This research provides a comprehensive review of hybrid energy solutions and optimization models for ports and marine environments. It details new methodologies, including strategic energy management and a machine learning (ML) tool for predicting energy surplus and deficits. The hybrid energy module solution
[...] Read more.
This research provides a comprehensive review of hybrid energy solutions and optimization models for ports and marine environments. It details new methodologies, including strategic energy management and a machine learning (ML) tool for predicting energy surplus and deficits. The hybrid energy module solution for the Port of Avilés was further developed to evaluate the performance of new tools such as the Energy Management Tool (EMTv1), HYbrid for Renewable Energy Solutions (HY4RES), and a commercial model (Hybrid Optimization of Multiple Energy Resources—HOMER) in optimizing renewable energy and storage management. Seven scenarios were analyzed, integrating different energy sources and storage solutions. Using EMTv1, Scenario 1 showed high surplus energy, while Scenario 2 demonstrated grid independence with Pump-as-Turbine (PAT) storage. The HY4RES model was used to analyze Scenario 3, which achieved a positive grid balance, exporting more than imported, and Scenario 4 revealed limitations of the PAT system due to the low power installed. Scenario 5 introduced a 15 kWh battery, efficiently storing and discharging energy, reducing grid reliance, and fully covering energy needs. Using HOMER modeling, Scenario 6 required 546 kWh of grid energy but sold 2385 kWh back. Scenario 7 produced 3450 kWh/year, covering demand, resulting in 1834 kWh of surplus energy and a small capacity shortage (1.41 kWh/year). AI-based ML analysis was applied to five scenarios (the ones with access to numerical results), accurately predicting energy balances and optimizing grid interactions. A neural network time series (NNTS) model trained on average year data achieved high accuracy (R
2: 0.9253–0.9695). The ANN model proved effective in making rapid energy balance predictions, reducing the need for complex simulations. A second case analyzed an increase of 80% in demand, confirming the model’s reliability, with Scenario 3 having the highest MSE (0.0166 kWh), Scenario 2 the lowest R
2 (0.9289), and Scenario 5 the highest R
2 (0.9693) during the validation process. This study highlights AI-driven forecasting as a valuable tool for ports to optimize energy management, minimize grid dependency, and enhance their efficiency.
Full article