Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Preparation of Stock Chlorine Solution
2.3. Molecular Confirmation of Presumptive E. coli Test Isolates
2.3.1. DNA Extraction
2.3.2. Molecular Identification of Presumptive E. coli Isolates
2.4. Bacterial Survival at the Recommended Free Chlorine Concentration (0.5 mg/L)
2.5. Determination of Lethal Dose of Chlorine
2.6. Inactivation Kinetics of E. coli Isolates
2.7. Data Analysis
3. Results
3.1. Molecular Confirmation of Presumptive E. coli Isolates
3.2. Bacterial Survival at Free Chlorine Concentration of 0.5 mg/L for 30 min
3.3. Effect of Lethal Dose of Chlorine on E. coli Survival
3.4. Inactivation of E. coli at Free Chlorine Dose of 1.5 mg/L after 30 min Exposure
3.5. Inactivation Kinetics of Bacteria by Chlorine at 30 min Contact Time
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Levantesi, C.; La Mantia, R.; Masciopinto, C.; Böckelmann, U.; Ayuso-Gabella, M.N.; Salgot, M.; Tandoi, V.; Van Houtte, E. Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe. Sci. Total Environ. 2010, 408, 4923–4930. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20692684 (accessed on 24 May 2016). [CrossRef] [PubMed]
- Suthar, S.; Sharma, J.; Chabukdhara, M.; Nema, A.K. Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater. Environ Monit. 2010, 165, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Calijuri, M.L.; do Couto, E.D.A.; Santiago, A.D.F.; Camargo, R.D.A.; e Silva, M.D.F.M. Evaluation of the Influence of Natural and Antrhopogenic Processes on Water Quality in Karstic Region. Water Air Soil Pollut. 2011, 223, 2157–2168. [Google Scholar] [CrossRef]
- Nontongana, N.; Sibanda, T.; Ngwenya, E.O.A. Prevalence and antibiogram profiling of Escherichia coli pathotypes isolated from the Kat River and the Fort Beaufort abstraction water. Int. J. Env. Res. Public Heal. 2014, 11, 8213–8227. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, E.; Cutilli, D.; Bonadonna, L.; Briancesco, R.; Martini, C.; Cecchini, G.; Anastasi, P.; Ottaviani, M. Pilot-plant comparative study of peracetic acid and sodium hypochlorite wastewater disinfection. Water. Res. 2003, 37, 78–94. [Google Scholar] [CrossRef]
- Cho, M.; Kim, J.; Kim, J.Y.; Yoon, J.; Kim, J.H. Mechanisms of Escherichia coli inactivation by several disinfectants. Water. Res. 2010, 44, 3410–3418. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20427068 (accessed on 24 May 2014). [CrossRef] [PubMed]
- Zyara, A.M.; Torvinen, E.; Veijalainen, A.; Heinonen-tanski, H. The Effect of UV and Combined Chlorine/UV Treatment on Coliphages in Drinking. Water 2016, 8, 130. [Google Scholar] [CrossRef]
- Lloyd′s Register Group. Understanding Ballast Water Management Series; Lloyd′s Register Group Limited: Southampton, UK, 2012. [Google Scholar]
- Werschkun, B.; Sommer, Y.; Banerji, S. Disinfection by-products in ballast water treatment: An evaluation of regulatory data. Water Res. 2012, 46, 4884–4901. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Cui, C.; Yu, S. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants. Chemosphere 2017, 179, 290–297. Available online: http://www.sciencedirect.com/science/article/pii/S0045653517304769 (accessed on 4 May 2017). [CrossRef] [PubMed]
