Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts
Abstract
:1. Introduction
2. Experimental Set-Up
3. Numerical Methodology
Numerical Model Set-Up
4. Results and Discussion
4.1. Validation
4.2. Knocking Combustion Visualization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Adaptive Mesh Refinement |
aTDC | after Top Dead Centre |
BDC | Bottom Dead Centre |
cad | Crank Angle Degree |
CCV | Cycle-to-Cycle Variation |
CFD | Computational Fluid Dynamics |
CI | Compression-Ignited |
DDM | Discrete Droplet Model |
DI | Direct Injection |
DNS | Direct Numerical Simulation |
EGR | Exhaust Gas Recirculation |
HCCI | Homogeneous Charge Compression Ignition |
HSDI | High Speed Direct Injection |
ICE | Internal Combustion Engine |
IMEP | Indicated Mean Effective Pressure |
IVC | Intake Valves Closing |
KH | Kelvin-Helmholtz |
LES | Large Eddy Simulation |
LTC | Low Temperature Combustion |
MAPO | Maximum Amplitude Pressure Oscillation |
MZ | Multi-Zone |
NOx | Nitrous Oxides (NO and NO2) |
PCCI | Premixed Charge Compression Ignition |
PPC | Partially Premixed Combustion |
PRF | Primary Reference Fuel |
RANS | Reynolds-averaged Navier–Stokes |
RNG | Re-Normalized Group |
RoHR | Rate of Heat Release |
RON | Research Octane Number |
RT | Rayleigh-Taylor |
SAGE | Detailed Chemistry Solver |
SD | Standard Deviation |
SI | Spark-Ignited |
SoEm | Start of Energizing of the Injector (main injection) |
TDC | Top Dead Centre |
URANS | Unsteady Reynolds-averaged Navier–Stokes |
VVT | Variable Valve Timing |
References
- Serrano, J.R. Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Appl. Sci. 2017, 7, 1011. [Google Scholar] [CrossRef]
- Bermúdez, V.; Serrano, J.R.; Piqueras, P.; Sanchis, E.J. On the impact of particulate matter distribution on pressure drop of wall-flow particulate filters. Appl. Sci. 2017, 7, 234. [Google Scholar] [CrossRef]
- Takeda, Y.; Keiichi, N.; Keiichi, N. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection; SAE Technical Paper; SAE: Warrendale, PA, USA, 1996. [Google Scholar] [CrossRef]
- Ryo, H.; Hiromichi, Y. HCCI Combustion in a DI Diesel Engine; SAE Technical Paper 2003-01-0745; SAE: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Broatch, A.; García, A.; Mónico, L.F. Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines. Appl. Energy 2013, 104, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa, A.J.; Broatch, A.; Novella, R.; Gomez-Soriano, J.; Mónico, L.F. Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy 2017, 137, 58–68. [Google Scholar] [CrossRef]
- Boyarski, N.J.; Reitz, R.D. Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine. In Proceedings of the SAE 2006 World Congress & Exhibition, Detroit, MI, USA, 3 April 2006. [Google Scholar] [CrossRef]
- Okude, K.; Mori, K.; Shiino, S.; Moriya, T. Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine; SAE Technical Paper 2004-01-1907; SAE: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Hanson, R.; Splitter, D.; Reitz, R. Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions; SAE Technical Paper 2009-01-1442; SAE: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Manente, V.; Johansson, B.; Tunestal, P.; Cannella, W. Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE Int. J. Engines 2009, 2, 71–88. [Google Scholar] [CrossRef]
- Lewander, M.; Johansson, B.; Tunestål, P. Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels; SAE Technical Paper 2011-01-1811; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Tribotte, P.; Ravet, F.; Dugue, V.; Obernesser, P.; Quechon, N.; Benajes, J.; Novella, R.; De Lima, D. Two Strokes Diesel Engine—Promising Solution to Reduce CO2 Emissions. Procedia 2012, 48, 2295–2314. [Google Scholar] [CrossRef]
- Laget, O.; Ternel, C.; Thiriot, J.; Charmasson, S.; Tribotté, P.; Vidal, F. Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car; SAE Technical Paper 2013-01-1719; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Benajes, J.; Novella, R.; De Lima, D.; Tribotté, P.; Quechon, N.; Obernesser, P.; Dugue, V. Analysis of the combustion process, pollutant emissions and efficiency of an innovative 2-stroke HSDI engine designed for automotive applications. Appl. Therm. Eng. 2013, 58, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Benajes, J.; Molina, S.; Novella, R.; De Lima, D. Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline. Appl. Energy 2014, 122, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Keum, S.; Im, H.G. Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. Int. J. Engine Res. 2016, 17, 280–290. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S. Renormalization group analysis of turbulence. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Wilcox, D.C. Formulation of the k-w turbulence model revisited. AIAA J. 2008, 46, 2823–2838. [Google Scholar] [CrossRef]
