Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content
Abstract
:1. Introduction
2. Theoretical Background
2.1. Thermal Inertia
2.2. Thermal Inertia Evaluated Indoors via Soil Thermal Properties—The TLSH Method
2.3. Thermal Inertia Evaluated In Situ via Remote-Sensing Thermal and Optical Images
2.4. Hydrus 1D and 2D Simulation Codes
3. Materials and Methods
3.1. Description of Laboratory and Field Experimental Setup
3.2. Soil Physical Properties
3.3. Measurements of Soil Water Status
3.4. Field Image Acquisitions and Calibration
3.5. Hydrus Model Parametrization
3.6. Statistical Analysis for Model Evaluation
4. Results
4.1. Calibration of Thermal Inertia Based on TLHS under Controlled Conditions—The Indoor Experiment
4.2. Application of Thermal Inertia Based on Proximity Sensing Images under Natural Conditions—The Field Experiment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Campbell, G.S.; Norman, J.M. The description and measurement of plant canopy structure. In Plant Canopies: Their Growth, Form and Function; Society for Experimental Biology, Seminar Series 29; Russell, G., Marshall, B., Jarvis, P.G., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 1–19. [Google Scholar]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef]
- Maltese, A.; Bates, P.D.; Capodici, F.; Cannarozzo, M.; Ciraolo, G.; La Loggia, G. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrol. Sci. J. 2013, 58, 1144–1161. [Google Scholar] [CrossRef]
- Maltese, A.; Capodici, F.; Ciraolo, G.; La Loggia, G. Mapping soil water content under sparse vegetation and changeable sky conditions: Comparison of two thermal inertia approaches. J. Appl. Remote Sens. 2013, 7, 073548-1–073548-17. [Google Scholar] [CrossRef]
- Price, J.C. Thermal inertia mapping: A new view of the Earth. J. Geophys. Res. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D’Asaro, F.; Iovino, M.; Maltese, A. Thermal inertia modelling for soil surface water content estimation: A laboratory experiment. Soil Phys. 2012, 76, 1–9. [Google Scholar]
- Sobrino, J.A.; El Kharraz, M.H. Combing afternoon and morning NOAA satellites for thermal inertia estimation: 2. Methodology and application. J. Geophys. Res. 1999, 104, 9455–9465. [Google Scholar] [CrossRef]
- Minacapilli, M.; Iovino, M.; Blanda, F. High resolution remote estimation of soil surface water content by a thermal inertia approach. J. Hydrol. 2009, 379, 229–238. [Google Scholar] [CrossRef]
- Lu, S.; Ju, Z.; Ren, T.; Horton, R. A general approach to estimate soil water content from thermal inertia. Agric. For. Meteorol. 2009, 149, 1693–1698. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huismana, J.A.; Meierb, H.; Rosenbauma, U.; Weuthena, A. Hybrid wireless underground sensor networks: Quantification of signal attenuation in soil. Vadose Zone J. 2009, 8, 755–761. [Google Scholar] [CrossRef]
- Feddes, R.A.; Bresler, E.; Neuman, S.P. Field test of a modified numerical model for water uptake by root systems. Water Resour. Res. 1974, 10, 1199–1206. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Allen, R.G.; Droogers, P.; D’Urso, G.; Steduto, P. Review: Twenty-Five years modeling irrigated and drained soils: State of the art. Agric. Water Manag. 2007, 92, 111–125. [Google Scholar] [CrossRef]
- Rallo, G.; Provenzano, G. Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions. Agric. Water Manag. 2013, 120, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Negm, A.; Falocchi, M.; Barontini, S.; Bacchi, B.; Ranzi, R. Assessment of the waterbalance in an alpine climate: Setup of a micrometeorological station and preliminary results. Procedia Environ. Sci. 2013, 19, 275–284. [Google Scholar] [CrossRef]
