Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Description of Horizontal Sub-Surface Constructed Wetlands (HSSF-CWs)
2.2. Endocrine Disruptive Compounds
2.3. Influent Concentration of HSSF-CW
2.4. Statistical Analysis
3. Results and Discussion
3.1. Longitudinal Removal of BPA in HSSF-CWs
3.2. Longitudinal Removal of NP in HSSF-CWs
3.3. EDC Removal Rate Against Mass Loading Rates
3.4. Overall Performance of Each HSSF-CW in EDC Removal
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zimmerman, M.J. Occurrence of Organic Wastewater Contaminants, Pharmaceuticals, and Personal Care Products in Selected Water Supplies, 2005. Cape Cod, Massachusetts, June 2004; Open-File Report 2005-1206; U.S. Geological Survey: Denver, CO, USA, 2005; p. 16.
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Terzić, S.; Senta, I.; Ahel, M.; Gros, M.; Petrović, M.; Barcelo, D.; Jabucar, D. Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci. Total Environ. 2008, 399, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef] [PubMed]
- Suárez, S.; Carballa, M.; Omil, F.; Lema, J.M. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev. Environ. Sci. Bio/Technol. 2008, 7, 125–138. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Wong, C.K.C.; Zheng, J.S.; Bouwman, H.; Barra, R.; Wahlström, B.; Wong, M.H. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ. Int. 2012, 42, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Jefferson, W.N.; Padilla-Banks, E. Prenatal exposure to bisphenol at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ. Health Perspect. 2009, 117, 879–885. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme and World Health Organization. State of the Science of Endocrine Disrupting Chemicals–2012; Bergman, A., Heindel, J.J., Jobling, S., Kidd, K.A., Zoeller, R.T., Eds.; WHO Press: Geneva, Switzerland, 2013. [Google Scholar]
- Yan, P.; Qin, R.C.; Guo, J.S.; Yu, Q.; Li, Z.; Chen, Y.P.; Shen, Y.; Fang, F. Net-Zero-Energy Model for Sustainable Wastewater Treatment. Environ. Sci. Technol. 2017, 51, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Nahlik, A.M.; Mitsch, W.J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol. Eng. 2006, 28, 246–257. [Google Scholar] [CrossRef]
- Hijosa, M.; Matamoros, V.; Sidrach, R.; Martín, J.; Bécares, E.; Bayona, J. Comprehensive Assessment of the Design Configuration of Constructed Wetlands for the Removal of Pharmaceuticals and Personal Care Products from Urban Wastewaters. Water Res. 2010, 44, 3669–3678. [Google Scholar] [CrossRef] [PubMed]
- Abira, M.A.; van Bruggen, J.J.A.; Denny, P. A Potential of a tropical subsurface constructed wetland to remove phenol from pre-treated pulp and papermill wastewater. Water Sci. Technol. 2005, 51, 173–176. [Google Scholar] [PubMed]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environ. Pollut. 2014, 184, 620–639. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Terzakis, S.; Kalogerakis, N.; Manios, T. Removal of polycyclic aromatic hydrocarbons and linear alkylbenzene sulfonates from domestic wastewater in pilot constructed wetlands and a gravel filter. Ecol. Eng. 2009, 35, 1702–1709. [Google Scholar] [CrossRef]
- Matamoros, V.; Bayona, J.M. Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ. Sci. Technol. 2006, 40, 5811–5816. [Google Scholar] [CrossRef] [PubMed]
