Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review
Abstract
:1. Introduction
1.1. The Development and Properties of Salt-Affected Lands
1.2. Classification of Saline-Alkaline Soil
1.3. The Impact of Saline-Alkaline Soils and the Challenges They Present
2. Traditional Management Techniques and Methods
2.1. Water Management
2.2. Traditional Inorganic Chemistry Method
2.3. Phytoremediation
2.4. Agricultural Restoration Method
3. Advanced Technology of Saline-Alkaline Soil Management
3.1. Information Technology
3.2. Emerging Chemical Treatments
3.2.1. Biochar Technology
3.2.2. Humic Acid
4. The New Method of Treating Saline-Alkaline Soil Mainly with Wood Vinegar
4.1. Wood Vinegar
4.2. The Source and Application of Wood Vinegar
4.3. The Operational Principles of Wood Vinegar on Saline-Alkaline Soil
4.4. The Advantages and Disadvantages of Wood Vinegar, and Its Prospects
5. Method Comparison and Comprehensive Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shang, X.; Geng, L.; Yang, J.; Zhang, Y.; Xu, W. Transcriptome analysis reveals the mechanism of alkalinity exposure on spleen oxidative stress, inflammation and immune function of Luciobarbus capito. Ecotoxicol. Environ. Saf. 2021, 225, 112748. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, G.; Monni, S.; Oggiano, G.; Paternoster, M.; Sinisi, R. Tracing groundwater salinization processes in coastal aquifers: A hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy. Hydrol. Earth Syst. Sci. 2013, 17, 2917–2928. [Google Scholar] [CrossRef]
- Sishu, N.K.; Das, U.; Selvaraj, C.I. Indian jujube a potential fruit tree to improve the livelihood. Saudi J. Biol. Sci. 2023, 30, 103769. [Google Scholar]
- Zhu, W.; Gu, S.; Jiang, R.; Zhang, X.; Hatano, R. Saline-alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture 2024, 14, 1210. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Q.; Li, Y.; Zhuo, Y.; Xu, L. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2017, 121, 82–92. [Google Scholar] [CrossRef]
- Wei, Z.; Han, Y.; Bu, Y. Research Progress in Adversity Stress of Woody Plants. Mol. Plant Breed. 2020, 18, 2382–2387. [Google Scholar]
- Xia, W.T.; Niu, C.C.; Yu, Q.B.; Wang, Q.; Wang, J.Q.; Sun, X.; Wang, Z.; Shan, X. Experimental investigation of the erodibility of soda saline-alkali soil under freeze-thaw cycle from a microscopic view. CATENA 2023, 232, 107430. [Google Scholar] [CrossRef]
- Wang, X.; Ding, J.; Wang, J.; Han, L.; Tan, J.; Ge, X. Ameliorating saline-sodic soils: A global meta-analysis of field studies on the influence of exogenous amendments on crop yield. Land Degrad. Dev. 2024, 35, 3330–3343. [Google Scholar] [CrossRef]
- Dai, X. Preliminary study on adaptability of forage grass planting in saline-alkali land of Jiangsu coastal beach. Agron. Seed Ind 2017, 7, 42. [Google Scholar]
- Zhang, B.; Song, X.F.; Zhang, Y.H.; Han, D.M.; Tang, C.Y.; Yu, Y.L.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Qi, J.; Fu, D.; Wang, X.; Zhang, F.; Ma, C. The effect of alfalfa cultivation on improving physicochemical properties soil microorganisms community structure of grey desert soil. Sci. Rep. 2023, 13, 13747. [Google Scholar] [CrossRef] [PubMed]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-Scale Soil Salinization Dynamics From Global to Pore Scale: A Review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Gu, L.J.; Ren, R.Z.; Cao, J.S.; Sun, J. (Eds.) Saline alkali land classification using MODIS data in Western Jilin Province, China. In Proceedings of the Conference on Satellite Data Compression, Communications, and Processing IX, San Diego, CA, USA, 26–27 August 2013; SPIE: Bellingham, WA, USA, 2013. [Google Scholar]
- Gao, H.; Liu, J.T.; Eneji, A.E.; Han, L.P.; Tan, L.M. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions. Sustainability 2016, 8, 619. [Google Scholar] [CrossRef]
- Hendricks, S.; Zechmeister-Boltenstern, S.; Kandeler, E.; Sandén, T.; Diaz-Pines, E.; Schnecker, J.; Alber, O.; Miloczki, J.; Spiegel, H. Agricultural management affects active carbon and nitrogen mineralisation potential in soils. J. Plant Nutr. Soil Sci. 2022, 185, 513–528. [Google Scholar] [CrossRef]
- Luo, X.J.; Zhang, X.; Zhang, L.; Guo, L.L.; Nie, Z.Y.; Zhou, J.; Wang, R.Z.; Zhang, T.Y.; Miao, Y.; Ma, L.; et al. Characteristics of clay dispersion and its influencing factors in saline-sodic soils of Songnen Plain, China. Agric. Water Manag. 2024, 303, 109033. [Google Scholar] [CrossRef]
