The Development and Construction of City Information Modeling (CIM): A Survey from Data Perspective †
Abstract
:1. Introduction
- The conceptualization of data-driven CIM is proposed, emphasizing the core role of data (type, source, quality, governance) in the development and implementation of CIM.
- The unique contribution of a data perspective of CIM is distinguished from other perspectives that focus on technology, governance, or specific urban application areas.
- A comprehensive analysis of the data lifecycle in CIM is conducted, covering data collection, integration, processing, analysis, and decision support, revealing the role of data flow and intelligent decision making in each stage.
- Future research directions are proposed, including adaptive urban data infrastructure, ethical frameworks for urban data governance, and data-driven urban intelligent decision-making systems.
2. Background and Definition of CIM
2.1. Background of CIM
2.2. Technology Foundation of CIM
2.2.1. Building Information Modeling (BIM)
2.2.2. Geographic Information System (GIS)
2.2.3. Internet of Things (IoT)
2.2.4. Big Data Analytics
2.2.5. Artificial Intelligence (AI)
2.3. Definition of CIM
2.4. Bibliometric Analysis
3. Developments of CIM
3.1. Developments of CIM Across Countries
3.1.1. Current Status of CIM Applications in Various Countries
3.1.2. Exemplary City Information Modeling: Singapore
3.2. Problems Encountered in CIM Development
3.2.1. CIM Data Governance Legitimization Issues
3.2.2. CIM Data Specification Issues
3.2.3. CIM Data Integration Issues
- Develop unified data standards: leverage ISO 19157 [54] Geographic Information Data Quality Standards and OGC (Open Geospatial Consortium) standards to standardize data formats, semantics, and storage methods, thereby enhancing the cross-platform data interoperability.
- Establish a cross-departmental data sharing mechanism: Create a City Data Sharing Committee to clarify data ownership and responsibilities. Implement blockchain and smart contract technologies to enforce data access control and traceability, strengthening data security.
- Introduce intelligent data processing technologies: Utilize AI-driven data cleaning and fusion algorithms to improve the data quality and consistency. Optimize the data flow through ETL (Extract, Transform, Load) processes to increase the integration efficiency.
- Build a CIM data integration platform: Adopt cloud computing architecture to support large-scale data storage and processing. Integrate knowledge graph technology to enhance the correlation and analytical capabilities of multi-source data, thereby constructing an efficient and intelligent data integration system.
4. Data-Driven CIM Construction
4.1. Data-Driven CIM Framework
4.2. Data-Driven CIM Construction Process
4.2.1. Data Acquisition
4.2.2. Data Processing
4.2.3. Data Application
4.3. Example of Data-Driven CIM Construction
4.3.1. Intelligent Transportation System
4.3.2. Digital Twin City
4.3.3. Smart City Brain
5. Discussion
5.1. Critical Analysis of Data-Driven CIM
- (1)
- Does data-driven CIM truly improve the urban management efficiency?
- (2)
- Is CIM truly capable of real-time data processing?
