A Texture-Based Simulation Framework for Pose Estimation
Abstract
:1. Introduction
- Objective: bridge the simulation–reality gap in attitude estimation for symmetrical objects using synthetic data and texture theory.
- Texture design: direction-sensitive surface textures governed by Tamura texture principles (coarseness, contrast, and directionality) with six variants (three complexity levels × grayscale/color).
- Data generation: VTK-based synthetic data with automated pose space sampling (3° intervals) and implicit Euler angle encoding.
- Validation: experimental evaluation using 3D-printed textured spheres and real-world attitude measurements.
2. Materials and Methods
2.1. Texture Design
2.2. Dataset Construction
- A.
- 3D modeling and texture mapping
- B. Attitude control and data generation
- C. Pose coding and dataset construction
3. Simulations and Design Criterion
3.1. Verification Set Performance Comparison
3.2. Test Set Performance Comparison
3.3. Results, Discussion, and Design Criterion
4. Experiments
5. Discussion and Conclusions
- Texture complexity dominance: high-complexity color textures (Texture_3_color) achieved the optimal accuracy, reducing errors by 64.8% compared to low-complexity designs.
- Color–texture synergy: color enhanced performance in complex textures (with the test MAE achieving 0.731° and RMSE achieving 0.876°) but degraded the low-complexity results, emphasizing complexity as a prerequisite for effective color utilization.
- Real-world generalization: the physical tests confirmed the feasibility, with the average attitude error measured by the real system reaching around 3° and 75% of the test data errors being less than 4°, which ensures the feasibility of training the network with 2D data for 3D attitude estimation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAE | Mean absolute error |
Std | Standard deviation |
RMSE | Root mean square error |
References
- Zhou, S.; Cao, W.; Wang, Q.; Zhou, M.; Zheng, X.; Lou, J.; Chen, Y. KMFDSST Algorithm-Based Rotor Attitude Estimation for a Spherical Motor. IEEE Trans. Ind. Inform. 2023, 20, 4463–4472. [Google Scholar] [CrossRef]
- Hansen, J.G.; de Figueiredo, R.P. Active Object Detection and Tracking Using Gimbal Mechanisms for Autonomous Drone Applications. Drones 2024, 8, 55. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, C.; Tian, X.; Zeng, Q.; Yao, R. A Discrete Quaternion Particle Filter Based on Deterministic Sampling for IMU Attitude Estimation. IEEE Sens. J. 2021, 21, 23266–23277. [Google Scholar] [CrossRef]
- Hao, D.; Zhang, G.; Zhao, H.; Ding, H. A Combined Calibration Method for Workpiece Positioning in Robotic Machining Systems and a Hybrid Optimization Algorithm for Improving Tool Center Point Calibration Accuracy. Appl. Sci. 2025, 15, 1033. [Google Scholar] [CrossRef]
- Jiang, J.; Xia, N.; Yu, X. A feature matching and compensation method based on importance weighting for occluded human pose estimation. J. King Saud Univ. Comput. Inf. Sci. 2024, 36, 102061. [Google Scholar] [CrossRef]
- Nadeem, U.; Bennamoun, M.; Togneri, R.; Sohel, F.; Rekavandi, A.M.; Boussaid, F. Cross domain 2D-3D descriptor matching for unconstrained 6-DOF pose estimation. Pattern Recognit. 2023, 142, 109655. [Google Scholar] [CrossRef]
- Yu, X.; Zhuang, Z.; Koniusz, P.; Li, H. 6dof object pose estimation via differentiable proxy voting loss. arXiv 2020, arXiv:2002.03923. [Google Scholar] [CrossRef]
- Hou, H.; Xu, Q.; Lan, C.; Lu, W.; Zhang, Y.; Cui, Z.; Qin, J. UAV Pose Estimation in GNSS-Denied Environment Assisted by Satellite Imagery Deep Learning Features. IEEE Access 2020, 9, 6358–6367. [Google Scholar] [CrossRef]
- Bogaart, M.V.D.; Jacobs, N.; Hallemans, A.; Meyns, P. Validity of Deep Learning-Based Motion Capture Using DeepLabCut to Assess Proprioception in Children. Appl. Sci. 2025, 15, 3428. [Google Scholar] [CrossRef]