- An, Y.; Yang, X.-X.; Zhang, L.; Zhang, J.; Du, B.; Yao, L.; Li, X.T.; Guo, C. Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline-alkali stress. Plant Cell Rep. 2020, 39, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Organic Amendments promote saline-alkali soil desalinization and enhance maize growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef]
- Xing, J.; Li, X.; Li, Z.; Wang, X.; Hou, N.; Li, D. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar] [CrossRef]
- Bagheri, R.; Nosrati, A.; Jafari, H.; Eggenkamp, H.G.M.; Mozafari, M. Overexploitation hazards and salinization risks in crucial declining aquifers, chemo-isotopic approaches. J. Hazard. Mater. 2019, 369, 150–163. [Google Scholar] [CrossRef]
- Cao, D.; Shi, F.; Koike, T.; Lu, Z.; Sun, J. Halophyte Plant Communities Affecting Enzyme Activity and Microbes in Saline Soils of the Yellow River Delta in China. CLEAN-Soil Air Water 2014, 42, 1433–1440. [Google Scholar] [CrossRef]
- Zhao, K.; Song, J.; Feng, G.; Zhao, M.; Liu, J. Species, types, distribution, and economic potential of halophytes in China. Plant Soil 2011, 342, 495–509. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B.R. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ren, L.; Deng, C.; Wang, Q.; Yu, J. The Water-Saving Management Contract in China: Current Status, Existing Problems, and Countermeasure Suggestions. Water 2022, 14, 3116. [Google Scholar] [CrossRef]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A review of soil-improving cropping systems for soil salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Howe, C.W.; Goemans, C. Water transfers and their impacts: Lessons from three Colorado water markets. J. Am. Water Resour. Assoc. 2003, 39, 1055–1065. [Google Scholar] [CrossRef]
- Zhang, B.-Q.; Wang, N. Study on the harm of saline alkali land and its improvement technology in China. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 042053. [Google Scholar] [CrossRef]
- Chen, X.Y. Changes of Main Properties in Carbonate Meadow Soil Under the Condition of Plastic Mulching Drip Irrigation; Northeast Agricultural University: Harbin, China, 2010. [Google Scholar]
- Li, J.-G.; Pu, L.-J.; Zhu, M.; Zhang, R. The present situation and hot issues in the salt-affected soil research. Acta Geogr. Sin. 2012, 67, 1233–1245. [Google Scholar]
- Gabriel, J.L.; Vanclooster, M.; Quemada, M. Integrating water, nitrogen, and salinity in sustainable irrigated systems: Cover crops versus fallow. J. Irrig. Drain. Eng. 2014, 140, A4014002. [Google Scholar] [CrossRef]
- Matthews, N.; Grové, B.; Barnard, J.; Van Rensburg, L. Modelling the economic tradeoffs between allocating water for crop production or leaching for salinity management. Water SA 2010, 36, 37–43. [Google Scholar] [CrossRef]
- Ashraf, M.; Saeed, M.M. Effect of improved cultural practices on crop yield and soil salinity under relatively saline groundwater applications. Irrig. Drain. Syst. 2006, 20, 111–124. [Google Scholar] [CrossRef]
- Panagea, I.; Daliakopoulos, I.N.; Tsanis, I.K.; Schwilch, G. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): A participatory approach. Solid Earth 2016, 7, 177–190. [Google Scholar] [CrossRef]
- Forkutsa, I.; Sommer, R.; Shirokova, Y.; Lamers, J.; Kienzler, K.; Tischbein, B.; Martius, C.; Vlek, P.L.G. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil salinity dynamics. Irrig. Sci. 2009, 27, 319–330. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Alcon, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D. Adoption of irrigation water policies to guarantee water supply: A choice experiment. Environ. Sci. Policy 2014, 44, 226–236. [Google Scholar] [CrossRef]
- Yang, J.; Yao, R.; Wang, X.; Xie, W.; Zhang, X.; Zhu, W.; Zhang, L.; Sun, R. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedol. Sin. 2022, 59, 10–27. [Google Scholar]
- Zhao, J.S.; Chen, S.; Hu, R.G.; Li, Y.Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef]
- Feng, H.; Wang, S.; Gao, Z.; Pan, H.; Zhuge, Y.; Ren, X.; Hu, S.; Li, C. Aggregate stability and organic carbon stock under different land uses integrally regulated by binding agents and chemical properties in saline-sodic soils. Land Degrad. Dev. 2021, 32, 4151–4161. [Google Scholar] [CrossRef]
- Du, X.J.; Ge, Y.N.; Zhang, Y.; Hu, H.; Zhang, Y.Y.; Yang, Z.Y.; Ren, X.; Hu, S.; Feng, H.; Song, Y. Responses of soil carbon cycling microbial functional genes to nitrogen and phosphorus addition in saline-sodic soils. Plant Soil 2023, 490, 261–277. [Google Scholar] [CrossRef]