- (3)
- Challenges in data security, privacy, and ethics
- (4)
- Scalability and adaptability of CIM
5.2. Limitations of the Current Studies
- (1)
- Data quality and multi-source data fusion
- (2)
- Computational efficiency and real-time processing
- (3)
- Data security and privacy protection
- (4)
- Adaptability and cross-city deployment
5.3. Research Challenges and Opportunities
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padsala:, R.; Coors, V. Conceptualizing, Managing and Developing: A Web-Based 3D City Information Model for Urban Energy Demand Simulation. In Proceedings of the UDMV, Delft, The Netherlands, 23 November 2015. [Google Scholar]
- Dantas, H.S.; Sousa, J.M.M.S.; Melo, H.C. The Importance of City Information Modeling (CIM) for Cities’ Sustainability. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012074. [Google Scholar] [CrossRef]
- Azevedo Guedes, A.L.; Carvalho Alvarenga, J.; Dos Santos Sgarbi Goulart, M.; Rodriguez y Rodriguez, M.V.; Pereira Soares, C.A. Smart Cities: The Main Drivers for Increasing the Intelligence of Cities. Sustainability 2018, 10, 3121. [Google Scholar] [CrossRef]
- Najafi, P.; Mohammadi, M.; van Wesemael, P.; Le Blanc, P.M. A User-Centred Virtual City Information Model for Inclusive Community Design: State-of-Art. Cities 2023, 134, 104203. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, F.; Ma, L. Exploring the Potentials and Obstacles of City Information Modelling. In Routledge Handbook of Smart Built Environment; Routledge: Abingdon, UK, 2025; pp. 258–270. [Google Scholar]
- Soltanifard, H.; Farhadi, R.; Mansourian, H. City Information Modelling and Sustainable Development: The Role of CIM in Achieving Sustainable Urbanization. In City Information Modelling; Springer Nature Singapore: Singapore, 2024; pp. 17–32. [Google Scholar]
- Gil, J.; Almeida, J.; Duarte, J.P. The Backbone of a City Information Model (CIM). In Proceedings of the Respecting Fragile Places: Proceedings of the 29th Conference on Education in Computer Aided Architectural, Ljubljana, Slovenia, 21–24 September 2011; pp. 143–151. [Google Scholar]
- Stoter, J.; Ohori, K.A.; Ledoux, H. Geo-BIM data integration: Easier said than done? Geospat. World 2018, 9, 35–38. [Google Scholar]
- Cocchia, A. Smart and digital city: A systematic literature review. In Smart City: How to Create Public and Economic Value with High Technology in Urban Space; Springer: Cham, Switzerland, 2014; pp. 13–43. [Google Scholar]
- Dameri, R.P.; Cocchia, A. Smart city and digital city: Twenty years of terminology evolution. In Proceedings of the X Conference of the Italian Chapter of AIS, ITAIS, Milan, Italy, 14 December 2013; Volume 1. [Google Scholar]
- Shi, Y.; Han, Q.; Shen, W.; Zhang, H. Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collab. Intell. Manuf. 2019, 1, 109–116. [Google Scholar] [CrossRef]
- Khalil, I.G.; Mohamed, A.; Smail, Z. Building Information Modeling for rural road design: A case study. In Proceedings of the 2021 16th International Conference on Electronics, Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 25–26 November 2021; pp. 1–7. [Google Scholar]
- Zingariello, I. From BIM to CIM: A new instrument for urban planners and a new bottom-up planning process. In Proceedings of the International Conference on Innovation in Urban and Regional Planning, Catania, Italy, 8–10 September 2021; pp. 189–193. [Google Scholar]
- Yu, Q.; Wang, C.; Cetiner, B.; Yu, S.X.; Mckenna, F.; Taciroglu, E.; Law, K.H. Building Information Modeling and Classification by Visual Learning at a City Scale. arXiv 2019, arXiv:1910.06391. [Google Scholar]
- Xue, F.; Wu, L.; Lu, W. Semantic Enrichment of Building and City Information Models: A Ten-Year Review. Adv. Eng. Inform. 2021, 47, 101245. [Google Scholar] [CrossRef]
- Thompson, E.M.; Greenhalgh, P.; Muldoon-Smith, K.; Charlton, J.; Dolník, M. Planners in the Future City: Using City Information Modelling to Support Planners as Market Actors. Urban Plann. 2016, 1, 79–94. [Google Scholar] [CrossRef]
