Task Offloading Scheme Based on Proximal Policy Optimization Algorithm
Abstract
:1. Introduction
- (1)
- Building a complete mobile edge computing offload network architecture: Based on the traditional cloud edge collaborative network architecture, we integrate the edge collaborative mechanism, introduce the concept of service cache, reduce duplicate data transmission, reduce communication delay and network load, and achieve efficient data transmission and processing.
- (2)
- Optimizing system energy consumption and delay balance: This article models task offloading and resource allocation as Markov Decision Processes and uses deep reinforcement learning algorithms to solve these problems through near-end policy optimization, thereby achieving the optimal overall energy efficiency of the system.
2. Related Work
3. Preliminary
3.1. Markov Decision Process Theory
3.2. Deep Reinforcement Learning Theory
4. Model System
4.1. Model
4.2. Service Cache Model
4.3. Task Communication Model
- (1)
- Communication Model between Edge Nodes and Mobile Terminals
- (2)
- Communication Model between Edge Nodes
- (3)
- Communication Model between Edge Nodes and the Central Cloud
4.4. Energy Consumption Model
- (1)
- Task Upload Energy Consumption
- (2)
- Task Computing Energy Consumption
- (3)
- Task Migration Energy Consumption
- (4)
- Service Cache Transmission Energy Consumption
4.5. Task Offloading Model
4.5.1. Associated Edge Nodes Perform Tasks
4.5.2. Collaborative Edge Nodes Execute Tasks
4.6. Problem Description
4.7. Problem Solving
4.7.1. Markov Decision Process
4.7.2. State Space
4.7.3. Action Space
4.7.4. Reward Function
4.7.5. Unloading Algorithm Based on Near-End Policy Optimization
5. Experiment and Performance Verification
5.1. Experimental Environment and Parameter Settings
5.2. Comparative Experimental Setup
- (1)
- A task offloading strategy based on the edge computing optimization algorithm (EMC-PPO).
- (2)
- A task offloading strategy based on the edge computing optimization algorithm without edge collaboration (EMC-PPO-NO), which is also solved using the PPO algorithm. However, there is no collaboration between edge nodes, and when an edge node lacks the required service cache for task execution, it can only download the cache from the central cloud.
- (3)
- Complete offloading to the central cloud (CLOUD).
- (4)
- A random offloading strategy (Random).
5.3. Parameter Analysis
5.4. Performance Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panigrahi, C.R.; Sarkar, J.L.; Pati, B.; Buyya, R.; Mohapatra, P.; Majumder, A. Mobile Cloud Computing and Wireless Sensor Networks: A review, integration architecture, and future directions. Iet Netw. 2021, 10, 141–161. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, D.; He, S.; Zhang, Y.; Li, T. A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, M.; Bi, J.; Shi, S.; Yang, J.; Zhang, J.; Zhou, M.; Buyya, R. Cost-efficient Task Offloading in Mobile Edge Computing with Layered Unmanned Aerial Vehicles. IEEE Internet Things J. 2024, 11, 30496–30509. [Google Scholar] [CrossRef]
- Vilà, I.; Sallent, O.; Pérez-Romero, J. Relay-empowered beyond 5G radio access networks with edge computing capabilities. Comput. Netw. 2024, 243, 110287. [Google Scholar] [CrossRef]
- Saleem, M.A.; Zhou, S.; Fengli, Z.; Ahmad, T.; Nigar, N.; Hadi, M.U.; Shabaz, M. Delay, Energy, and Outage Considerations in GenAI-Enhanced MEC-NOMA-Enabled Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2025. Early Access. [Google Scholar] [CrossRef]
- Cao, K.; Hu, S.; Shi, Y.; Colombo, A.W.; Karnouskos, S.; Li, X. A survey on edge and edge-cloud computing assisted cyber-physical systems. IEEE Trans. Ind. Inform. 2021, 17, 7806–7819. [Google Scholar] [CrossRef]
- Malazi, H.T.; Chaudhry, S.R.; Kazmi, A.; Palade, A.; Cabrera, C.; White, G.; Clarke, S. Dynamic service placement in multi-access edge computing: A systematic literature review. IEEE Access 2022, 10, 32639–32688. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Q.; Huang, M.; Wang, C.; Li, Q.; Shen, C.; Ren, K. Building in-the-cloud network functions: Security and privacy challenges. Proc. IEEE 2021, 109, 1888–1919. [Google Scholar] [CrossRef]
- Nain, G.; Pattanaik, K.K.; Sharma, G.K. Towards edge computing in intelligent manufacturing: Past, present and future. J. Manuf. Syst. 2022, 62, 588–611. [Google Scholar] [CrossRef]
- Tan, L.; Kuang, Z.; Zhao, L.; Liu, A. Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing. IEEE Trans. Wirel. Commun. 2021, 21, 1960–1972. [Google Scholar] [CrossRef]
- Sahni, Y.; Cao, J.; Yang, L. Data-aware task allocation for achieving low latency in collaborative edge computing. IEEE Internet Things J. 2018, 6, 3512–3524. [Google Scholar] [CrossRef]