- Liu, X.; Ding, J.; Li, J.; Zhu, D.; Li, B.; Yan, B.; Sun, G.; Sun, L.; Li, X. The Response of Soil Bacterial Communities to Cropping Systems in Saline-Alkaline Soil in the Songnen Plain. Agronomy 2023, 13, 2984. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Wang, H.; Liu, S.; Liu, M. Solidification/stabilization of lead-contaminated soils by phosphogypsum slag-based cementitious materials. Sci. Total Environ. 2023, 857, 159552. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, W.; Huang, Q.; Ma, R.; Zhang, J.; Ji, H.; Yao, S.; Hui, Y.; Lin, J.; Ren, Q.; et al. Recovery and reuse of phosphogypsum: Effect of ternary cementitious materials on the performance of phosphogypsum pavement base layers. Constr. Build. Mater. 2024, 433, 136702. [Google Scholar] [CrossRef]
- Arora, S.; Singh, A.K.; Sahni, D. Bioremediation of salt-affected soils: Challenges and opportunities. In Bioremediation of Salt Affected Soils: An Indian Perspective; Springer: Cham, Switzerland, 2017; pp. 275–301. [Google Scholar]
- Rabhi, M.; Talbi, O.; Atia, A.; Abdelly, C.; Smaoui, A. Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. In Biosaline Agriculture and High Salinity Tolerance; Springer: Berlin/Heidelberg, Germany, 2008; pp. 241–246. [Google Scholar]
- Sandhu, G.; Qureshi, R. Salt Affected Soils of Pakistan and Their Utilization; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Yensen, N.P. Halophyte uses for the twenty-first century. In Ecophysiology of High Salinity Tolerant Plants; Springer: Dordrecht, The Netherlands, 2006; pp. 367–396. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Gul, B.; Weber, D.J.; Khan, M.A. Effect of salinity and planting density on physiological responses of Allenrolfea occidentals. West. N. Am. Nat. 2000, 60, 188–197. [Google Scholar]
- Jithesh, M.; Prashanth, S.; Sivaprakash, K.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006, 85, 237–254. [Google Scholar] [CrossRef]
- Ahmad, N.; Qureshi, R.; Qadir, M. Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degrad. Dev. 1990, 2, 277–284. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Arora, S.; Trivedi, R.; Rao, G. Bioremediation of coastal and inland salt affected soils using halophyte plants and halophilic soil microbes. CSSRI Annu. Rep. 2012, 13, 94–100. [Google Scholar]
- Shiyab, S.M.; Shibli, R.A.; Mohammad, M.M. Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. J. Plant Nutr. 2003, 26, 985–996. [Google Scholar] [CrossRef]
- Ashraf, M. Salt tolerance of cotton: Some new advances. Crit. Rev. Plant Sci. 2002, 21, 1–30. [Google Scholar] [CrossRef]
- Liu, X.; Elzenga, J.T.M.; Venema, J.H.; Tiedge, K.J. Thriving in a salty future: Morpho-anatomical, physiological and molecular adaptations to salt stress in alfalfa (Medicago sativa L.) and other crops. Ann. Bot. 2024, 134, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J. Integr. Agric. 2018, 17, 739–746. [Google Scholar] [CrossRef]
- Chen, Z.W.; Guo, Z.Z.; Zhou, L.H.; Xu, H.W.; Liu, C.H.; Yan, X. Advances in Identifying the Mechanisms by Which Microorganisms Improve Barley Salt Tolerance. Life 2023, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.G.; Benes, S.E.; Norman, H.C. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ. 2007, 119, 234–248. [Google Scholar] [CrossRef]
- Ahmad, R.; Anjum, M.A. Mineral Nutrition Management in Fruit Trees Under Salt Stress: A Review. Erwerbs-Obstbau 2023, 65, 397–405. [Google Scholar] [CrossRef]
- Mirck, J.; Zalesny, R.S. Mini-Review of Knowledge Gaps in Salt Tolerance of Plants Applied to Willows and Poplars. Int. J. Phytoremediat. 2015, 17, 640–650. [Google Scholar] [CrossRef]
- Liu, B.; Huang, L.; Jiang, X.; Liu, Y.; Huang, G.; Yang, C.; Liang, Y.; Cai, J.; Zhu, G.; Kong, Q. Quantitative evaluation and mechanism analysis of soil chemical factors affecting rice yield in saline-sodic paddy fields. Sci. Total Environ. 2024, 929, 172584. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wan, J.L.; Yin, X.J.; Gu, X.Z.; Yin, H.D.; Yu, M.; Luan, Y.; Li, R.; Mi, T.; Li, J. Progress and prospect of developing salt and alkali tolerant rice using hybrid rice technology in China. Plant Breed. 2024, 143, 86–95. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.; Schubert, S.; Noble, A.; Sahrawat, K. Phytoremediation of sodic and saline-sodic soils. Adv. Agron. 2007, 96, 197–247. [Google Scholar]