- Dall’O’, G.; Zichi, A.; Torri, M. Green BIM and CIM: Sustainable Planning Using Building Information Modelling. In Green Planning for Cities and Communities; Dall’O’, G., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 383–409. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Integrating BIM and AI for smart construction management: Current status and future directions. Arch. Comput. Methods Eng. 2023, 30, 1081–1110. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; Saad, N.; Azab, M.; Khan, A.M. BIM in green building: Enhancing sustainability in the small construction project. Clean. Environ. Syst. 2023, 11, 100149. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Adhikari, S. The role of BIM in integrating digital twin in building construction: A literature review. Sustainability 2023, 15, 10462. [Google Scholar] [CrossRef]
- Heidari, A.; Peyvastehgar, Y.; Amanzadegan, M. A systematic review of the BIM in construction: From smart building management to interoperability of BIM & AI. Archit. Sci. Rev. 2024, 67, 237–254. [Google Scholar]
- Li, X.; Lv, Z.; Hu, J.; Zhang, B.; Shi, L.; Feng, S. Xearth: A 3D GIS Platform for Managing Massive City Information. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Shenzhen, China, 12–14 June 2015. [Google Scholar]
- Schiefelbein, J.; Javadi, A.; Lauster, M.; Remmen, P.; Streblow, R.; Müller, D. Development of a City Information Model to Support Data Management and Analysis of Building Energy Systems within Complex City Districts. In Proceedings of the International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale; LESO-PB, EPFL, Lausanne, Switzerland, 9–11 September 2015. [Google Scholar]
- Mohammed, S.; Alkhereibi, A.H.; Abulibdeh, A.; Jawarneh, R.N.; Balakrishnan, P. GIS-based spatiotemporal analysis for road traffic crashes; in support of sustainable transportation planning. Transp. Res. Interdiscip. Perspect. 2023, 20, 100836. [Google Scholar] [CrossRef]
- Alam, M.S.; Tabassum, N.J. Spatial pattern identification and crash severity analysis of road traffic crash hot spots in Ohio. Heliyon 2023, 9, e16303. [Google Scholar] [CrossRef] [PubMed]
- Ilniyazovich, S.F. Using GIS software and the importance of digital history in the study of history. Int. J. Hist. Political Sci. 2023, 3, 31–33. [Google Scholar] [CrossRef]
- Gil, J.; Beirao, J.; Montenegro, N.; Duarte, J. Assessing Computational Tools for Urban Design: Towards a “City Information Model”. In Proceedings of the 28th Conference on Future Cities, Zurich, Switzerland, 15–18 September 2010. [Google Scholar]
- Souza, L.; Bueno, C. City Information Modelling as a Support Decision Tool for Planning and Management of Cities: A Systematic Literature Review and Bibliometric Analysis. Build. Environ. 2022, 207, 108403. [Google Scholar] [CrossRef]
- Wang, B.L.; Tian, Y. Research on Key Technologies of City Information Modeling. IOP Conf. Ser. Earth Environ. Sci. 2021, 693, 012129. [Google Scholar] [CrossRef]
- Fang, J.; Xie, X.; Xu, J. Development and key technologies for architectural design and technical solutions of CIM platform: A review. IOP Conf. Ser. Earth Environ. Sci. 2024, 1337, 012036. [Google Scholar] [CrossRef]
- Bi, Z.; Jin, Y.; Maropoulos, P.; Zhang, W.J.; Wang, L. Internet of things (IoT) and big data analytics (BDA) for digital manufacturing (DM). Int. J. Prod. Res. 2023, 61, 4004–4021. [Google Scholar] [CrossRef]
- Ashwini, B.P.; Savithramma, R.M. Artificial Intelligence in Smart city applications: An overview. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–17 May 2022; pp. 986–993. [Google Scholar]
- Herath, H.M.K.K.M.B.; Mittal, M. Adoption of artificial intelligence in smart cities: A comprehensive review. Int. J. Inf. Manag. Data Insights 2022, 2, 100076. [Google Scholar] [CrossRef]
