Very-Large-Scale Integration (VLSI) Implementation and Performance Comparison of Multiplier Topologies for Fixed- and Floating-Point Numbers
Abstract
:1. Introduction
2. Theory Background
2.1. Fixed- and Floating-Point Formats
2.2. Floating-Point Multiplier
3. Materials and Methods
3.1. Array Multiplier
3.2. Wallace Tree Multiplier
3.3. Radix-4 Booth Multiplier
3.4. VLSI Implementation
4. Results and Discussion
4.1. Synthesis Results
4.2. Floating-Point Multipliers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VLSI | very-large-scale integration |
CMOS | complementary metal–oxide–semiconductor |
VHDL | VHSIC hardware description language |
FAs | accurate full adders |
GDI | gate diffusion input |
EDA | electronic design automation |
RTL | register-transfer level |
IEEE | Institute of Electrical and Electronics Engineers |
PPs | partial products |
FAs | full adders |
HAs | half adders |
CLA | carry-look-ahead |
References
- Ibrahim, A.; Gebali, F. Enhancing Field Multiplication in IoT Nodes with Limited Resources: A Low-Complexity Systolic Array Solution. Appl. Sci. 2024, 14, 4085. [Google Scholar] [CrossRef]
- Jiménez, A.; Sauceda, Á.; Muñoz, A.; Duarte, J.; Mireles, J., Jr. FPGA-Based Hardware Implementation of Homodyne Demodulation for Optical Fiber Sensors. Photonics 2023, 10, 258. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Shokri, S.; Aminian, M. Comparison and design of energy-efficient approximate multiplier schemes for image processing by CNTFET. Int. J. Electron. 2023, 111, 813–834. [Google Scholar] [CrossRef]
- Moss, J.M.D.; Boland, D.; Leong, H.W.P. A two-speed, radix-4, serial–parallel multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 769–777. [Google Scholar] [CrossRef]
- Shanmuganathan, R.; Brindhadevi, K. Comparative analysis of various types of multipliers for effective low power. Microelectron. Eng. 2019, 214, 28–37. [Google Scholar] [CrossRef]
- Cariow, A.; Naumowicz, M.; Handkiewicz, A. Structure and Principles of Operation of a Quaternion VLSI Multiplier. Appl. Sci. 2024, 14, 8123. [Google Scholar] [CrossRef]
- Tang, X.; Li, Y.; Lin, C.; Shang, D. A Low-Power Area-Efficient Precision Scalable Multiplier with an Input Vector Systolic Structure. Electronics 2022, 11, 2685. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, X.; Huang, K.; Gu, Z. An 8-bit Radix-4 Non-Volatile Parallel Multiplier. Electronics 2021, 10, 2358. [Google Scholar] [CrossRef]
- Leon, V.; Xydis, S.; Soudris, D.; Pekmestzi, K. Energy-efficient VLSI implementation of multipliers with double LSB operands. IET Circ. Device Syst. 2019, 13, 816–821. [Google Scholar] [CrossRef]
- Lin, J.-F.; Chan, C.-Y.; Yu, S.-W. Novel Low Voltage and Low Power Array Multiplier Design for IoT Applications. Electronics 2019, 8, 1429. [Google Scholar] [CrossRef]
- Mandloi, A.; Pawar, S. VLSI design of APT-VDF using novel variable block sized ternary adder and multiplier. Microprocess. Microsyst. 2020, 78, 103266. [Google Scholar] [CrossRef]
- Sharma, B.; Mishra, R.; Didwania, N.; Mitra, A.; Baksi, A. Comparison of Single Precision Floating Point Multiplier Using Different Multiplier Algorithms. IJEEDC 2015, 3, 106–109. [Google Scholar]
