Therapeutic Efficacy of an Isotonic Saline Solution Enriched with Mullein, Thyme, and Long-Chain Polyphosphates in Pediatric Acute Rhinitis: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Ethics
2.3. Data Collection
2.4. Data Entry
2.5. Study Outcomes
2.6. Sample Size
2.7. Statistical Analysis
3. Results
3.1. Study Population
3.2. Main Study Outcome
3.3. Secondary Outcomes
3.4. Safety
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volpe, S.; Irish, J.; Palumbo, S.; Lee, E.; Herbert, J.; Ramadan, I.; Chang, E.H. Viral infections and chronic rhinosinusitis. J. Allergy Clin. Immunol. 2023, 152, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, T.; Järvinen, A. The common cold. Lancet 2003, 361, 51–59. [Google Scholar] [CrossRef]
- Fendrick, A.M.; Monto, A.S.; Nightengale, B.; Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern Med. 2003, 163, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Vandini, S.; Biagi, C.; Fischer, M.; Lanari, M. Impact of Rhinovirus Infections in Children. Viruses 2019, 11, 521. [Google Scholar] [CrossRef]
- Bramley, T.J.; Lerner, D.; Sarnes, M. Productivity losses related to the common cold. J. Occup. Environ. Med. 2002, 44, 822–829. [Google Scholar] [CrossRef]
- Allan, G.M.; Arroll, B. Prevention and treatment of the common cold: Making sense of the evidence. Can. Med. Assoc. J. 2014, 186, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.O.; Hamilos, D.L.; Hadley, J.A.; Lanza, D.C.; Marple, B.F.; Nicklas, R.A.; Bachert, C.; Baraniuk, J.; Baroody, F.M.; Benninger, M.S.; et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. J. Allergy Clin. Immunol. 2004, 114 (Suppl. S6), 155–212. [Google Scholar] [CrossRef]
- Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis. 2005, 5, 718–725. [Google Scholar] [CrossRef]
- King, D.; Mitchell, B.; Williams, C.P.; Spurling, G.K. Saline nasal irrigation for acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015, 2015, CD006821. [Google Scholar] [CrossRef]
- Chirico, G.; Quartarone, G.; Mallefet, P. Nasal congestion in infants and children: A literature review on efficacy and safety of non-pharmacological treatments. Minerva Pediatr. 2014, 66, 549–557. [Google Scholar]
- Pandur, E.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Antioxidant and anti-inflammatory effects of thyme (Thymus vulgaris L.) essential oils prepared at different plant phenophases on Pseudomonas aeruginosa LPS-activated THP-1 macrophages. Antioxidants 2022, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef] [PubMed]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Riaz, M.; Zia-Ul-Haq, M.; Jaafar, H.Z.E. Common mullein, pharmacological and chemical aspects. Rev. Bras. Farmacogn. 2013, 23, 948–959. [Google Scholar] [CrossRef]
- Yosri, N.; El-Wahed, A.A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-viral and immunomodulatory properties of propolis: Chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against SARS-CoV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Magnavacca, A.; Sangiovanni, E.; Racagni, G.; Dell’Agli, M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med. Res. Rev. 2022, 42, 897–945. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008, 73, R117–R124. [Google Scholar] [CrossRef]