- Anastasi, E.M.; Wohlsen, T.D.; Stratton, H.M.; Katouli, M. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Res. 2013, 47, 6670–6679. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Parashar, R.; Parashar, R. Is estimation of residual free chlorine in water by drop number titration method reliable? Investigation of statistical, pragmatic, psychological and philosophical reasons. Int. J. Chem. Pharm. Rev. Res. 2015, 2, 11–18. [Google Scholar]
- Chiang, P.; Chang, E.; Chuang, C.; Liang, C.; Huang, C. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination. Chemosphere 2010, 80, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Hashemi, H.; Bovini, A.; Hung, Y. A review on wastewater disinfection. Int. J. Environ. Health Eng. 2013, 2, 22. [Google Scholar]
- Schwering, M.; Song, J.; Louie, M.; Turner, R.J.; Ceri, H. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 2013, 29, 917–928. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23879183 (accessed on 28 June 2016). [CrossRef] [PubMed]
- Kekeç, Ö.; Gökalsın, B.; Karaltı, İ.; Kayhan, F.E.; Sesal, N.C. Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions. Curr. Microbiol. 2016, 73, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Owoseni, M.; Okoh, A. Evidence of emerging challenge of chlorine tolerance of Enterococcus species recovered from wastewater treatment plants. Int. Biodeterior. Biodegrad. 2017, 120, 216–223. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0964830516306813 (accessed on 5 April 2017). [CrossRef]
- Owoseni, M.; Okoh, A. Assessment of chlorine tolerance profile of Citrobacter species recovered from wastewater treatment plants in Eastern Cape, South Africa. Environ. Monit. Assess. 2017, 189, 1–12. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0964830516306813 (accessed on 5 April 2017). [CrossRef] [PubMed]
- LeChevallier, M.; Kwok-Keung, A. World Health Organization: Water treatment and Pathogen Control: Process Efficiency in Achieving Safe Drinking Water; IWA Publishing: London, UK, 2014; pp. 1–176. [Google Scholar]
- Environmental Protection Agency. EPA Water Treatment Manual: Disinfection; EPA: Wexford, Ireland, 2011; Available online: https://www.epa.ie/pubs/advice/drinkingwater/Disinfection2_web.pdf (accessed on 5 June 2015).
- Ma, X.; Bibby, K. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water. Water Res. 2017. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0043135417303329 (accessed on 10 April 2017).
- Li, D.; Zeng, S.; Gu, A.Z.; He, M.; Shi, H. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. J. Environ. Sci. (China) 2013, 25, 1319–1325. [Google Scholar] [CrossRef]
- Mounaouer, B.; Olfa, F.; Abdennaceur, H. Disinfection of wastewater by infiltration-percolation coupled to UV irradiation in an arid Tunisian area. Hydrol. Current Res. 2013, 4, 155. [Google Scholar] [CrossRef]
- Department of Water Affairs. Revision of General authorisations in Terms of Section 39 of The National water Act, (Act No. 36 of 1998) (The Act). 2013, pp. 3–32. Available online: https//www.faolex.fao.org/docs/pdf/saf126916.pdf (accessed on 20 December 2016).
- Wang, S.; Deng, K.; Zaremba, S.; Deng, X.; Lin, C.; Wang, Q.; Totorello, M.L.; Zhang, W. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl. Environ. Microbiol. 2009, 75, 6110–6123. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2753066&tool=pmcentrez&rendertype=abstract (accessed on 5 June 2014). [CrossRef] [PubMed]