- Spagnolo, F.; Corsonello, P.; Frustaci, F.; Perri, S. Efficient implementation of signed multipliers on FPGAs. Comput. Electr. Engin. 2024, 116, 109217. [Google Scholar] [CrossRef]
- Lee, C.Y.H.; Hiung, L.H.; Lee, S.W.F.; Hamid, N.H. A performance comparison study on multiplier designs. In Proceedings of the 2010 International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malasya, 15–17 June 2010; pp. 1–6. [Google Scholar]
- Swee, K.L.S.; Hiung, L.H. Performance comparison review of 32-bit multiplier designs. In Proceedings of the 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, Malaysia, 12–14 June 2012; pp. 836–841. [Google Scholar]
- Masadeh, M.; Hasan, O.; Tahar, S. Comparative Study of Approximate Multipliers. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23–25 May 2018; pp. 415–418. [Google Scholar]
- Praveen Kumar, Y.G.; Kariyappa, B.S.; Shashank, S.; Bharath, C.N. Performance Analysis of Multipliers Using Modified Gate Diffused Input Technology. IETE J. Res. 2020, 68, 3887–3899. [Google Scholar] [CrossRef]
- Bansal, M.; Barthi, V.; Chander, V. Comparison between Conventional Fast Multipliers and Improved Fast Multipliers using PTL Logic. In Proceedings of the 3rd International Conference on trends in Material Science and Inventive Material (ICTMIM 2021), Coimbatore, India, 12–13 March 2021. [Google Scholar]
- Padmanabhan, K.K.; Seerengasamy, U.; Ponraj, A.S. High-Speed Grouping and Decomposition Multiplier for Binary Multiplication. Electronics 2022, 11, 4202. [Google Scholar] [CrossRef]
- Alliance/Coriolis VLSI CAD Tools. Available online: http://coriolis.lip6.fr/ (accessed on 10 April 2025).
- IEEE Std 754-2019; Revision of IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. IEEE: New York, NY, USA, 2019; pp. 1–84.
- Jaiswal, M.K.; Cheung, R.C.C. VLSI Implementation of Double-Precision Floating-Point Multiplier Using Karatsuba Technique. Circ. Syst. Signal Pr. 2013, 32, 15–27. [Google Scholar] [CrossRef]
- Ullah, S.; Rehman, S.; Shafique, M.; Kumar, A. High-Performance Accurate and Approximate Multipliers for FPGA-based Hardware Accelerators. IEEE Trans. Comput.-Aided Des. 2022, 41, 211–224. [Google Scholar] [CrossRef]
- Waris, H.; Wang, C.; Liu, W.; Lombardi, F. AxBMs: Approximate Radix-8 Booth Multipliers for High-Performance FPGA-Based Accelerators. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1566–1570. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Mastorakis, N.E. Speed, Power and Area Optimized Monotonic Asynchronous Array Multipliers. J. Low Power Electron. Appl. 2024, 14, 1. [Google Scholar] [CrossRef]
- Mathew, K.; Latha, S.A.; Ravi, T.; Logashanmugam, E. Design and analysis of an array multiplier using an area efficient full adder cell in 32nm CMOS technology. Int. J. Eng. Sci. 2013, 2, 8–16. [Google Scholar]
- Wallace, C.S. A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. 1964, 13, 14–17. [Google Scholar] [CrossRef]
- Booth, A.D. A Signed binary multiplication technique. Q. J. Mech. Appl. Math. 1951, 4, 236–240. [Google Scholar] [CrossRef]
- Chu, T.-A. Booth multiplier with low power, high performance input circuitry. US Patent 6,393,454, 21 May 2002. [Google Scholar]
- IEEE Std 1076-2008; IEEE Standard VHDL Language Reference Manual. IEEE: Piscataway, NJ, USA, 2019; pp. 1–673.