- Zhu, J.; Cui, Z.; Wu, C.; Deng, C.; Chen, J.; Zhang, H. Research advances and prospect of saline and alkali land greening in China. World For. Res. 2018, 31, 70–75. [Google Scholar]
- Yuan, J.; Feng, W.Z.; Jiang, X.M.; Wang, J.L. Saline-alkali migration in soda saline soil based on sub-soiling technology. Desalination Water Treat. 2019, 149, 352–362. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, H.; Zhang, C.; Li, J. National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land. Agric. Water Manag. 2016, 170, 20–25. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Xia, S.; Song, Z.; Jeyakumar, P.; Shaheen, S.M.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Zhang, G.L.; Dong, J.W.; Xiao, X.M.; Hu, Z.M.; Sheldon, S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag. 2002, 18, 381–385. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Pazira, E.; Neshat, A.; Mahmoodabadi, M.; Sinobas, L.R. Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agric. Water Manag. 2013, 120, 39–45. [Google Scholar] [CrossRef]
- Abliz, A.; Tiyip, T.; Ghulam, A.; Halik, U.; Ding, J.-L.; Sawut, M.; Zhang, F.; Nurmemet, I.; Abliz, A. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya Oasis, Northwestern China. Environ. Earth Sci. 2016, 75, 260. [Google Scholar] [CrossRef]
- Bresler, E. SIMULTANEOUS TRANSPORT OF SOLUTES AND WATER UNDER TRANSIENT UNSATURATED FLOW CONDITIONS. Water Resour. Res. 1973, 9, 975–986. [Google Scholar] [CrossRef]
- Yao, R.-J.; Yang, J.-S.; Zhang, T.-J.; Hong, L.-Z.; Wang, M.-W.; Yu, S.-P.; Wang, X.P. Studies on soil water and salt balances and scenarios simulation using SaltMod in a coastal reclaimed farming area of eastern China. Agric. Water Manag. 2014, 131, 115–123. [Google Scholar] [CrossRef]
- Bailey, R.T.; Tavakoli-Kivi, S.; Wei, X.L. A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale. Hydrol. Earth Syst. Sci. 2019, 23, 3155–3174. [Google Scholar] [CrossRef]
- Song, Y.Q.; Pan, Y.X.; Xiang, M.Y.; Yang, W.H.; Zhan, D.X.; Wang, X.R.; Lu, M.A. A WebGIS-Based System for Supporting Saline-Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China. Remote Sens. 2024, 16, 1948. [Google Scholar] [CrossRef]
- Gu, Q.Y.; Han, Y.; Xu, Y.P.; Yao, H.Y.; Niu, H.F.; Huang, F. Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods. Remote Sens. 2022, 14, 226. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Du, X.J.; Hu, H.; Wang, T.H.; Zou, L.; Zhou, W.F.; Gao, H.X.; Ren, X.; Wang, J.; Hu, S. Long-term rice cultivation increases contributions of plant and microbial-derived carbon to soil organic carbon in saline-sodic soils. Sci. Total Environ. 2023, 904, 166713. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Tao, W.; Zhang, X.; Xu, Z.; Xu, C. The Biological Effects of Biochar on Soil’s Physical and Chemical Characteristics: A Review. Sustainability 2025, 17, 2214. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, W.; Lin, Q.; Li, G.; Zhao, X. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 2016, 71, 467–475. [Google Scholar] [CrossRef]
- Du, X.; Xu, Z.; Lv, Q.; Meng, Y.; Wang, Z.; Feng, H.; Ren, X.; Hu, S.; Gao, Z. Fractions, stability, and influencing factors of soil organic carbon under different land-use in sodic soils. Geoderma Reg. 2022, 31, e00590. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, J.; Tang, G.; Sun, T.; Jia, H.; Zhao, H.; Zhang, Y.; Lin, L.; Xu, W. Evaluating the Application Potential of Acid-Modified Cotton Straw Biochars in Alkaline Soils Based on Entropy Weight TOPSIS. Agronomy 2023, 13, 2807. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, Z.C.; Xu, Y.T.; Sun, J.F.; Ruan, X.Y.; Mao, X.W.; Hu, X.; Liu, P. Analysis of the Effect of Modified Biochar on Saline-Alkali Soil Remediation and Crop Growth. Sustainability 2023, 15, 5593. [Google Scholar] [CrossRef]
- Sun, J.N.; He, F.H.; Shao, H.B.; Zhang, Z.H.; Xu, G. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environ. Earth Sci. 2016, 75, 630. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, H.; Jiang, Z.; Zhao, J.; Wang, Z.; Pan, B.; Xing, B. Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environ. Sci. Technol. 2018, 52, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhou, C.; Zhu, J.; Pan, Y.; Sun, J.; Zhang, Z. Effects of biochar application on phreatic water evaporation and water-salt distribution in coastal saline soil. J. Plant Nutr. 2019, 42, 1243–1253. [Google Scholar] [CrossRef]