- Rice, E.W.; Clark, R.M.; Johnson, C.H. Chlorine inactivation of Escherichia coli O157:H7. Emerg. Infect. Dis. 1999, 5, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Helbling, D.E.; Vanbriesen, J.M. Free chlorine demand and cell survival of microbial suspensions. Water Res. 2007, 41, 4424–4434. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17624396 (accessed on 5 June 2014). [CrossRef] [PubMed]
- Zhou, B.; Luo, Y.; Nou, X.; Lyu, S.; Wang, Q. Inactivation dynamics of Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes. Food Microbiol. 2015, 50, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Coronel-Olivares, C.; Reyes-Gómez, L.M.; Hernández-Muñoz, A.; Martínez-Falcón, A.P.; Vázquez-Rodríguez, G.A.; Iturbe, U. Chlorine disinfection of Pseudomonas aeruginosa, total coliforms, Escherichia coli and Enterococcus faecalis: Revisiting reclaimed water regulations. Water Sci. Technol. 2011, 64, 2151–2157. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22156117 (accessed on 26 December 2016). [CrossRef] [PubMed]
- Huang, J.J.; Hu, H.Y.; Wu, Y.H.; Wei, B.; Lu, Y. Effect of chlorination and 26 May 2014 disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 2013, 90, 2247–2253. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23123077 (accessed on 10 December 2016). [CrossRef] [PubMed]
- Pang, Y.; Huang, J.; Xi, J.; Hu, H.; Zhu, Y. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene. Front. Environ. Sci. Eng. 2016, 10, 522–530. [Google Scholar] [CrossRef]
- Momba, M.N.B.; Sibewu, M.; Mandeya, A. Survival of somatic and F-RNA coliphages in treated wastewater effluents and their impact on viral quality of the receiving water bodies in the Eastern Cape Province-South Africa. J. Biol. Sci. 2009, 9, 648–654. [Google Scholar] [CrossRef]
- Samie, A.; Obi, C.L.; Igumbor, J.O.; Momba, M.N.B. Focus on 14 sewage treatment plants in the Mpumalanga Province, South Africa in order to gauge the efficiency of wastewater treatment. Afr. J. Biotechnol. 2009, 8, 3276–3285. Available online: http://www.academicjournals.org/AJB/PDF/pdf2009/ (accessed on 06 October 2016).
- Teklehaimanot, G.Z.; Coetzee, M.A.A.; Momba, M.N.B. Faecal pollution loads in the wastewater effluents and receiving water bodies: A potential threat to the health of Sedibeng and Soshanguve communities, South Africa. Environ. Sci. Pollut. Res. 2014, 21, 9589–9603. [Google Scholar] [CrossRef] [PubMed]
- Osuolale, O.; Okoh, A. Assessment of the Physicochemical Qualities and Prevalence of Escherichia coli and Vibrios in the Final Effluents of Two Wastewater Treatment Plants in South Africa: Ecological and Public Health Implications. Int. J. Environ. Res. Public Health 2015, 12, 13399–13412. Available online: https://www.mdpi.com/1660-4601/12/10/13399/ (accessed on 7 October 2016). [CrossRef] [PubMed]
- Department of Water Affairs. South African Water Quality Guidelines Volume 1 Domestic Use. 1996. Available online: http://www.dwa.gov.za/iwqs/wq_guide/Pol_saWQguideFRESHDomestic usevol1.pdf (accessed on 29 December 2014).
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater. 1999, p. 1496. Available online: https://www.standardmethods.org (accessed on 12 December 2016).
