Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Used and Its Characteristics
2.2. Cultivation of Biodegrading Microorganisms
2.3. Microbial Cultures
2.4. Experimental Setup
2.5. Sampling and Analysis
2.6. Statistics
3. Results
3.1. Experiment A
3.2. Experiment B
4. Discussion
4.1. Applicability for Bulk Bioremediation
4.2. Possible Role of Siderophores
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hook, M. Depletion rate analysis of fields and regions: A methodological foundation. Fuel 2014, 121, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Hook, M.; Hirsch, R.; Aleklett, K. Giant oil field decline rates and their influence on world oil production. Energy Policy 2009, 37, 2262–2272. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.W.; Von Lau, E.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Jain, R.; Srivastava, N.; Borthakur, A.; Pal, D.B.; Singh, R.; Madhav, S.; Srivastava, P.; Tiwary, D.; Mishra, P.K. Current and emerging trends in bioremediation of petrochemical waste: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 155–201. [Google Scholar] [CrossRef]
- Varjani, S.J.; Gnansounou, E.; Pandey, A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 2017, 188, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.J.; Maranho, L.T. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. J. Environ. Manag. 2018, 210, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J.; Upasani, V.N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 2017, 120, 71–83. [Google Scholar] [CrossRef]
- Heine, T.; Zimmerling, J.; Ballmann, A.; Kleeberg, S.B.; Ruckert, C.; Busche, T.; Winkler, A.; Kalinowski, J.; Poetsch, A.; Scholtissek, A.; et al. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed]
- Korotkevych, O.; Josefiova, J.; Praveckova, M.; Cajthaml, T.; Stavelova, M.; Brennerova, M.V. Functional adaptation of microbial communities from jet fuel-contaminated soil under bioremediation treatment: Simulation of pollutant rebound. FEMS Microbiol. Ecol. 2011, 78, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Kolvenbach, B.A.; Helbling, D.E.; Kohler, H.-P.E.; Corvini, P.F.X. Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr. Opin. Biotechnol. 2014, 27, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Troegl, J.; Chauhan, A.; Ripp, S.; Layton, A.C.; Kuncova, G.; Sayler, G.S. Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History. Sensors 2012, 12, 1544–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.P.; Gupta, V.K.; Passari, A.K. Actinobacteria: Diversity and Biotechnological Applications: New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier Science: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Amoroso, M.J.; Benimeli, C.S.; Cuozzo, S.A. Actinobacteria: Application in Bioremediation and Production of Industrial Enzymes; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Fan, S.H.; Wang, J.H.; Li, K.; Yang, T.; Jia, Y.; Zhao, B.S.; Yan, Y.C. Complete genome sequence of Gordonia sp YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters. J. Biotechnol. 2018, 279, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Andler, R.; Hiessl, S.; Yucel, O.; Tesch, M.; Steinbuchel, A. Cleavage of poly(cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans. New Biotechnol. 2018, 44, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.C.; Kong, X.; Jia, M.H.; Yu, X.Y.; Wang, X.X.; Zhuang, X.L.; Deng, Y.; Bai, Z.H. Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2017, 67, 5128–5133. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Vogler, S.; Zargar, K.; Schmidt, A.C.; Saltikov, C.; Seifert, J.; Schlomann, M. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch. Microbiol. 2012, 194, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Kakosova, E.; Hrabak, P.; Cernik, M.; Novotny, V.; Czinnerova, M.; Trogl, J.; Popelka, J.; Kuran, P.; Zoubkova, L.; Vrtoch, L. Effect of various chemical oxidation agents on soil microbial communities. Chem. Eng. J. 2017, 314, 257–265. [Google Scholar] [CrossRef]
- Cejkova, A.; Masak, J.; Jirku, V. Use of mineral nutrients and surface-active substances in a biodegradation process modulation. Folia Microbiol. 1997, 42, 513–516. [Google Scholar] [CrossRef]
- Standardization, BS EN 590 Automotive Fuels—Diesel—Requirements and Test Methods. 2004. Available online: http://www.envirochem.hu/www.envirochem.hu/documents/EN_590_2009_hhV05.pdf (accessed on 27 August 2018).