- Nath, H.; Sarkar, B.; Mitra, S.; Bhaladhare, S. Biochar from Biomass: A Review on Biochar Preparation Its Modification and Impact on Soil Including Soil Microbiology. Geomicrobiol. J. 2022, 39, 373–388. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, Y.; Mu, B.; Wang, A. Research on preparation and properties of a multifunctional superabsorbent based on semicoke and humic acid. Eur. Polym. J. 2021, 159, 110750. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468, 1014–1027. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Liu, X.L.; Lu, Y.C.; Wang, Y.F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Zhang, J.X.; Meng, Q.X.; Yang, Z.P.; Zhang, Q.; Yan, M.; Hou, X.C.; Zhang, X. Humic Acid Promotes the Growth of Switchgrass under Salt Stress by Improving Photosynthetic Function. Agronomy 2024, 14, 1079. [Google Scholar] [CrossRef]
- Chen, X.D.; Wu, J.G.; Opoku-Kwanowaa, Y. Effects of Returning Granular Corn Straw on Soil Humus Composition and Humic Acid Structure Characteristics in Saline-Alkali Soil. Sustainability 2020, 12, 1005. [Google Scholar] [CrossRef]
- Bacilio, M.; Moreno, M.; Bashan, Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol. 2016, 107, 394–404. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.; Li, J.; Cheng, K.; Xue, Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, S.; Nouri, A.; Asadzadeh, F.; Barin, M.; Erpul, G.; Jagadamma, S.; Qin, R. Combining chemical and organic treatments enhances remediation performance and soil health in saline-sodic soils. Commun. Earth Environ. 2023, 4, 285. [Google Scholar] [CrossRef]
- Knicker, H.; Staunton, S. Editorial for the special issue on “Understanding soil interfacial reactions for sustainable soil management and climatic change mitigation” (ISMOM 2019). Eur. J. Soil Sci. 2021, 72, 1079–1082. [Google Scholar] [CrossRef]
- Gregory, S.J.; Anderson, C.W.N.; Arbestain, M.C.; McManus, M.T. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric. Ecosyst. Environ. 2014, 191, 133–141. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; Kuang, S.; Chen, C.; Wang, X.; Xu, J.; Li, X.; Li, H.; Zhuang, Q.; Zhang, F.; et al. Amelioration of Coastal Salt-Affected Soils with Biochar, Acid Modified Biochar and Wood Vinegar: Enhanced Nutrient Availability and Bacterial Community Modulation. Int. J. Environ. Res. Public Health 2022, 19, 7282. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Liu, B.; Liu, Q.; Zheng, H.; You, X.; Sun, K.; Luo, X.; Li, F. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere 2020, 246, 125699. [Google Scholar] [CrossRef]
- Marumoto, S.; Yamamoto, S.P.; Nishimura, H.; Onomoto, K.; Yatagai, M.; Yazaki, K.; Fujita, T.; Watanabe, T. Identification of a Germicidal Compound against Picornavirus in Bamboo Pyroligneous Acid. J. Agric. Food Chem. 2012, 60, 9106–9111. [Google Scholar] [CrossRef]
- Mathew, S.; Zakaria, Z.A. Pyroligneous acid-the smoky acidic liquid from plant biomass. Appl. Microbiol. Biotechnol. 2015, 99, 611–622. [Google Scholar] [CrossRef]
- Cai, K.; Jiang, S.; Ren, C.; He, Y. Significant damage-rescuing effects of wood vinegar extract in living Caenorhabditis elegans under oxidative stress. J. Sci. Food Agric. 2012, 92, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Loo, A.Y.; Jain, K.; Darah, I. Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant, Rhizophora apiculata. Food Chem. 2007, 104, 300–307. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Huang, X.-D.; Han, Z.-Y.; Huang, X.; Hu, B.; Shi, D.-Z.; Wu, W.X. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 2010, 78, 1177–1181. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Dong, J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis 2010, 87, 24–28. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, S.; Zhou, Y.; Liu, S.; Lang, S.; Yang, J.; Wu, Y. Comparative study on the properties of wood vinegar prepared from the pretreated Chinese fir: Effect of hydrothermal parameters and hydrogen peroxide. J. Anal. Appl. Pyrolysis 2022, 167, 105674. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Wu, S.; Sun, M.; Lyu, J. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process. Fuel 2020, 282, 118775. [Google Scholar] [CrossRef]
- Fagernas, L.; Kuoppala, E.; Tiilikkala, K.; Oasmaa, A. Chemical Composition of Birch Wood Slow Pyrolysis Products. Energy Fuels 2012, 26, 1275–1283. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Feng, X.; Yu, J. Wood vinegar resulting from the pyrolysis of apple tree branches for annual bluegrass control. Ind. Crops Prod. 2021, 174, 114193. [Google Scholar] [CrossRef]