- Chen, J.H.; Hawkes, E.R.; Sankaran, R.; Mason, S.D.; Im, H.G. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics. Combust. Flame 2006, 145, 128–144. [Google Scholar] [CrossRef]
- Pope, S.B. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 2004, 6, 35. [Google Scholar] [CrossRef]
- Pillai, A.L.; Kurose, R. Numerical investigation of combustion noise in an open turbulent spray flame. Appl. Acoust. 2018, 133, 16–27. [Google Scholar] [CrossRef]
- Misdariis, A.; Vermorel, O.; Poinsot, T. LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combust. Flame 2015, 162, 4304–4312. [Google Scholar] [CrossRef] [Green Version]
- Broatch, A.; López, J.J.; García-Tíscar, J.; Gomez-Soriano, J. Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. J. Eng. Gas Turbines Power 2018, 140, 102808. [Google Scholar] [CrossRef]
- Pal, P.; Kolodziej, C.; Choi, S.; Broatch, A.; Gomez-Soriano, J.; Wu, Y.; Lu, T.; See, Y.C.; Som, S. Development of a Virtual CFR Engine Model for Knocking Combustion Analysis; SAE Technical Paper 2018-01-0187; SAE: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Broatch, A.; Novella, R.; Gomez-Soriano, J.; Pal, P.; Som, S. Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control; SAE Technical Paper 2018-01-0193; SAE: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Broatch, A.; Gil, A.; Gomez-Soriano, J. Numerical approach for assessing combustion noise in compression-ignitied Diesel engines. Appl. Acoust. 2018, 135, 91–100. [Google Scholar] [CrossRef]
- Benajes, J.; Broatch, A.; Garcia, A.; Muñoz, L.M. An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions; SAE Technical Paper; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Benajes, J.; Novella, R.; De Lima, D.; Tribotte, P. Investigation on multiple injection strategies for gasoline PPC operation in a newly designed 2-stroke HSDI compression ignition engine. SAE Int. J. Engines 2015, 8, 758–774. [Google Scholar] [CrossRef]
- Benajes, J.; García, A.; Domenech, V.; Durrett, R. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Appl. Therm. Eng. 2013, 52, 468–477. [Google Scholar] [CrossRef]
- Vermorel, O.; Richard, S.; Colin, O.; Angelberger, C.; Benkenida, A.; Veynante, D. Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust. Flame 2009, 156, 1525–1541. [Google Scholar] [CrossRef]
- Vermorel, O.; Richard, S.; Colin, O.; Angelberger, C.; Benkenida, A.; Veynante, D. Multi-Cycle LES Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine; SAE Technical Paper 2007-01-0151; SAE: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Granet, V.; Vermorel, O.; Lacour, C.; Enaux, B.; Dugué, V.; Poinsot, T. Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 2012, 159, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Fansler, T.D.; Wagner, R.M. Cyclic dispersion in engine combustion-Introduction by the special issue editors. Int. J. Engine Res. 2015, 16, 255–259. [Google Scholar] [CrossRef]
- Klos, D.; Kokjohn, S.L. Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. Int. J. Engine Res. 2015, 16, 419–440. [Google Scholar] [CrossRef]
- Jia, M.; Dempsey, A.B.; Wang, H.; Li, Y.; Reitz, R.D. Numerical simulation of cyclic variability in reactivity-controlled compression ignition combustion with a focus on the initial temperature at intake valve closing. Int. J. Engine Res. 2015, 16, 441–460. [Google Scholar] [CrossRef]
- CONVERGENT SCIENCE Inc. CONVERGE 2.2 Theory Manual; CONVERGENT SCIENCE Inc.: Madison, WI, USA, 2015. [Google Scholar]
- Angelberger, C.; Poinsot, T.; Delhay, B. Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations; SAE Technical Paper 2003-01-0542; SAE: Warrendale, PA, USA, 1997. [Google Scholar] [CrossRef]