- Luckey, D.; Fritz, H.; Legatiuk, D.; Dragos, K.; Smarsly, K. Artificial intelligence techniques for smart city applications. In Proceedings of the 18th International Conference on Computing in Civil and Building Engineering: ICCCBE 2020, São Paulo, Brazil, 18–20 August 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 3–15. [Google Scholar]
- Tekouabou, S.C.; Gherghina, Ş.C.; Kameni, E.D.; Filali, Y.; Idrissi Gartoumi, K. AI-Based on Machine Learning Methods for Urban Real Estate Prediction: A Systematic Survey. Arch. Comput. Methods Eng. 2024, 31, 1079–1095. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, M.; Wu, Y.; Hao, X.; Yang, Y. City Information Modeling: State of the Art. Appl. Sci. 2021, 11, 9333. [Google Scholar] [CrossRef]
- Wu, Z.; Gan, W. Urban Intelligent Planning Technology Practice in Transitional Period. Urban. Archit. 2018, 3, 28–31. (In Chinese) [Google Scholar]
- Xu, X.; Ding, L.; Luo, H.; Ma, L. From Building Information Modeling to City Information Modeling. J. Inf. Technol. Constr. 2014, 19, 292–307. [Google Scholar]
- Stojanovski, T. City Information Modeling (CIM) and Urbanism: Blocks, Connections, Territories, People and Situations. In Proceedings of the Symposium on Simulation for Architecture and Urban Design, Hamilton, ON, Canada, 23–26 May 2013; pp. 86–93. [Google Scholar]
- Stojanovski, T. City Information Modelling (CIM) and Urban Design Morphological Structure, Design Elements and Programming Classes in CIM. In Proceedings of the ECAADE 2018: Computing a Better Tomorrow, Łódź, Poland, 19–21 September 2018; pp. 507–516. [Google Scholar]
- Montenegro, N.; Duarte, J.P. Computational Ontology of Urban Design. In Towards a City Information Model. In Proceedings of the eCAADe 27 Computation: The new realm of Architectural Design, Istanbul, Turkey, 19 September 2009; pp. 253–260. [Google Scholar]
- Lee, S.-H.; Park, J.; Park, S.I. City Information Model-Based Damage Estimation in Inundation Condition. In Proceedings of the 2016 International Conference on Computing in Civil and Building Engineering (ICCCBE 2016), Osaka, Japan, 6–9 July 2016. [Google Scholar]
- Wang, Z.; Jiang, H.; Zhang, W.; Liu, L. The Problem Analysis and Solution Suggestion in the Process of City Information Model Construction. In Proceedings of the 2020 4th International Conference on Smart Grid and Smart Cities (ICSGSC), Osaka, Japan, 18–21 August 2020. [Google Scholar]
- ISO 19650-1:2018; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. ISO: Geneva, Switzerland, 2018.
- ISO/IEC 30162:2022; Internet of Things (IoT)—Compatibility Requirements and Model for Devices within Industrial IoT Systems. ISO/IEC: Geneva, Switzerland, 2022.
- ISO/IEC 30173:2023; Digital Twin—Concepts and Terminology. ISO/IEC: Geneva, Switzerland, 2023.
- ISO 37120:2018; Sustainable Cities and Communities—Indicators for City Services and Quality of Life. ISO: Geneva, Switzerland, 2018.
- ISO 37106:2021Sustainable cities and Communities—Guidance on Establishing Smart City Operating Models for Sustainable Communities; ISO: Geneva, Switzerland, 2021.
- ISO/IEC 30146:2019; Information Technology—Smart City ICT Indicators. ISO/IEC: Geneva, Switzerland, 2019.
- Almeida, F.A.d.S.; Andrade, M.L.V.X. Considerações Sobre o Conceito de City Information Modeling. InSitu São Paulo 2018, 4, 21–38. [Google Scholar]
- Hamilton, A.; Wang, H.; Tanyer, A.M.; Arayici, Y.; Zhang, X.; Song, Y. Urban Information Model for City Planning. J. Inf. Technol. Constr. 2005, 10, 55–67. [Google Scholar]
- Pelden, S.; Banihashemi, S.; Mohandes, S.R.; Arashpour, M.; Kalantari, M. Enhancing Infrastructure Planning and Design Through BIM-GIS Integration. Struct. Infrastruct. Eng. 2025, 1, 1–20. [Google Scholar] [CrossRef]
- Akindele, O.; Ajayi, S.; Oyegoke, A.S.; Alaka, H.A.; Omotayo, T. Application of Geographic Information System (GIS) in Construction: A Systematic Review. Smart Sustain. Built Environ. 2025, 14, 210–236. [Google Scholar] [CrossRef]
- ISO 19157-1:2023; Geographic Information—Data Quality. Part 1: General Requirements. ISO/IEC: Geneva, Switzerland, 2023.