- Gama, G.S.P.; Pimenta, A.S.; Feijo, F.M.C.; Santos, C.S.; Fernandes, B.C.C.; de Oliveira, M.F.; De Souza, E.C.; Monteiro, T.V.; Fasciotti, M.; De Azevedo, T.K.; et al. Antimicrobial activity and chemical profile of wood vinegar from eucalyptus (Eucalyptus urophylla x Eucalyptus grandis – clone I144) and bamboo (Bambusa vulgaris). World J. Microbiol. Biotechnol. 2023, 39, 186. [Google Scholar] [CrossRef]
- Gao, T.; Bian, R.; Joseph, S.; Taherymoosavi, S.; Mitchell, D.R.G.; Munroe, P.; Xu, J.; Shi, J. Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Sci. Total Environ. 2020, 725, 138359. [Google Scholar] [CrossRef]
- Wu, Q.M.; Zhang, S.Y.; Hou, B.X.; Zheng, H.J.; Deng, W.X.; Liu, D.H.; Tang, W. Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresour. Technol. 2015, 179, 98–103. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Huang, S.; Cao, Z.; Xu, J.; Lyu, J. Effect of hydrothermal treatment on biomass structure with evaluation of post-pyrolysis process for wood vinegar preparation. Fuel 2021, 305, 121513. [Google Scholar] [CrossRef]
- Zhang, F.; Shao, J.; Yang, H.; Guo, D.; Chen, Z.; Zhang, S.; Chen, H. Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. Bioresour. Technol. 2019, 279, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Zhang, Z.Q.; Wu, L.J.; Zhang, H.Q.; Wang, Z.M. Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar. Chem. Res. Chin. Univ. 2019, 35, 12–20. [Google Scholar] [CrossRef]
- Raza, M.; Abu-Jdayil, B.; Al-Marzouqi, A.H.; Inayat, A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method. Renew. Energy 2022, 183, 67–77. [Google Scholar] [CrossRef]
- Sari, R.M.; Wahono, S.K.; Anwar, M.; Rizal, W.A.; Suryani, R.; Suwanto, A. Wet scrubbing pre-condensation purification of wood vinegar from pyrolysis coconut shell: Physicochemical parameters, antioxidant capacity and biological properties. J. Wood Chem. Technol. 2024, 44, 351–362. [Google Scholar] [CrossRef]
- Theapparat, Y.; Khongthong, S.; Rodjan, P.; Lertwittayanon, K.; Faroongsarng, D. Physicochemical properties and in vitro antioxidant activities of pyroligneous acid prepared from brushwood biomass waste of Mangosteen, Durian, Rambutan, and Langsat. J. For. Res. 2019, 30, 1139–1148. [Google Scholar] [CrossRef]
- Afsharipour, S.; Mirzaalian Dastjerdi, A.; Seyedi, A. Optimizing Cucumis sativus seedling vigor: The role of pistachio wood vinegar and date palm compost in nutrient mobilization. BMC Plant Biol. 2024, 24, 407. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, C.-H.; Liang, M.-T.; Gao, Z.-J.; Wu, Y.-W.; Chuang, L.-Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef]
- Feng, T.-H.; Xue, R.; Zhu, L.; Zhu, Y.-H. Comparison of antioxidant and antibacterial effects of the Eucommia wood vinegar under the refining methods of atmospheric distillation and vacuum distillation. Ind. Crops Prod. 2023, 192, 116013. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martin, M.T.; Nozal, L.; Gonzalez, S.; Manjon, J.L.; Peinado, M. Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis. Energies 2020, 13, 2418. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Chen, G.; Wu, L.; Liu, B.; Li, Y.; Sun, S.; Zhang, H.; Zhang, Z.; Wang, Z. A new method for comprehensive utilization of wood vinegar by distillation and liquid–liquid extraction. Process Biochem. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martin, M.T.; Gonzalez, S.; Manjon, J.L.; Peinado, M. Herbicidal effects of wood vinegar on nitrophilous plant communities. Food Energy Secur. 2020, 9, e253. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Liu, B.; Wang, X. Effect of adding wood vinegar on cucumber (Cucumis sativus L.) seed germination. In Proceedings of the 3rd International Conference on Energy Equipment Science and Engineering (ICEESE), Beijing, China, 28–31 December 2017; IOP Publishing Ltd.: Bristol, UK, 2017. [Google Scholar]
- Shehata, S.A.; Abouziena, H.F.; Abdelgawad, K.F.; Elkhawaga, F.A. Weed Control Efficacy, Growth and Yield of Potato (Solanum tuberosum L.) as Affected by Alternative Weed Control Methods. Potato Res. 2019, 62, 139–155. [Google Scholar] [CrossRef]
- Sun, S.; Gao, Z.-T.; Li, Z.-C.; Li, Y.; Gao, J.-L.; Chen, Y.-J.; Li, H.; Liu, X.-Y.; Wang, Z.-M. Effect of Wood Vinegar on Adsorption and Desorption of Four Kinds of Heavy (loid) Metals Adsorbents. Chin. J. Anal. Chem. 2020, 48, E20013–E20020. [Google Scholar] [CrossRef]