- Barontini, S.; Boselli, V.; Louki1, A.; Ben Slima, Z.; Ghaouch, F.E.; Labaran, R.; Raffelli, G.; Peli, M.; Al Ani, A.M.; Vitale, N.; et al. Bridging Mediterranean cultures in the International Year of Soils 2015: A documentary exhibition on irrigation techniques in water scarcity conditions. Hydrol. Res. 2017, 48, 789–801. [Google Scholar] [CrossRef]
- Negm, A.; Jabro, J.; Provenzano, G. Assessing the suitability of American National Aeronautics and Space Administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agric. For. Meteorol. 2017, 244–245, 111–121. [Google Scholar] [CrossRef]
- Jaber, F.; Shukla, S.; Srivastava, S. Recharge, upflux and watertable response for shallow water table conditions in southwest Florida. Hydrol. Process. 2006, 20, 1895–1907. [Google Scholar] [CrossRef]
- Van Dam, J.C.; Huygen, J.; Wesseling, J.G.; Feddes, R.A.; Kabat, P.; van Valsum, P.E.V.; Groenendijk, P.; van Diepen, C.A. Theory of SWAP, Version 2.0. Simulation of Water Flow, Solute Transport and Plant Growth in the Soil–Water–Atmosphere–Plant Environment; Department of Water Resources, WAU, Report 71; DLO Winand Staring Centre: Wageningen, The Netherlands, 1997. [Google Scholar]
- Ragab, R.; Prudhomme, C. Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media: Technical Manual, version 1.0; PC-Progress: Prague, Czech Republic, 2006. [Google Scholar]
- Zappa, M.; Gurtz, J. Simulation of soil moisture and evapotranspiration in a soil profile during the 1999 MAP-Riviera Campaign. Hydrol. Earth Syst. Sci. 2003, 7, 903–919. [Google Scholar] [CrossRef]
- Provenzano, G. Using Hydrus-2D Simulation Model to Evaluate Wetted Soil Volume in Subsurface Drip Irrigation Systems. J. Irrig. Drain. Eng. 2007, 133, 342–349. [Google Scholar] [CrossRef]
- Roberts, T.; Lazarovitch, N.; Warrick, A.W.; Thompson, T.L. Modeling salt accumulation with subsurface drip irrigation using Hydrus-2D. Soil Sci. Soc. Am. J. 2009, 73, 233–240. [Google Scholar] [CrossRef]
- Mguidiche, A.; Provenzano, G.; Douh, B.; Khila, S.; Rallo, G.; Boujelben, A. Assessing hydrus-2D to simulate soil water content (SWC) and salt accumulation under an SDI system: Application to a potato crop in a semi-arid area of Central Tunisia (2015). Irrig. Drain. 2013, 64, 263–274. [Google Scholar] [CrossRef]
- Capodici, F.; Maltese, A.; Ciraolo, G.; D’Urso, G.; La Loggia, G. Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized, Multi-Temporal SAR Data for Soil-Vegetation System Variables Characterization. Remote Sens. 2017, 9, 677. [Google Scholar] [CrossRef]
- Maltese, A.; Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D’Asaro, F. A thermal inertia model for soil water content retrieval using thermal and multispectral images. In Proceedings of the SPIE—The International Society for Optical Engineering, Toulouse, France, 22 October 2010; Volume 7824. [Google Scholar]
- Lu, S.; Ren, T.S.; Gong, Y.S.; Horton, R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 2007, 71, 8–14. [Google Scholar] [CrossRef]
- Rousseva, S.; Torri, D.; Pagliai, M. Effect of rain on the macroporosity at the soil surface. Eur. J. Soil Sci. 2002, 53, 83–94. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; American Society of Agronomy: Oxford, UK; London, UK, 1959. [Google Scholar]
- Xue, Y.; Cracknell, A.P. Advanced thermal inertia modelling. Int. J. Remote Sens. 1995, 16, 431–446. [Google Scholar] [CrossRef]
- Manzini, G.; Ferraris, S. Mass conservative finite volume methods on 2–D unstructured grids for the Richards’ equation. Adv. Water Resour. 2004, 27, 1199–1215. [Google Scholar] [CrossRef]
- Selle, B.; Minasny, B.; Bethune, M.; Thayalakumaran, T.; Chandra, S. Applicability of Richards’ equation model to predict deep percolation under surface irrigation. Geoderma 2011, 160, 569–578. [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the Onedimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, version 1.0; IGWMC-TPS-70; Colorado School of Mines, International Ground Water Modeling Center: Golden, CO, USA, 1998. [Google Scholar]