- Gil, J. City Information Modelling: A Conceptual Framework for Research and Practice in Digital Urban Planning. Built Environ. 2020, 46, 501–527. [Google Scholar] [CrossRef]
- Reitz, T.; Schubiger-Banz, S. The ESRI 3D City Information Model. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012172. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J. Does Smart City Construction Promote Urban Green Development? Evidence from a Double Machine Learning Model. J. Environ. Manag. 2025, 373, 123701. [Google Scholar] [CrossRef] [PubMed]
- Jitta, A.S.; Manda, V.K.; Tarnanidis, T. Geospatial Technologies for Smart Cities. In Recent Trends in Geospatial AI; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 103–136. [Google Scholar]
- González-Arellano, S. Cities as Anticipatory Systems. In Cities as Anticipatory Systems; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 13–30. [Google Scholar]
- Melo, H.C.; Tomé, S.M.G.; Silva, M.H.; Gonzales, M.M.; Gomes, D.B.O. Implementation of City Information Modeling (CIM) Concepts in the Process of Management of the Sewage System in Piumhi, Brazil. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 1. [Google Scholar] [CrossRef]
- Pereira, A.P.; Buzzo, M.; Zimermann, I.; Neto, F.H.; Malgarezi, H. A Descriptive 3D City Information Model Built from Infrastructure BIM: Capacity Building as a Strategy for Implementation. Int. J. E-Plan. Res. 2021, 10, 138–151. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Costa, C.; Pina, A.; Santos, M.Y.; Ferrão, P. An Urban Building Database (UBD) Supporting a Smart City Information System. Energy Build. 2018, 158, 244–260. [Google Scholar] [CrossRef]
- Veerendra, G.T.N.; Dey, S.; Mantle, E.J.; Manoj, A.P.; Padavala, S.S.A.B. Building Information Modeling—Simulation and Analysis of a University Edifice and Its Environs—A Sustainable Design Approach. Green Technol. Sustain. 2025, 3, 100150. [Google Scholar] [CrossRef]
- Asmari, A.F.; Almutairi, A.; Alanazi, F.; Alqubaysi, T.; Armghan, A. Conjecture Interaction Optimization Model for Intelligent Transportation Systems in Smart Cities Using Reciprocated Multi-Instance Learning for Road Traffic Management. IEEE Access 2025, 13, 34539–34562. [Google Scholar] [CrossRef]
- Elassy, M.; Al-Hattab, M.; Takruri, M.; Badawi, S. Intelligent Transportation Systems for Sustainable Smart Cities. Transp. Eng. 2024, 16, 100252. [Google Scholar] [CrossRef]
- Faliagka, E.; Christopoulou, E.; Ringas, D.; Politi, T.; Kostis, N.; Leonardos, D.; Tranoris, C.; Antonopoulos, C.P.; Denazis, S.; Voros, N. Trends in digital twin framework architectures for smart cities: A case study in smart mobility. Sensors 2024, 24, 1665. [Google Scholar] [CrossRef]
- Batty, M. Digital twins in city planning. Nat. Comput. Sci. 2024, 4, 192–199. [Google Scholar] [CrossRef]
- Mazzetto, S. A Review of Urban Digital Twins Integration, Challenges, and Future Directions in Smart City Development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Yeh, A.G. From urban modelling, GIS, the digital, intelligent, and the smart city to the digital twin city with AI. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1085–1088. [Google Scholar] [CrossRef]
- Bibri, S.E.; Huang, J.; Krogstie, J. Artificial intelligence of things for synergizing smarter eco-city brain, metabolism, and platform: Pioneering data-driven environmental governance. Sustain. Cities Soc. 2024, 108, 105516. [Google Scholar] [CrossRef]