- Yang, Y.; Ahmed, W.; Ye, C.; Yang, L.; Wu, L.; Dai, Z.; Khan, K.A.; Hu, X.; Zhu, X.; Zhao, Z. Exploring the effect of different application rates of biochar on the accumulation of nutrients and growth of flue-cured tobacco (Nicotiana tabacum). Front. Plant Sci. 2024, 15, 1225031. [Google Scholar] [CrossRef]
- Zheng, J.L.; Zhu, Y.H.; Dong, Y.Y.; Zhu, M.Q. Life-cycle assessment and techno-economic analysis of the production of wood vinegar from stem: A case study. Front. Chem. Sci. Eng. 2023, 17, 1109–1121. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, J.Y.; Lee, J.H.; Cho, J.S.; Lee, G.W. Evaluation of Stability in the Purified Wood Vinegar and Its Hair Growth Effect. J. Life Sci. 2009, 19, 1389–1395. [Google Scholar]
- Wang, J.; Gao, W.; Zhu, J.; Yang, Y.; Niu, Y. Remediation of Cd and Cu Contaminated Agricultural Soils near Oilfields by Biochar Combined with Sodium Humate-Wood Vinegar. Agronomy 2023, 13, 1009. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, H.; Guo, D.; Zhang, S.; Chen, H.; Shao, J. Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge. Bioresour. Technol. 2019, 274, 25–32. [Google Scholar] [CrossRef]
- Grewal, A.; Abbey, L.; Gunupuru, L.R. Production, prospects and potential application of pyroligneous acid in agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, A.; Rensing, C.; Yang, J.; Ni, W.; Xing, S.; Yang, W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. Environ. Pollut. 2022, 305, 119266. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-W.; Abbas, S.; Xiu, H.-F.; Ma, K.; Pan, Y.-T.; Lan, W.-K.-N.; Mao, Z.S.; Liu, D. Effects of Different Materials on Desalting and Fertility of Coastal Saline Soil in Zhejiang Province, China. Water Air Soil Pollut. 2023, 234, 407. [Google Scholar] [CrossRef]
- Yang, L.; Tang, G.M.; Xu, W.L.; Zhang, Y.S.; Ning, S.R.; Yu, P.J.; Zhu, J.; Wu, Q.; Yu, P. Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance. Plants 2024, 13, 2427. [Google Scholar] [CrossRef]
- Jeong, K.W.; Kim, B.S.; Ultra, V.U., Jr.; Chul, S. Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties. Korean J. Crop Sci. 2015, 60, 355–365. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Y.Y.; Liu, K.P.; Mao, Q.Z.; Agathokleous, E. Allelopathic effects of Eucalyptus extract and wood vinegar on germination and sprouting of rapeseed (Brassica rapa L.). Environ. Sci. Pollut. Res. 2024, 31, 4280–4289. [Google Scholar] [CrossRef]
- Zhang, P.; Bing, X.; Jiao, L.; Xiao, H.; Li, B.; Sun, H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chem. Eng. J. 2022, 431, 133904. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, J.; Luo, T.; Zhang, K.; Khan, Z.; Zhou, Y.; Cheng, T.; Yuan, B.; Peng, X.; Hu, L. Wood Vinegar Impact on the Growth and Low-Temperature Tolerance of Rapeseed Seedlings. Agronomy 2022, 12, 2453. [Google Scholar] [CrossRef]
- Liu, X.; Cui, R.; Shi, J.; Jiang, Q.; Gao, J.; Wang, Z.; Li, X. Separation and microencapsulation of antibacterial compounds from wood vinegar. Process Biochem. 2021, 110, 275–281. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; He, G.; Zhao, X.; Wang, C.; Li, S.; Zhou, G.; Hu, R. Combined application of acidic biochar and fertilizer synergistically enhances Miscanthus productivity in coastal saline-alkaline soil. Sci. Total Environ. 2023, 893, 164811. [Google Scholar] [CrossRef]
- Wang, J.; Jing, H.; Xu, T.; Li, C.; Zhao, C.; Feng, W. Application Effect of Straw Returning and Biochar in the Improvement of Saline-Alkali Land in Northeast China. Biol. Bull. 2023, 50, 825–836. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Zhou, D. Phosphorus fractions affect fungal compositions and functions under land use conversions in saline-alkali soil in northeastern China. Chem. Biol. Technol. Agric. 2024, 11, 56. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, X.; Zhao, Y.; Wang, H.; Peng, B.; Zhang, P.; Zhao, M. Spatio-temporal characteristics and driving mechanism of land degradation sensitivity in Northwest China. Sci. Total Environ. 2024, 918, 170403. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wan, S.; Kang, Y.; Miao, J.; Li, X. Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China. Agric. Water Manag. 2021, 247, 106730. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Wang, Z.; Li, H.; Chen, R.; Zhao, Y.; Huang, T.; Luo, P. Influence of Long-Term Mulched Drip Irrigation on Upward Capillary Water Movement Characteristics in the Saline-Sodic Region of Northwest China. Agronomy 2024, 14, 1300. [Google Scholar] [CrossRef]
