahmed, M.H. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-containing cleaner improves bond strength to contaminated monolithic zirconia: An in-vitro study. Materials 2022, 15, 1023. [Google Scholar] [CrossRef]
- Tajiri-Yamada, Y.; Mine, A.; Nakatani, H.; Kawaguchi-Uemura, A.; Matsumoto, M.; Hagino, R.; Yumitate, M.; Ban, S.; Yamanaka, A.; Miura, J.; et al. MDP is effective for removing residual polycarboxylate temporary cement as an adhesion inhibitor. Dent. Mater. J. 2020, 39, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Hajjaj, M.S.; Alzahrani, S.J. Effect of different cleaning methods on shear bond strength of resin cement to contaminated zirconia. Materials 2022, 15, 5068. [Google Scholar] [CrossRef]
- Demir, N.; Genc, O.; Akkese, I.B.; Malko, M.A.; Ozcan, M. Bonding Effectiveness of Saliva-Contaminated Monolithic Zirconia Ceramics Using Different Decontamination Protocols. Biomed. Res. Int. 2024, 2024, 6670159. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Londono, J.; Villalobos, V.; Pan, Y.; Ho, H.X.; Eshera, R.; Sidow, S.J.; Bergeron, B.E.; Wang, X.; Tay, F.R. Effectiveness of different cleaning measures on the bonding of resin cement to saliva-contaminated or blood-contaminated zirconia. J. Dent. 2022, 120, 104084. [Google Scholar] [CrossRef]
- Koko, M.; Takagaki, T.; Abdou, A.; Wada, T.; Nikaido, T.; Tagami, J. Influence of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) incorporated experimental cleaners on the bonding performance of saliva-contaminated zirconia ceramic. Clin. Oral Investig. 2022, 26, 1785–1795. [Google Scholar] [CrossRef]
- Rohr, N.; Fischer, J. Tooth surface treatment strategies for adhesive cementation. J. Adv. Prosthodont. 2017, 9, 85–92. [Google Scholar] [CrossRef]
- Rohr, N.; Märtin, S.; Zitzmann, N.U.; Fischer, J. A comprehensive in vitro study on the performance of two different strategies to simplify adhesive bonding. J. Esthet. Restor. Dent. 2022, 34, 833–842. [Google Scholar] [CrossRef]
- Małysa, A.; Weżgowiec, J.; Danel, D.; Boening, K.; Walczak, K.; Więckiewicz, M. Bond strength of modern self-adhesive resin cements to human dentin and different CAD/CAM ceramics. Acta Bioeng. Biomech. 2020, 22, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Vergano, E.A.; Baldi, A.; Comba, A.; Italia, E.; Ferrero, G.; Femiano, R.; Femiano, F.; Scotti, N. Bond Strength Stability of Different Dual-Curing Adhesive Cements towards CAD-CAM Resin Nanoceramic: An In Vitro Study. Appl. Sci. 2021, 11, 3971. [Google Scholar] [CrossRef]
- Malysa, A.; Wezgowiec, J.; Grzebieluch, W.; Danel, D.P.; Wieckiewicz, M. Effect of Thermocycling on the Bond Strength of Self-Adhesive Resin Cements Used for Luting CAD/CAM Ceramics to Human Dentin. Int. J. Mol. Sci. 2022, 23, 745. [Google Scholar] [CrossRef] [PubMed]
- Manicone, P.F.; Rossi Iommetti, P.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
Material Name | Compositions |
---|---|
Zirconia Cercon HT (Dentsply Sirona, Bensheim, Germany) Lot No.: 18032881 | ZrO2 + HfO2 + Y2O3: ≥99%wt, Y2O3: 9.15–9.55%wt, HfO2: ≤5%wt, Al2O3: ≤0.5%wt, other oxides: ≤1%wt |
Filtek Z350 XT (3M ESPE, St. Paul, MN, USA) Lot No: NF40079 | Matrix: UDMA, TEGDMA, Bis-GMA, Bis-EMA Filler: SiO2 nanofiller, ZrO2 nanofiller, ZrO2/SiO2 nanocluster |