- Senecal, P.K.; Pomraning, E.; Richards, K.J.; Briggs, T.E.; Choi, C.Y.; McDavid, R.M.; Patterson, M.A. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length Using CFD and Parallel Detailed Chemistry; SAE Technical Paper 2003-01-1043; SAE: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Babajimopoulos, A.; Assanis, D.N.; Flowers, D.L.; Aceves, S.M.; Hessel, R.P. A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. Int. J. Engine Res. 2005, 6, 497–512. [Google Scholar] [CrossRef]
- Pal, P.; Probst, D.; Pei, Y.; Zhang, Y.; Traver, M.; Cleary, D.; Som, S. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis. SAE Int. J. Fuels Lubr. 2017, 10, 56–68. [Google Scholar] [CrossRef]
- Brakora, J.; Reitz, R.D. A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations; SAE Technical Paper 2013-01-1099; SAE: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Kodavasal, J.; Kolodziej, C.P.; Ciatti, S.A.; Som, S. Computational fluid dynamics simulation of gasoline compression ignition. J. Energy Resour. Technol. 2015, 137, 032212. [Google Scholar] [CrossRef]
- Benajes, J.; Novella, R.; Lima, D.D.; Thein, K. Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Appl. Energy 2017, 193, 515–530. [Google Scholar] [CrossRef]
- Dukowicz, J.K. A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 1980, 35, 229–253. [Google Scholar] [CrossRef]
- Reitz, R.D.; Beale, J.C. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization Sprays 1999, 9, 623–650. [Google Scholar] [CrossRef]
- Payri, R.; García, J.M.; Salvador, F.; Gimeno, J. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel 2005, 84, 551–561. [Google Scholar] [CrossRef]
- Payri, R.; Salvador, F.J.; Gimeno, J.; Bracho, G. A new methodology for correcting the signal cumulative phenomenon on injection rate measurements. Exp. Tech. 2008, 32, 46–49. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Olmeda, P.; Degraeuwe, B.; Reyes, M. A concise wall temperature model for DI Diesel engines. Appl. Therm. Eng. 2006, 26. [Google Scholar] [CrossRef]
- Torregrosa, A.J.; Broatch, A.; Margot, X.; Gomez-Soriano, J. Towards a Predictive CFD Approach for Assessing Noise in Diesel Compression Ignition Engines. Impact of the Combustion Strategies. In Proceedings of the 9th COMODIA International Conference on Modeling and Diagnostics for Advanced Engine systems, Okayama, Japan, 25 July 2017. [Google Scholar]
- Torregrosa, A.J.; Broatch, A.; García-Tíscar, J.; Gomez-Soriano, J. Modal decomposition of the unsteady flow field in compression-ignited combustion chambers. Combust. Flame 2018, 188, 469–482. [Google Scholar] [CrossRef]
- Broatch, A.; Margot, X.; Novella, R.; Gomez-Soriano, J. Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Appl. Therm. Eng. 2017, 119, 530–540. [Google Scholar] [CrossRef]
Engine | 2-Stroke HSDI CI |
---|---|
Fuel (-) | RON95 gasoline |
Number of cylinders (-) | 1 |
Displacement (cm3) | 365 |
Bore–Stroke (mm) | 76.0–80.5 |
Compression ratio (geometric) | 17.8:1 |
Compression ratio (effective) | from 13.0:1 to 8.8:1 |
Number of valves (-) | 2 intake and 2 exhaust |
Parameter | Baseline | ± | [%] |
---|---|---|---|
Combustion products (%) | 36.70 | 1.0 | 2.7 |
Temperature (K) | 406.30 | 2.0 | 0.5 |
Tumble intensity (-) | 4.31 | 1.1 | 25.0 |
Fuel mass (mg/cyc) | 19.07 | 0.191 | 1.0 |
Engine speed (rpm) | 1500 |
Torque (Nm) | 49.9 |
IMEP (MPa) | 1.04 |
Number Injections (-) | 3 (pilot + main + post) |
SoEmain (cad aTDC) | −42.0 |
Injection pressure (MPa) | 85 |
Intake pressure (MPa) | 0.275 |
EGR (%) | 43.66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.R.; Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P.J. Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Appl. Sci. 2018, 8, 1707. https://doi.org/10.3390/app8101707
Serrano JR, Novella R, Gomez-Soriano J, Martinez-Hernandiz PJ. Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Applied Sciences. 2018; 8(10):1707. https://doi.org/10.3390/app8101707
Chicago/Turabian StyleSerrano, José Ramón, Ricardo Novella, Josep Gomez-Soriano, and Pablo José Martinez-Hernandiz. 2018. "Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts" Applied Sciences 8, no. 10: 1707. https://doi.org/10.3390/app8101707
APA StyleSerrano, J. R., Novella, R., Gomez-Soriano, J., & Martinez-Hernandiz, P. J. (2018). Computational Methodology for Knocking Combustion Analysis in Compression-Ignited Advanced Concepts. Applied Sciences, 8(10), 1707. https://doi.org/10.3390/app8101707