- Park, S.; Jeong, W.-J.; Manawadu, M.; Park, S.-Y. 6-DoF Pose Estimation from Single RGB Image and CAD Model Retrieval Using Feature Similarity Measurement. Appl. Sci. 2025, 15, 1501. [Google Scholar] [CrossRef]
- Kubicki, B.; Janowski, A.; Inglot, A. Multimodal Augmented Reality System for Real-Time Roof Type Recognition and Visualization on Mobile Devices. Appl. Sci. 2025, 15, 1330. [Google Scholar] [CrossRef]
- Hodaň, T.; Sundermeyer, M.; Drost, B.; Labbé, Y.; Brachmann, E.; Michel, F.; Rother, C.; Matas, J. BOP challenge 2020 on 6D object localization. In Proceedings of the Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16. Springer International Publishing: Cham, Switzerland, 2020; pp. 577–594. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-wise voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4561–4570, CVPR 2019 Open Access Repository. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Asher, J.M.; Hibbard, P.B.; Webb, A.L. Perceived intrinsic 3D shape of faces is robust to changes in lighting direction, image rotation and polarity inversion. Vis. Res. 2024, 227, 108535. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.; Gasteuil, Y.; Bourgoin, M.; Volk, R.; Pumir, A.; Pinton, J.-F. International Collaboration for Turbulence Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev. Sci. Instruments 2011, 82, 033906. [Google Scholar] [CrossRef] [PubMed]
- Mathai, V.; Neut, M.W.M.; van der Poel, E.P.; Sun, C. Translational and rotational dynamics of a large buoyant sphere in turbulence. Exp. Fluids 2016, 57, 51. [Google Scholar] [CrossRef]
- Will, J.B.; Krug, D. Dynamics of freely rising spheres: The effect of moment of inertia. J. Fluid Mech. 2021, 927, A7. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Cui, Y.; Lv, Z.; Fan, Y.; Zhao, X. Deep learning-based estimation of ash content in coal: Unveiling the contributions of color and texture features. Measurement 2024, 233, 114632. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Contextual recovery network for low-light image enhancement with texture recovery. J. Vis. Commun. Image Represent. 2024, 99, 104050. [Google Scholar] [CrossRef]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man, Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Dzierżak, R. Impact of Texture Feature Count on the Accuracy of Osteoporotic Change Detection in Computed Tomography Images of Trabecular Bone Tissue. Appl. Sci. 2025, 15, 1528. [Google Scholar] [CrossRef]
- Trevisani, S.; Guth, P.L. Terrain Analysis According to Multiscale Surface Roughness in the Taklimakan Desert. Land 2024, 13, 1843. [Google Scholar] [CrossRef]
- He, T.; Zhong, Y.; Isenberg, P.; Isenberg, T. Design Characterization for Black-and-White Textures in Visualization. IEEE Trans. Vis. Comput. Graph. 2023, 30, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Colorado, CO, USA, 2005. [Google Scholar]
- Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Schroeder, W.; Martin, K.M.; Lorensen, W.E. The Visualization Toolkit an Object-Oriented Approach to 3D Graphics; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1998; pp. 10–52. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar] [CrossRef]
- Song, W.; Guo, C.; Shen, L.; Zhang, Y. 3D pose measurement for industrial parts with complex shape by monocular vision. In Proceedings of the SPIE 10827, Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), Shanghai, China, 8–11 May 2018; p. 1082712. [Google Scholar] [CrossRef]
- Balntas, V.; Doumanoglou, A.; Sahin, C.; Sock, J.; Kouskouridas, R.; Kim, T.K. Pose Guided RGBD Feature Learning for 3D Object Pose Estimation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Cui, Y.; Hildenbrand, D. Pose estimation based on Geometric Algebra. GraVisMa 2009, 73, 7. Available online: https://www.researchgate.net/publication/286141050_Pose_estimation_based_on_Geometric_Algebra (accessed on 2 January 2025).