- Dordio, A.V.; Teimão, J.; Ramalho, I.; Carvalho, A.J.P.; Candeias, A.J.E. Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems. Sci. Total Environ. 2007, 380, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.; Reyes, C.; Bayona, J.M.; García, J. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Res. 2013, 47, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed-analysis of their respective contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Imfeld, G.; Braeckevelt, M.; Kuschk, P.; Richnow, H. Monitoring and Assessing Processes of Organic Chemicals Removal in Constructed Wetlands. Chemosphere 2009, 74, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.; Strenn, B.; Saracevic, E.; Kreuzinger, N. Adsorption of bisphenol-A, 17 beta-estradiole and 17 alpha-ethinylestradiole to sewage sludge. Chemosphere 2004, 56, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.Y.; Zheng, J.S.; Sharp, R.G. Phytoremediation in Engineered Wetlands: Mechanisms and Applications. Procedia Environ. Sci. 2010, 2, 1315–1325. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2013, 468–469, 908–932. [Google Scholar] [CrossRef] [PubMed]
- Toyama, T.; Yusuke, S.; Daisuke, I.; Kazunari, S.; Young, C.; Shintaro, K.; Michihiko, I. Biodegradation of Bisphenol A and Bisphenol F in the Rhizosphere Sediment of Phragmites Australis. J. Biosci. Bioeng. 2009, 108, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Dodgen, L.K.; Li, J.; Parker, D.; Gan, J.J. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environ. Pollut. 2013, 182, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Song, H.L.; Nakano, K.; Taniguchi, T.; Nomura, M.; Nishimura, O. Estrogen Removal from Treated Municipal Effluent in Small-Scale Constructed Wetland with Different Depth. Bioresour. Technol. 2009, 100, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
Statistical Results | Parameters | |||||
---|---|---|---|---|---|---|
BPA (µg·L−1) | NPs (µg·L−1) | DOC * (mg·L−1) | COD * (mg·L−1) | CODf * (mg·L−1) | TSS * (mg·L−1) | |
ŷ | 8.80 | 1671 | 17.6 | 252 | 134 | 63.7 |
σ | 6.40 | 838 | 4.23 | 48.6 | 28.8 | 26.2 |
C.V. | 0.73 | 0.50 | 0.24 | 0.19 | 0.21 | 0.41 |
Removal Efficiencies (%) | BPA | ||
---|---|---|---|
Heliconia | Unplanted | Phragmites | |
ŷ | 73.3% | 62.2% | 70.2% |
Maximum | 98.6% | 97.1% | 98.3% |
Minimum | 50.0% | 3.7% | 27.9% |
σ | 19.6% | 33.1% | 27.1% |
C.V. | 0.27 | 0.53 | 0.39 |
n * | 7 | 7 | 6 |
Removal Efficiencies (%) | NP | ||
---|---|---|---|
Heliconia | Unplanted | Phragmites | |
ŷ | 62.8% | 25.3% | 52.1% |
Maximum | 90.0% | 83.7% | 80.2% |
Minimum | 28.0% | −12.3% | 20.4% |
σ | 20.1% | 37.1% | 23.2% |
C.V. | 0.32 | 1.46 | 0.4 |
n * | 7 | 7 | 6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Vélez, A.; Madera-Parra, C.; Peña-Varón, M.; García-Hernández, H.; Lee, W.Y.; Walker, S.; Lens, P. Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands. Appl. Sci. 2017, 7, 834. https://doi.org/10.3390/app7080834
Toro-Vélez A, Madera-Parra C, Peña-Varón M, García-Hernández H, Lee WY, Walker S, Lens P. Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands. Applied Sciences. 2017; 7(8):834. https://doi.org/10.3390/app7080834
Chicago/Turabian StyleToro-Vélez, Andrés, Carlos Madera-Parra, Miguel Peña-Varón, Hector García-Hernández, Wen Yee Lee, Shane Walker, and Piet Lens. 2017. "Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands" Applied Sciences 7, no. 8: 834. https://doi.org/10.3390/app7080834
APA StyleToro-Vélez, A., Madera-Parra, C., Peña-Varón, M., García-Hernández, H., Lee, W. Y., Walker, S., & Lens, P. (2017). Longitudinal Removal of Bisphenol-A and Nonylphenols from Pretreated Domestic Wastewater by Tropical Horizontal Sub-SurfaceConstructed Wetlands. Applied Sciences, 7(8), 834. https://doi.org/10.3390/app7080834