- Biswarup, M. A comprehensive review of low power fixed with digital multiplier architectures. J. Mech. Contin. Math. Sci. 2024, 19, 59–76. [Google Scholar] [CrossRef]
- Solanki, V.; Darji, A.D.; Singapuri, H. Design of Low-Power Wallace Tree Multiplier Architecture Using Modular Approach. Circ. Syst. Signal Pr. 2021, 40, 4407–4427. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Nayar, R.; Maskell, D.L. Approximate Array Multipliers. Electronics 2021, 10, 630. [Google Scholar] [CrossRef]
- Waters, R.S.; Swartzlander, E.E. A reduced complexity wallace multiplier reduction. IEEE Trans. Comput. 2010, 59, 1134–1137. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, P.; Qiu, M.; Wang, G. Performance effects of pipeline architecture on an FPGA-based binary32 floating point multiplier. Microprocess. Microsyst. 2013, 37, 1183–1191. [Google Scholar] [CrossRef]
- Mustafa, G. A novel IEEE rounding algorithm for high-speed floating-point multipliers. Integration 2007, 40, 549–560. [Google Scholar] [CrossRef]
Precision | S (bits) | E (bits) | M (bits) | Bias | E-Bias Range |
---|---|---|---|---|---|
Half | 1 | 5 | 10 | 25−1 − 1 = 15 | −14-+15 |
Single | 1 | 8 | 23 | 28−1 − 1 = 127 | −126-+127 |
Double | 1 | 11 | 52 | 211−1 − 1 = 1023 | −1022-+1023 |
y2k+1 | y2k | y2k−1 | bk | PPj |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | +1 | +X |
0 | 1 | 0 | +1 | +X |
0 | 1 | 1 | +2 | +2X |
1 | 0 | 0 | −2 | −2X |
1 | 0 | 1 | −1 | −X |
1 | 1 | 0 | −1 | −X |
1 | 1 | 1 | 0 | 0 |
Length | Transistor Count | Area (mm2) | Delay (ns) | ||||||
---|---|---|---|---|---|---|---|---|---|
Array | Wallace Tree | Radix-4 Booth | Array | Wallace Tree | Radix-4 Booth | Array | Wallace Tree | Radix-4 Booth | |
11 | 14,776 | 4950 | 6180 | 0.258 | 0.085 | 0.11 | 26.5 | 15.6 | 18.7 |
16 | 35,558 | 10,572 | 12,152 | 0.623 | 0.179 | 0.23 | 36.3 | 19.6 | 21.7 |
24 | 96,118 | 22,868 | 26,198 | 1.686 | 0.390 | 0.45 | 52.8 | 21.4 | 25.8 |
32 | 190,289 | 40,178 | 43,548 | 3.295 | 0.676 | 0.76 | 64.6 | 27.0 | 26.0 |
53 | 597,401 | 105,584 | 109,371 | 10.987 | 1.780 | 1.96 | 103.0 | 29.6 | 28.9 |
64 | 903,080 | 152,113 | 155,064 | 16.315 | 2.574 | 2.85 | 123.1 | 30.9 | 30.6 |
Size | Size of Final Adder | Logic Levels | ||
---|---|---|---|---|
Wallace Tree | Radix-4 Booth | Wallace Tree | Radix-4 Booth | |
11 | 16 | 18 | 5 | 4 |
16 | 25 | 27 | 6 | 5 |
24 | 40 | 42 | 7 | 6 |
32 | 55 | 58 | 8 | 6 |
53 | 96 | 99 | 9 | 7 |
64 | 117 | 120 | 10 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, A.; Muñoz, A. Very-Large-Scale Integration (VLSI) Implementation and Performance Comparison of Multiplier Topologies for Fixed- and Floating-Point Numbers. Appl. Sci. 2025, 15, 4621. https://doi.org/10.3390/app15094621
Jiménez A, Muñoz A. Very-Large-Scale Integration (VLSI) Implementation and Performance Comparison of Multiplier Topologies for Fixed- and Floating-Point Numbers. Applied Sciences. 2025; 15(9):4621. https://doi.org/10.3390/app15094621
Chicago/Turabian StyleJiménez, Abimael, and Antonio Muñoz. 2025. "Very-Large-Scale Integration (VLSI) Implementation and Performance Comparison of Multiplier Topologies for Fixed- and Floating-Point Numbers" Applied Sciences 15, no. 9: 4621. https://doi.org/10.3390/app15094621
APA StyleJiménez, A., & Muñoz, A. (2025). Very-Large-Scale Integration (VLSI) Implementation and Performance Comparison of Multiplier Topologies for Fixed- and Floating-Point Numbers. Applied Sciences, 15(9), 4621. https://doi.org/10.3390/app15094621