Katana Cleaner (Kuraray America Inc., New York, NY, USA) Lot No.: C90023 | Water, 10-MDP, poly(ethylene glycol), triethanolamine, stabilizer, dyes |
Tooth Primer (Panavia V5) (Kuraray Noritake Dental Inc, Kurashiki, Okayama, Japan) Lot No.: BB0123 | 2-HEMA, 10-MDP, hydrophilic aliphatic dimethacrylate, accelerators, water |
Panavia SA Luting Multi cement (Kuraray Noritake Dental Inc, Kurashiki, Okayama, Japan) Lot No.: BR0196 | Paste A: Bis-GMA, 10-MDP, TEGDMA, 2-HEMA, hydrophobic aromatic dimethacrylate, silanated colloidal silica, silanated barium glass filler, dl-camphorquinone, catalysts, peroxide, pigments Paste B: Hydrophobic aromaticdimethacrylate, hydrophobic aliphatic dimethacrylate, surface-treated sodium fluoride, silanated barium glass filler, accelerators, pigments |
Ivoclean (Ivoclar vivadent AG, Schaan, Liechtenstein) Lot No.: Z0304K | 10–15% ZrO2, 65–80% water, 2.5–10% poly(ethylene glycol), <2.5% NaOH |
Group | Mean SBS ± SD | Failure Mode Percentages (%) | ||
---|---|---|---|---|
Adhesive | Mixed | Cohesive | ||
1. No saliva contamination, no additional cleaning (control) | 22.24 ± 2.37 A | 22 (88%) | 3 (12%) | 0 (0%) |
2. Saliva without rinsing | 0.90 ± 0.20 B | 25 (100%) | 0 (0%) | 0 (0%) |
3. Saliva, rubbed with distilled water, rinsed with distilled water | 1.35 ± 0.43 B | 25 (100%) | 0 (0%) | 0 (0%) |
4. Saliva, rubbed with Ivoclean, rinsed with distilled water | 18.51 ± 3.01 C | 22 (88%) | 3 (12%) | 0 (0%) |
5. Saliva, rubbed with Katana Cleaner, rinsed with distilled water | 20.92 ± 2.63 AC | 21 (84%) | 4 (16%) | 0 (0%) |
6. Saliva, rubbed with Tooth Primer, rinsed with distilled water | 21.43 ± 2.81 AC | 22 (88%) | 3 (12%) | 0 (0%) |
7. Saliva, rubbed with Tooth Primer without rinsing | 20.87 ± 2.35 AC | 23 (92%) | 2 (8%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pornatitanakul, V.; Klaisiri, A.; Sriamporn, T.; Swasdison, S.; Thamrongananskul, N. The Influence of Tooth Primer and Zirconia Cleaners on the Shear Bond Strength of Saliva-Contaminated Zirconia Bonded with Self-Adhesive Resin Cement. Appl. Sci. 2025, 15, 4561. https://doi.org/10.3390/app15084561
Pornatitanakul V, Klaisiri A, Sriamporn T, Swasdison S, Thamrongananskul N. The Influence of Tooth Primer and Zirconia Cleaners on the Shear Bond Strength of Saliva-Contaminated Zirconia Bonded with Self-Adhesive Resin Cement. Applied Sciences. 2025; 15(8):4561. https://doi.org/10.3390/app15084561
Chicago/Turabian StylePornatitanakul, Vorrawatn, Awiruth Klaisiri, Tool Sriamporn, Somporn Swasdison, and Niyom Thamrongananskul. 2025. "The Influence of Tooth Primer and Zirconia Cleaners on the Shear Bond Strength of Saliva-Contaminated Zirconia Bonded with Self-Adhesive Resin Cement" Applied Sciences 15, no. 8: 4561. https://doi.org/10.3390/app15084561
APA StylePornatitanakul, V., Klaisiri, A., Sriamporn, T., Swasdison, S., & Thamrongananskul, N. (2025). The Influence of Tooth Primer and Zirconia Cleaners on the Shear Bond Strength of Saliva-Contaminated Zirconia Bonded with Self-Adhesive Resin Cement. Applied Sciences, 15(8), 4561. https://doi.org/10.3390/app15084561