- Saleh, A.; Akkuş-Dağdeviren, Z.B.; Haddadzadegan, S.; Wibel, R.; Bernkop-Schnürch, A. Peptide antibiotic-polyphosphate nanoparticles: A promising strategy to overcome the enzymatic and mucus barrier of the intestine. Biomacromolecules 2023, 24, 2587–2595. [Google Scholar] [CrossRef]
- Müller, W.E.; Schepler, H.; Neufurth, M.; Wang, S.; Ferrucci, V.; Zollo, M.; Tan, R.; Schröder, H.C.; Wang, X. The physiological polyphosphate as a healing biomaterial for chronic wounds: Crucial roles of its antibacterial and unique metabolic energy supplying properties. J. Mater. Sci. Technol. 2023, 135, 170–185. [Google Scholar] [CrossRef]
- Ferrucci, V.; Kong, D.-Y.; Asadzadeh, F.; Marrone, L.; Boccia, A.; Siciliano, R.; Criscuolo, G.; Anastasio, C.; Quarantelli, F.; Comegna, M.; et al. Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Sci. Signal. 2021, 14, eabe5040. [Google Scholar] [CrossRef]
- Neufurth, M.; Wang, X.; Tolba, E.; Lieberwirth, I.; Wang, S.; Schröder, H.C.; Müller, W.E. The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem. Pharmacol. 2020, 182, 114215. [Google Scholar] [CrossRef]
- Zollo, M.; Ferrucci, V.; Izzo, B.; Quarantelli, F.; Di Domenico, C.; Comegna, M.; Paolillo, C.; Amato, F.; Siciliano, R.; Castaldo, G.; et al. SARS-CoV-2 Subgenomic N (sgN) Transcripts in Oro-Nasopharyngeal Swabs Correlate with the Highest Viral Load, as Evaluated by Five Different Molecular Methods. Diagnostics 2021, 11, 288. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, V.; de Antonellis, P.; Quarantelli, F.; Asadzadeh, F.; Bibbò, F.; Siciliano, R.; Sorice, C.; Pisano, I.; Izzo, B.; Di Domenico, C.; et al. Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients-A Target for SARS-CoV-2 Propagation. Int. J. Mol. Sci. 2022, 23, 1941. [Google Scholar] [CrossRef]
- Ferrucci, V.; Miceli, M.; Pagliuca, C.; Bianco, O.; Castaldo, L.; Izzo, L.; Cozzolino, M.; Zannella, C.; Oglio, F.; Polcaro, A.; et al. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J. Transl. Med. 2024, 22, 574. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.G.; Witsell, D.L.; Smith, T.L.; Weaver, E.M.; Yueh, B.; Hannley, M.T. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol. Head Neck. Surg. 2004, 130, 157–163. [Google Scholar] [CrossRef]
- Mozzanica, F.; Urbani, E.; Atac, M.; Scottà, G.; Luciano, K.; Bulgheroni, C.; De Cristofaro, V.; Gera, R.; Schindler, A.; Ottaviani, F. Reliability and validity of the Italian nose obstruction symptom evaluation (I-NOSE) scale. Eur. Arch. Otorhinolaryngol. 2013, 270, 3087–3094. [Google Scholar] [CrossRef] [PubMed]
- Klimek, L.; Bergmann, K.-C.; Biedermann, T.; Bousquet, J.; Hellings, P.; Jung, K.; Merk, H.; Olze, H.; Schlenter, W.; Stock, P.; et al. Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care. Allergo J. Int. 2017, 26, 16–24. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Turker, A.U.; Camper, N.D. Biological activity of common mullein, a medicinal plant. J. Ethnopharmacol. 2002, 82, 117–125. [Google Scholar] [CrossRef]
PLACEBO | ACTIVE | |
---|---|---|
N = 30 | N = 30 | |