- Lopez-Saucedo, C.; Cerna, J.F.; Villegas-Sepulveda, N.; Thompson, R.; Velazquez, F.R.; Torres, J.; Tarr, P.I.; Estrada-Garcia, T. Polymerase Chain Reaction To Detect Diverse Loci Associated with Escherichia coli. Emerg. Infect. Dis. 2003, 9, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, T.L.; Carbone, M.; Fera, M.T.; Irrera, G.P.; Gugliandolo, C. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J. Appl. Microbiol. 2004, 97, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.; Palmer, C.J.; Sangermano, L.R. Detection of Escherichia coli in Sewage and Sludge by Polymerase Chain Reaction. Appl. Environ. Microbiol. 1993, 59, 353–357. [Google Scholar] [PubMed]
- Lin, Y.; Li, D.; Gu, A.Z.; Zeng, S.; He, M. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. Chemosphere 2016, 144, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.E. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. Epidemiol. Infect. 1908, 8, 536–542. [Google Scholar] [CrossRef]
- Hom, L.W. Kinetics of chlorine disinfection in an ecosystem. J. Environ. Eng. 1972, 98, 183–194. [Google Scholar]
- Dungeni, M.; Van der Merwe, R.; Momba, M. Abundance of pathogenic bacteria and viral indicators in chlorinated effluents produced by four wastewater treatment plants in the Gauteng Province, South Africa. Water Res. 2010, 36, 607–614. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Akhtar, M.; Maserati, A.; Diez-Gonzalez, F.; Sampedro, F. Does antibiotic resistance influence shiga-toxigenic Escherichia coli O26 and O103 survival to stress environments? Food Control. 2016, 68, 330–336. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0956713516301803 (accessed on 16 February 2017). [CrossRef]
- Park, H.; Hung, Y.C.; Chung, D. Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int. J. Food Microbiol. 2004, 91, 13–18. [Google Scholar]
- Gillespie, S.; Lipphaus, P.; Green, J.; Parsons, S.; Weir, P.; Juskowiak, K.; Jefferson, B.; Jarvis, P.; Nocker, A. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry. Water Res. 2014, 65, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Koivunen, J.; Heinonen-Tanski, H. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res. 2005, 39, 1519–1526. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15878023 (accessed on 5 June 2014). [CrossRef] [PubMed]
- Khan, S.; Beattie, T.K.; Knapp, C.W. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere 2016, 152, 132–141. Available online: http://www.scopus.com/inward/record.url?eid=2-s2.0-84960096633&partnerID=tZOtx3y1 (accessed on 10 December 2016). [CrossRef] [PubMed] [Green Version]
- Pereira, V.J.; Marques, R.; Marques, M.; Benoliel, M.J.; Crespo, M.T.B. Free chlorine inactivation of fungi in drinking water sources. Water Res. 2013, 47, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Winward, G.P.; Avery, L.M.; Stephenson, T.; Jefferson, B. Chlorine disinfection of grey water for reuse: effect of organics and particles. Water Res. 2008, 42, 483–491. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17904612 (accessed on June 3 2014). [CrossRef] [PubMed]
- Van Haute, S.; Sampers, I.; Holvoet, K.; Uyttendaelea, M. Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing. Appl. Environ. Microbiol. 2013, 79, 2850–2861. [Google Scholar] [CrossRef] [PubMed]
- Valero, P.; Mosteo, R.; Ormad., M.P.; Lázaro, L.; Ovelleiro, J.L. Inactivation of Enterococcus sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. Ozone Sci. Eng. 2015. [Google Scholar] [CrossRef]
- Zhao, T.; Doyle, M.P.; Zhao, P.; Blake, P.; Wu, F.M. Chlorine inactivation of Escherichia coli O157:H7 in water. J. Food Prot. 2001, 64, 1607–1609. [Google Scholar] [CrossRef] [PubMed]