- Van Genuchten, M.T. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Simulation Monographs; Pudoc: Wageningen, The Netherlands, 1978; 188p. [Google Scholar]
- Feddes, R.A.; Hoff, H.; Bruen, M.; Dawson, T.; DeRosnay, P.; Dirmeyer, P.; Jackson, R.B.; Kabat, P.; Kleidon, A.; Lilly, A.; et al. Modeling root water uptake in hydrological and climate models. Bull. Am. Meteorol. Soc. 2001, 82, 2797–2809. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T. Modelling nonequilibrium flow and transport with HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis. Part. 4. Physical Methods, 3rd ed.; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Cammalleri, C.; Rallo, G.; Agnese, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agric. Water Manag. 2013, 120, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Dane, J.H.; Hopman, J.W. Water retention and storage. In Methods of Soil Analysis: Part 4-Physical Methods; SSSA Book Ser. 5; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002. [Google Scholar]
- Van Genuchten, M.T.; Leij, F.J. On estimating the hydraulic properties of unsaturated soils. In Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, USA, 11–13 October 1989; van Genuchten, M.T., Leij, F.J., Lund, L.J., Eds.; Riverside: Oakland, CA, USA, January 1992; pp. 1–14. [Google Scholar]
- Topp, G.; Davis, J.; Annan, A. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Karpouzli, E.; Malthus, T. The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150. [Google Scholar] [CrossRef]
- Mira, M.; Valor, E.; Boluda, R.; Caselles, V.; Coll, C. Influence of soil water content on the thermalinfrared emissivity of bare soils: Implication for land surface temperature determination. J. Geophys. Res. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar]
- Kennedy, J.B.; Neville, A.M. Basic Statistical Methods for Engineers and Scientists, 3rd ed.; Harper and Row: New York, NY, USA, 1986. [Google Scholar]
- MacQueen, J.B. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Pratt, D.A.; Foster, S.J.; Ellyett, C.D. A calibration procedure for Fourier series thermal inertia models. Photogramm. Eng. Remote Sens. 1980, 46, 529–538. [Google Scholar]
Layer | SWCs | SWCr | α | m | n | Ks | ρ | e |
---|---|---|---|---|---|---|---|---|
[m] | [m3 m−3] | [m3 m−3] | [m−1] | [-] | [-] | [m h−1] | [kg m−3] | [m3 m−3] |
0-0.3 | 0.46 | 0.05 | 0.000114 | 0.20 | 1.25 | 0.167 | 1370 | 0.47 |
Start Time | End Time | ∆t (h) |
---|---|---|
12/7/13 05:00 | 12/7/13 12:59 | 7:59 |
18/7/13 13:32 | 18/7/13 16:37 | 3:05 |
30/7/13 13:21 | 30/7/13 20:00 | 6:39 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negm, A.; Capodici, F.; Ciraolo, G.; Maltese, A.; Provenzano, G.; Rallo, G. Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content. Appl. Sci. 2017, 7, 975. https://doi.org/10.3390/app7100975
Negm A, Capodici F, Ciraolo G, Maltese A, Provenzano G, Rallo G. Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content. Applied Sciences. 2017; 7(10):975. https://doi.org/10.3390/app7100975
Chicago/Turabian StyleNegm, Amro, Fulvio Capodici, Giuseppe Ciraolo, Antonino Maltese, Giuseppe Provenzano, and Giovanni Rallo. 2017. "Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content" Applied Sciences 7, no. 10: 975. https://doi.org/10.3390/app7100975
APA StyleNegm, A., Capodici, F., Ciraolo, G., Maltese, A., Provenzano, G., & Rallo, G. (2017). Assessing the Performance of Thermal Inertia and Hydrus Models to Estimate Surface Soil Water Content. Applied Sciences, 7(10), 975. https://doi.org/10.3390/app7100975