- Bai, O.; Shi, Y.; Wu, F. Pioneering the Post-Smart Cities Paradigm in Urban Innovation Ecosystems Governance: A Case Study of Hangzhou City-Brain Initiative. Urban Policy Res. 2025, 1–25. [Google Scholar] [CrossRef]
- Xu, Y.; Cugurullo, F.; Zhang, H.; Gaio, A.; Zhang, W. The emergence of artificial intelligence in anticipatory urban governance: Multi-scalar evidence of China’s transition to city brains. J. Urban Technol. 2024, 1–25. [Google Scholar] [CrossRef]
- Stojanovski, T.; Partanen, J.; Samuels, I.; Sanders, P.; Peters, C. City information modelling (CIM) and digitizing urban design practices. Built Environ. 2020, 46, 637–646. [Google Scholar] [CrossRef]
- Shi, J.; Pan, Z.; Jiang, L.; Zhai, X. An ontology-based methodology to establish city information model of digital twin city by merging, B. I.M, GIS and IoT. Adv. Eng. Inform. 2023, 57, 102114. [Google Scholar] [CrossRef]
- Halim, N.Z.A.; Karim, H.; Bernad, S.C.; Lim, C.K.; Mohamed, A. Enhancing SmartKADASTER 3D city model with stratified information in supporting Smart City enablement. In Proceedings of the Sustainable Smart Cities and Territories International Conference, Doha, Qatar, 27–29 April 2021; Springer International Publishing: Cham, Switzerland; pp. 175–186. [Google Scholar]
- Ji, J.; Wang, K.; Wang, Z.H.; Zhang, N. Research on the connotation of city information modeling (CIM) enabling smart city construction. Urban Dev. Stud. 2021, 28, 65–69. [Google Scholar]
- Stouffs, R.; Tauscher, H.; Biljecki, F. Achieving complete and near-lossless conversion from IFC to CityGML. ISPRS Int. J. Geo-Inf. 2018, 7, 355. [Google Scholar] [CrossRef]
- Wang, T.; Bhuiyan, M.Z.A.; Wang, G.; Rahman, M.A.; Wu, J.; Cao, J. Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Commun. Mag. 2018, 56, 128–133. [Google Scholar] [CrossRef]
- Wang, P.; Ali, A.; Kelly, W. Data security and threat modeling for smart city infrastructure. In Proceedings of the 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC), Shanghai, China, 5–7 August 2015; pp. 1–6. [Google Scholar]
- Zhu, W.; He, W.; Li, Q. Hybrid AI and Big Data Solutions for Dynamic Urban Planning and Smart City Optimization. IEEE Access 2024, 12, 189994–190006. [Google Scholar] [CrossRef]
- Yin, X.; Qiu, H.; Wu, X.; Zhang, X. An Efficient Attribute-Based Participant Selecting Scheme with Blockchain for Federated Learning in Smart Cities. Computers 2024, 13, 118. [Google Scholar] [CrossRef]
- Wang, W.; Li, P.; Li, S.; Zhang, J.; Zhou, Z.; Wu, D.O.; Kim, D.K.; Zhang, G.; Gong, P. Optimizing Proximity Strategy for Federated Learning Node Selection in the Space-Air-Ground Information Network for Smart Cities. IEEE Internet Things J. 2024, 12, 6418–6430. [Google Scholar] [CrossRef]
- Chen, K.; Lu, W.; Xue, F.; Tang, P.; Li, L.H. Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Autom. Constr. 2018, 93, 22–34. [Google Scholar] [CrossRef]
- Fadhel, M.A.; Duhaim, A.M.; Saihood, A.; Sewify, A.; Al-Hamadani, M.N.; Albahri, A.S.; Alzubaidi, L.; Gupta, A.; Mirjalili, S.; Gu, Y. Comprehensive systematic review of information fusion methods in smart cities and urban environments. Inf. Fusion 2024, 107, 102317. [Google Scholar] [CrossRef]