- Han, X.L.; Chen, Z.J.; Li, P.D.; Xu, H.S.; Liu, K.; Zha, W.J.; Li, S.; Chen, J.; Yang, G.; Huang, J.; et al. Development of Novel Rice Germplasm for Salt-Tolerance at Seedling Stage Using CRISPR-Cas9. Sustainability 2022, 14, 2621. [Google Scholar] [CrossRef]
- Luo, T.T.; Ma, C.X.; Fan, Y.H.; Qiu, Z.D.; Li, M.; Tian, Y.S.; Shang, Y.; Liu, C.; Cao, Q.; Peng, Y.; et al. CRISPR-Cas9-mediated editing of GmARM improves resistance to multiple stresses in soybean. Plant Sci. 2024, 346, 112147. [Google Scholar] [CrossRef]
- Yan, X.; Chen, S.; Pan, Z.Y.; Zhao, W.C.; Rui, Y.K.; Zhao, L.J. AgNPs-Triggered Seed Metabolic and Transcriptional Reprogramming Enhanced Rice Salt Tolerance and Blast Resistance. ACS Nano 2023, 17, 492–504. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Ding, Y.R.; Nadeem, M.; Li, Y.B.; Zhao, W.C.; Guo, Z.L.; Zhang, P.; Rui, Y. Enhancing maize stress tolerance with nickel ferrite nanoparticles: A sustainable approach to combat abiotic stresses. Environ. Sci. Nano 2025, 12, 302–314. [Google Scholar] [CrossRef]
Materials | Materials | Nature | References | ||
---|---|---|---|---|---|
pH | Density (g cm−3) | Total Acid Content (%) | |||
Forestry waste | A walnut branch | 3.32 | 1.05 | 3.01 | [110] |
FIR trees | 2.91 | 1.1014 | 1.84 | [111] | |
Rubber Wood | 2.9–3.8 | 1.009–1.027 | - | [112] | |
Birch Wood | 1.8–2.9 | - | - | [113] | |
Apple tree | 3.94 | 1.005 | 2.64 | [114] | |
FIR sawdust | 2.3 | 1.1242 | 10.8 | [111] | |
Apricot trees | 2.93 | 1.05 | 5.38 | [115] | |
Crop waste | Wheat straw | 2.73 | 1.077 | 2.28 | [116] |
Cotton stalk | 4.01 | 0.955 | 7.02 | [117] | |
Tomato stems | 3.21 | 1.0104 | 7.64 | [118] | |
Straw | 2.43 | 1.05 | 9.29 | [119] | |
Soybean straw | 2.35 | 1.01 | 16.93 | [120] | |
Rice straw | 2.93 | 1.025 | 5.56 | ||
Corn stalks | 2.89 | 1.03 | 6.44 | ||
Shell waste | Bitter Apricot Shell | 2.31 | 1.06 | 6.35 | [121] |
Coconut shell | 3 | - | - | [122] | |
Durian | - | 1.012 | 4.22 | [123] | |
Date shells | 2.74 | 1.16 | 4.64 | [124] | |
Litchi shell | 3.17 | 1.04 | 3.69 | [125] |
Method | Effectiveness | Cost (Per Hectare) | Scalability | Environmental Risks | References |
---|---|---|---|---|---|
Water Conservancy | pH reduction: Moderate (0.5–1.5) Salt removal: High (60–80%) | High (USD 800–USD 1500) | Moderate | High water consumption; nutrient leaching; soil structure degradation | [26,28,35] |
Phytoremediation | pH reduction: Low (0.3–0.8) Salt removal: Slow but cumulative (40–60% in 5–10 years) | Low (USD 200–USD 500) | High (suitable for large areas) | Minimal risks; enhances biodiversity | [64] |
Traditional Inorganic Chemistry | pH reduction: High (1.5–3.0) Salt removal: Rapid (70–90%) | Low–Moderate (USD 300–USD 800) | Moderate (weather-dependent) | Secondary contamination (e.g., gypsum residues); nutrient imbalance | [38,42] |
Agricultural Restoration | pH reduction: Low (0.2–0.7) Salt removal: Gradual (30–50%) | Moderate (USD 400–USD 700) | High (low-tech requirements) | Minimal risks; improves soil fertility | [66,67,68] |
Humic Acid | pH reduction: Moderate (1.0–2.0) Salt removal: Moderate (50–70%) | Moderate (USD 500–USD 900) | Moderate (requires organic inputs) | Low; improves soil organic matter | [96,98] |
Biochar | pH reduction: Low (0.5–1.0) Salt removal: Moderate (50–70%) | High (USD 800–USD 1200) | Moderate (production constraints) | Risk of heavy metal contamination if feedstock is polluted | [81,86,88] |
Wood Vinegar | pH reduction: High (1.5–2.5) Salt removal: High (70–85%) | Low–Moderate (USD 300–USD 600) | High (easy application) | Overuse may inhibit microbes; requires precise dosing | [103,140,143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Kekeli, M.A.; Jiang, Y.; Rui, Y. Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review. Appl. Sci. 2025, 15, 4567. https://doi.org/10.3390/app15084567
Li Z, Kekeli MA, Jiang Y, Rui Y. Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review. Applied Sciences. 2025; 15(8):4567. https://doi.org/10.3390/app15084567
Chicago/Turabian StyleLi, Zhengkun, Mcholomah Annalisa Kekeli, Yaqi Jiang, and Yukui Rui. 2025. "Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review" Applied Sciences 15, no. 8: 4567. https://doi.org/10.3390/app15084567
APA StyleLi, Z., Kekeli, M. A., Jiang, Y., & Rui, Y. (2025). Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review. Applied Sciences, 15(8), 4567. https://doi.org/10.3390/app15084567