- Ci, J.; Wang, X.; Rapado-Rincón, D.; Burusa, A.K.; Kootstra, G. 3D pose estimation of tomato peduncle nodes using deep keypoint detection and point cloud. Biosyst. Eng. 2024, 243, 57–69. [Google Scholar] [CrossRef]
Texture | Err_X | Err_Y | Err_Z | Std_X | Std_Y | Std_Z | MAE | RMSE |
---|---|---|---|---|---|---|---|---|
Texture_1_bw | 1.7485 | 0.663 | 1.121 | 0.706 | 0.529 | 0.873 | 1.178 | 1.469 |
Texture_1_color | 0.769 | 0.654 | 1.499 | 0.493 | 0.454 | 1.534 | 0.974 | 1.189 |
Texture_2_bw | 0.764 | 0.663 | 1.097 | 0.539 | 0.540 | 0.873 | 0.842 | 1.078 |
Texture_2_color | 0.710 | 0.658 | 1.004 | 0.568 | 0.874 | 0.657 | 0.791 | 1.037 |
Texture_3_bw | 0.305 | 0.654 | 0.517 | 0.246 | 0.449 | 0.426 | 0.492 | 0.661 |
Texture_3_color | 0.284 | 0.367 | 0.596 | 0.211 | 0.242 | 0.466 | 0.416 | 0.543 |
Texture | Description | Val_ Mae | Val_ RMSE | Test_Mae | Test_ RMSE | Test_Std |
---|---|---|---|---|---|---|
Texture_1_bw | Black and white; low complexity | 1.178 | 1.469 | 1.052 | 1.411 | 0.997, 0.625, 0.916 |
Texture_1_color | Color; low complexity | 0.974 | 1.189 | 1.32 | 1.543 | 0.649, 0.48, 0.632 |
Texture_2_bw | Black and white; medium complexity | 0.842 | 1.078 | 1.039 | 1.335 | 0.6, 0.639, 1.059 |
Texture_2_color | Color; medium complexity | 0.791 | 1.037 | 1.008 | 1.237 | 0.659, 0.737, 0.762 |
Texture_3_bw | Black and white; high complexity | 0.492 | 0.661 | 0.758 | 0.911 | 0.327, 0.665, 0.483 |
Texture_3_color | Color; high complexity | 0.416 | 0.543 | 0.731 | 0.876 | 0.421, 0.422, 0.549 |
Parameter | Mean Error | Std | RMSE | Maximum |
---|---|---|---|---|
X-axis | 2.717 | 2.34 | 3.585 | 11.843 |
Y-axis | 3.275 | 3.718 | 4.955 | 15.273 |
Z-axis | 3.223 | 2.031 | 3.810 | 8.511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Kong, M.; Yu, H.; Liu, L. A Texture-Based Simulation Framework for Pose Estimation. Appl. Sci. 2025, 15, 4574. https://doi.org/10.3390/app15084574
Shen Y, Kong M, Yu H, Liu L. A Texture-Based Simulation Framework for Pose Estimation. Applied Sciences. 2025; 15(8):4574. https://doi.org/10.3390/app15084574
Chicago/Turabian StyleShen, Yaoyang, Ming Kong, Hang Yu, and Lu Liu. 2025. "A Texture-Based Simulation Framework for Pose Estimation" Applied Sciences 15, no. 8: 4574. https://doi.org/10.3390/app15084574
APA StyleShen, Y., Kong, M., Yu, H., & Liu, L. (2025). A Texture-Based Simulation Framework for Pose Estimation. Applied Sciences, 15(8), 4574. https://doi.org/10.3390/app15084574