- Mir, J.; Morato, J.; Ribas, F. Resistance to chlorine of freshwater bacterial strains. J. Appl. Microbiol. 1997, 82, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.; Xi, C.; Raskin, L. Effect of Growth Conditions on Inactivation of Escherichia coli with Monochloramine. Environ. Sci. Technol. 2009, 43, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, C.; Gu, A.Z. Effect of bacterial growth stage on resistane to chlorine disinfection. Water Sci. Technol. 2011, 64, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Mounaouer, B.; Abdennaceur, H. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environ. Sci. Pollut. Res. 2016, 23, 19861–19875. [Google Scholar] [CrossRef] [PubMed]
Bacterial Isolates | Surviving Population (CFU/mL) | Log Reduction (log10 CFU/mL) | Residual Chlorine (mg/L) |
---|---|---|---|
AEC1 | 3.0 ± 0.14 × 103 | 4.88 | 0.29 ± 0.01 |
AEC8 | 4.0 ± 0.36 × 103 | 5.75 | 0.39 ± 0.01 |
AEC11 | 1.70 ± 2.6 × 103 | 5.12 | 0.41 ± 0.01 |
AEC14 | 3.10 ± 1.6 × 103 | 4.86 | 0.35 ± 0.01 |
AEC16 | 1.10 ± 1.3 × 103 | 5.3 | 0.33 ± 0.04 |
E. coli SAMRC-1 | 3.23 ± 0.55 ×103 | 4.84 | 0.44 ± 0.01 |
AEC17 | 1.0 ± 0.1 × 103 | 5.75 | 0.36 ± 0.01 |
AEC18 | 3.30 ± 0.06 ×103 | 6.0 | 0.34 ± 0.01 |
AEC24 | 3.17 ± 0.12 × 103 | 5.04 | 0.35 ± 0.01 |
DEC 2 | 3.00 ± 0.2 × 103 | 4.88 | 0.41 ± 0.01 |
DEC3 | 3.3 ± 0.21 × 103 | 5.04 | 0.35 ± 0.01 |
DEC4 | 3.0 ± 0.17 × 103 | 4.88 | 0.42 ± 0.02 |
DEC12 | 4.0 ± 0.1 × 103 | 5.0 | 0.41 ± 0.01 |
DEC 18 | 2.67 ± 0.3 × 103 | 4.93 | 0.42 ± 0.04 |
DEC 19 | 2.50 ± 0.3 × 103 | 5.0 | 0.31 ± 0.01 |
DEC 20 | 2.5 ± 0.2 × 103 | 5.0 | 0.42 ± 0.01 |
DEC 23 | 5.67 ± 0.31 × 103 | 5.0 | 0.39 ± 0.01 |
DEC 26 | 5.5 ± 0.21 × 103 | 5.0 | 0.40 ± 0.01 |
E. coli SAMRC-2 | 9.67 ± 6.03 × 103 | 4.37 | 0.37 ± 0.01 |
E. coli SAMRC-3 | 3.03 ± 1.8 × 104 | 3.88 | 0.42 ± 0.04 |
Bacterial Strains | Free Chlorine (mg/L) | |||
---|---|---|---|---|
R2 | k | n | p | |
E. coli SAMRC-1 | 0.64 | −1.99 ± 1.43 | −4.66 ± 1.47 | 0.03 |
E. coli SAMRC-2 | 0.71 | −1.33 ± 1.36 | −5.07 ± 1.40 | 0.02 |
E. coli SAMRC-3 | 0.77 | −1.21 ± 1.08 | −4.67 ± 1.12 | 0.01 |
Bacterial Strains | Free Chlorine (mg/L) | |||
---|---|---|---|---|
R2 | k | n | p | |
E. coli SAMRC-1 | 0.95 | −0.21 ± 0.68 | −0.26 ± 0.04 | 0.02 |
E. coli SAMRC-2 | 0.91 | −0.60 ± 0.88 | −0.27 ± 0.05 | 0.03 |
E. coli SAMRC-3 | 0.91 | −0.67 ± 0.76 | −0.23 ± 0.04 | 0.03 |
Bacterial Strains | R2 | k | Chlorine Exponent | Time Exponent | ||
---|---|---|---|---|---|---|
n | p | m | p | |||
E. coli SAMRC-1 | 0.90 | −2.42 | 1.57 | 0.80 | −0.23 | 0.31 |
E. coli SAMRC-2 | 0.96 | −19.88 | 12.96 | 0.34 | −0.14 | 0.33 |
E. coli SAMRC-3 | 0.98 | −33.2 | 22.4 | 0.20 | 0.17 | 0.41 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owoseni, M.C.; Olaniran, A.O.; Okoh, A.I. Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa. Appl. Sci. 2017, 7, 810. https://doi.org/10.3390/app7080810
Owoseni MC, Olaniran AO, Okoh AI. Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa. Applied Sciences. 2017; 7(8):810. https://doi.org/10.3390/app7080810
Chicago/Turabian StyleOwoseni, Mojisola C., Ademola O. Olaniran, and Anthony I. Okoh. 2017. "Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa" Applied Sciences 7, no. 8: 810. https://doi.org/10.3390/app7080810
APA StyleOwoseni, M. C., Olaniran, A. O., & Okoh, A. I. (2017). Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa. Applied Sciences, 7(8), 810. https://doi.org/10.3390/app7080810