- Okonta, D.E.; Vukovic, V. Smart cities software applications for sustainability and resilience. Heliyon 2024, 10, e32654. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J. Advances in emerging digital technologies for energy efficiency and energy integration in smart cities. Energy Build. 2024, 315, 114289. [Google Scholar] [CrossRef]
- Gkontzis, A.F.; Kotsiantis, S.; Feretzakis, G.; Verykios, V.S. Enhancing urban resilience: Smart city data analyses, forecasts, and digital twin techniques at the neighborhood level. Future Internet 2024, 16, 47. [Google Scholar] [CrossRef]
- Costa, D.G.; Bittencourt, J.C.N.; Oliveira, F.; Peixoto, J.P.J.; Jesus, T.C. Achieving sustainable smart cities through geospatial data-driven approaches. Sustainability 2024, 16, 640. [Google Scholar] [CrossRef]
Time | Standard Name | Relevant Field | Standard Overview |
---|---|---|---|
2018 | ISO 37120 | Urban Sustainability | Focuses on urban sustainability and the quality of life by providing standardized indicators and a data management framework. |
2018 | ISO 19650 | BIM | Defines the information management for buildings and civil engineering works through the organization and digitization of data, including BIM. |
2019 | ISO/IEC 30146:2019 [49] | Information Technology | Defines a framework of evaluation indicators for ICT adoption in smart cities, detailing each indicator’s name, description, classification, and measurement method. |
2021 | ISO 37106 | Smart Cities and Sustainable cities | Sustainable cities and communities—guidance on establishing smart city operating models for sustainable communities |
2022 | ISO/IEC 30162:2022 | IoT | IoT—compatibility requirements and a model for devices within industrial IoT systems |
2023 | ISO/IEC 30173:2023 | Digital Twin | Digital twin—concepts and terminology |
Country/Region | Smart Cities | Traffic Management | Environmental Monitoring | Energy Management | Real Estate | Disaster Management |
---|---|---|---|---|---|---|
Singapore | √ | √ | √ | × | × | × |
United States | √ | √ | √ | √ | × | × |
China | √ | √ | √ | × | √ | × |
Germany | √ | × | √ | √ | × | √ |
Netherlands | √ | × | √ | √ | × | √ |
France | √ | × | √ | √ | × | √ |
United Kingdom | √ | √ | √ | × | × | × |
Japan | √ | √ | × | × | × | √ |
South Korea | √ | √ | √ | × | × | × |
Canada | √ | × | √ | √ | × | × |
Australia | √ | √ | √ | × | × | × |
UAE | √ | √ | × | × | × | × |
India | × | √ | × | × | √ | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Zhou, X.; Wang, D.; Dong, J. The Development and Construction of City Information Modeling (CIM): A Survey from Data Perspective. Appl. Sci. 2025, 15, 4696. https://doi.org/10.3390/app15094696
Yu W, Zhou X, Wang D, Dong J. The Development and Construction of City Information Modeling (CIM): A Survey from Data Perspective. Applied Sciences. 2025; 15(9):4696. https://doi.org/10.3390/app15094696
Chicago/Turabian StyleYu, Wenya, Xiaowei Zhou, Dongsheng Wang, and Junyu Dong. 2025. "The Development and Construction of City Information Modeling (CIM): A Survey from Data Perspective" Applied Sciences 15, no. 9: 4696. https://doi.org/10.3390/app15094696
APA StyleYu, W., Zhou, X., Wang, D., & Dong, J. (2025). The Development and Construction of City Information Modeling (CIM): A Survey from Data Perspective. Applied Sciences, 15(9), 4696. https://doi.org/10.3390/app15094696