Male sex | 16 (53.3%) | 14 (46.7%) |
Age (months, ±SD) | 109.8 (31.9) | 99.8 (34.4) |
Cesarean delivery | 10 (33.3%) | 9 (30%) |
Born at term | 30 (100%) | 30 (100%) |
Birth weight (kg, ±SD) | 3.5 (0.3) | 3.6 (0.4) |
Breastfed for at least 2 months | 27 (90%) | 23 (76.7%) |
Siblings (IQR) | 1 (0) | 1 (0) |
Familial risk of allergy | 9 (30%) | 14 (46.7%) |
Allergy in the first-degree relatives | 1 (1) | 1 (1) |
Exposed to passive smoking | 10 (33.3%) | 15 (50%) |
Exposed to pets | 10 (33.3%) | 10 (33.3%) |
Urban setting | 26 (86.7%) | 27 (90%) |
Damp housing | 0 | 3 (10%) |
Weight at enrolment (kg, ±SD) | 36.2 (12.2) | 35.1 (14.1) |
Height at enrolment (m, ±SD) | 1.35 (0.18) | 1.31 (0.17) |
Body mass index at enrolment (±SD) | 19.19 (2.78) | 19.73 (4.7) |
PLACEBO | ACTIVE | |
---|---|---|
N = 30 | N = 30 | |
Number of respiratory infections per year | ||
<3 | 2 (6.7%) | 7 (23.3%) |
3–6 | 24 (80%) | 19 (63.3%) |
>6 | 4 (13.3%) | 3 (10%) |
1 per month | 0 | 1 (3.3%) |
Number of respiratory infections between October–December and March–May | ||
<3 | 22 (73.3%) | 15 (50%) |
3–6 | 8 (26.7%) | 14 (46.7%) |
1 per month | 0 | 1 (3.3%) |
Mean duration of each episode | ||
<3 | 7 (23.3%) | 9 (30%) |
3–6 | 23 (76.7%) | 19 (63.3%) |
>6 | 0 | 2 (6.7%) |
Number of febrile episodes per year | ||
<3 | 3 (10%) | 6 (20%) |
3–6 | 20 (66.7%) | 19 (63.3%) |
>6 | 7 (23.3%) | 5 (16.7%) |
PLACEBO | ACTIVE | |
---|---|---|
N = 30 | N = 30 | |
Severity of nasal obstruction at T0 | ||
Mild (5–25) | 0 | 3 (10%) |
Moderate (30–50) | 1 (3.3%) | 6 (20%) |
Severe (55–75) | 24 (80%) | 13 (43.3%) |
Extreme (80–100) | 5 (16.7%) | 8 (26.7%) |
Severity of nasal obstruction at T1 | ||
Mild (5–25) | 0 | 17 (56.7%) |
Moderate (30–50) | 1 (3.3%) | 12 (40%) |
Severe (55–75) | 22 (73.3%) | 1 (3.3%) |
Extreme (80–100) | 7 (23.3%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocerino, R.; Masino, A.; Cecere, G.; Buonavolontà, R.; Carucci, L. Therapeutic Efficacy of an Isotonic Saline Solution Enriched with Mullein, Thyme, and Long-Chain Polyphosphates in Pediatric Acute Rhinitis: A Randomized Controlled Trial. Appl. Sci. 2025, 15, 4878. https://doi.org/10.3390/app15094878
Nocerino R, Masino A, Cecere G, Buonavolontà R, Carucci L. Therapeutic Efficacy of an Isotonic Saline Solution Enriched with Mullein, Thyme, and Long-Chain Polyphosphates in Pediatric Acute Rhinitis: A Randomized Controlled Trial. Applied Sciences. 2025; 15(9):4878. https://doi.org/10.3390/app15094878
Chicago/Turabian StyleNocerino, Rita, Antonio Masino, Gaetano Cecere, Roberta Buonavolontà, and Laura Carucci. 2025. "Therapeutic Efficacy of an Isotonic Saline Solution Enriched with Mullein, Thyme, and Long-Chain Polyphosphates in Pediatric Acute Rhinitis: A Randomized Controlled Trial" Applied Sciences 15, no. 9: 4878. https://doi.org/10.3390/app15094878
APA StyleNocerino, R., Masino, A., Cecere, G., Buonavolontà, R., & Carucci, L. (2025). Therapeutic Efficacy of an Isotonic Saline Solution Enriched with Mullein, Thyme, and Long-Chain Polyphosphates in Pediatric Acute Rhinitis: A Randomized Controlled Trial. Applied Sciences, 15(9), 4878. https://doi.org/10.3390/app15094878