- Tong, L.; Li, Y.; Gao, W. A hierarchical edge cloud architecture for mobile computing. In Proceedings of IEEE International Conference on Computer Communications (INFOCOM), San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Dou, H.; Xu, Z.; Jiang, X.; Cui, J.; Zheng, B. Mobile edge computing based task offloading and resource allocation in smart grid. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–5. [Google Scholar]
- Lu, Y.; Zhao, Z.; Gao, Q. A distributed offloading scheme with flexible MEC resource scheduling. In Proceedings of the 2021 IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (Smart World/ SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 18–21 October 2021; pp. 320–327. [Google Scholar]
- Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay optimal computation task scheduling for mobile edge computing systems. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 11 August 2016; pp. 1451–1455. [Google Scholar]
- Yu, Y.; Yan, Y.; Li, S.; Li, Z.; Wu, D. Task delay minimization in wireless powered mobile edge computing networks: A deep reinforcement learning approach. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–6. [Google Scholar]
- Balakrishnan, R.; Geetha, V.; Kumar, M.R.; Leung, M.-F. Reduction in Residential Electricity Bill and Carbon Dioxide Emission through Renewable Energy Integration Using an Adaptive Feed-Forward Neural Network System and MPPT Technique. Sustainability 2023, 15, 14088. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lin, B.; Chen, Z.; Wolter, K.; Min, G. Energy efficient offloading for DNN based smart IoT systems in cloud-edge environments. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 683–697. [Google Scholar] [CrossRef]
- Wu, F.; Leng, S.; Maharjan, S.; Huang, X.; Zhang, Y. Joint power control and computation offloading for energy efficient mobile edge networks. IEEE Trans. Wirel. Commun. 2022, 21, 4522–4534. [Google Scholar] [CrossRef]
- You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 2016, 16, 1397–1411. [Google Scholar] [CrossRef]
- Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [Google Scholar] [CrossRef]
- Rodrigues, T.K.; Liu, J.; Kato, N. Offloading decision for mobile multi-access edge computing in a multi tiered 6G network. IEEE Trans. Emerg. Top. Comput. 2021, 10, 1414–1427. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, X.; Zhang, X.; Zhang, P.; Hou, Y.T. Cooperative task offloading in three-tier mobile computing networks: An ADMM framework. IEEE Trans. Veh. Technol. 2019, 68, 2763–2776. [Google Scholar] [CrossRef]
- Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [Google Scholar]
- Mosavi, A.; Faghan, Y.; Ghamisi, P.; Duan, P.; Ardabili, S.F.; Salwana, E.; Band, S.S. Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics 2020, 8, 1640. [Google Scholar] [CrossRef]
- Osb, I.; Blundell, C.; Pritzel, A.; Van Roy, B. Deep exploration via bootstrapped DQN. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Hou, Y.; Liu, L.; Wei, Q.; Xu, X.; Chen, C. A novel DDPG method with prioritized experience replay. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 316–321. [Google Scholar]
- Huang, S.; Kanervisto, A.; Raffin, A.; Wang, W.; Ontañón, S.; Dossa, R.F.J. A2C is a special case of PPO. arXiv 2022, arXiv:2205.09123. [Google Scholar]
Step | Description | Expression |
---|---|---|
Input | Collect tuples | - |
Output | Update model | - |
Run policy for T times, collect , estimate advantage | - | |
Optimize policy | ||
Update value function |
Symbol | Definition | Value Range |
---|---|---|
Bandwidth | 1–20 MHz | |
Transmission power of terminal device n | 0.1–2 W | |
Transmission power of edge node m | 1–5 W | |
Transmission power of central cloud c | 10–50 W | |
Computing power of edge node m | 10–100 W | |
Computing power of central cloud | 50–500 W | |
Noise power spectral density | W/Hz | |
g | Channel transmission gain | |
Cycles per bit required by edge node m | 500–2000 cycles/bit | |
CPU frequency of cloud server | 2–3.5 GHz | |
CPU frequency of edge node | 1–2.5 GHz | |
Data size of computation tasks | 1 KB–1 MB | |
Return path bandwidth | 100–1000 Mbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Tian, J. Task Offloading Scheme Based on Proximal Policy Optimization Algorithm. Appl. Sci. 2025, 15, 4761. https://doi.org/10.3390/app15094761
Ma Y, Tian J. Task Offloading Scheme Based on Proximal Policy Optimization Algorithm. Applied Sciences. 2025; 15(9):4761. https://doi.org/10.3390/app15094761
Chicago/Turabian StyleMa, Yutong, and Junfeng Tian. 2025. "Task Offloading Scheme Based on Proximal Policy Optimization Algorithm" Applied Sciences 15, no. 9: 4761. https://doi.org/10.3390/app15094761
APA StyleMa, Y., & Tian, J. (2025). Task Offloading Scheme Based on Proximal Policy Optimization Algorithm. Applied Sciences, 15(9), 4761. https://doi.org/10.3390/app15094761