- Hastings, R.C.; Ceccherini, M.T.; Miclaus, N.; Saunders, J.R.; Bazzicalupo, M.; McCarthy, A.J. Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol. Ecol. 1997, 23, 45–54. [Google Scholar] [CrossRef]
- Esuola, C.O.; Babalola, O.O.; Heine, T.; Schwabe, R.; Schlomann, M.; Tischler, D. Identification and characterization of a FAD-dependent putrescine N-hydroxylase (GorA) from Gordonia rubripertincta CWB2. J. Mol. Catal. B Enzym. 2016, 134, 378–389. [Google Scholar] [CrossRef]
- Oelschlägel, M.; Kaschabek, S.R.; Zimmerling, J.; Schlömann, M.; Tischler, D. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol. Rep. (AMST) 2015, 6, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwabe, R.; Obst, B.; Mehnert, M.; Tischler, D.; Wiche, O. Gallium Mobilization in Soil by Bacterial Metallophores. Solid State Phenom. 2017, 262, 513–516. [Google Scholar] [CrossRef]
- Standardization, E.c.f. EN 14039 Characterization of Waste—Determination of Hydrocarbon Content in the Range of C10 to C40 by Gas Chromatography. 2005. Available online: https://www.sis.se/api/document/preview/39058/ (accessed on 27 August 2018).
- Kuran, P.; Troegl, J.; Novakova, J.; Pilarova, V.; Danova, P.; Pavlorkova, J.; Kozler, J.; Novak, F.; Popelka, J. Biodegradation of Spilled Diesel Fuel in Agricultural Soil: Effect of Humates, Zeolite, and Bioaugmentation. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Frouz, J.; Cajthaml, T.; Kribek, B.; Schaeffer, P.; Bartuska, M.; Galertova, R.; Rojik, P.; Kristufek, V. Deep, subsurface microflora after excavation respiration and biomass and its potential role in degradation of fossil organic matter. Folia Microbiol. 2011, 56, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Organization, ISO 23753–1 Soil Quality—Determination of Dehydrogenase Activity in Soils—Part 1: Method Using Triphenyltetrazolium Chloride (TTC). 2005. Available online: https://www.evs.ee/preview/iso-23753-1-2005-en.pdf (accessed on 27 August 2018).
- Quevauviller, P.; Ure, A.; Muntau, H.; Griepink, B. Improvement of Analytical Measurements within the BCR-Programme: Single and Sequential Extraction Procedures Applied to Soil and Sediment Analysis. Int. J. Environ. Anal. Chem. 1993, 51, 129–134. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Janos, P.; Vavrova, J.; Herzogova, L.; Pilarova, V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma 2010, 159, 335–341. [Google Scholar] [CrossRef]
- Organization, ISO 14235 Soil Quality—Determination of Organic Carbon in Soil by Sulfochromic Oxidation. 1998. Available online: https://www.evs.ee/preview/iso-14235-1998-en.pdf (accessed on 27 August 2018).
- Moliterni, E.; Rodriguez, L.; Fernandez, F.J.; Villasenor, J. Feasibility of Different Bioremediation Strategies for Treatment of Clayey and Silty Soils Recently Polluted with Diesel Hydrocarbons. Water Air Soil Pollut. 2012, 223, 2473–2482. [Google Scholar] [CrossRef]
- Moliterni, E.; Jimenez-Tusset, R.G.; Rayo, M.V.; Rodriguez, L.; Fernandez, F.J.; Villasenor, J. Kinetics of biodegradation of diesel fuel by enriched microbial consortia from polluted soils. Int. J. Environ. Sci. Technol. 2012, 9, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, M.; da Fonseca, M.M.R.; de Carvalho, C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Dandie, C.E.; Weber, J.; Aleer, S.; Adetutu, E.M.; Ball, A.S.; Juhasz, A.L. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 2010, 81, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Benyahia, F.; Abdulkarim, M.; Zekri, A.; Chaalal, O.; Hasanain, H. Bioremediation of Crude Oil Contaminated Soils: A Black Art or an Engineering Challenge? Process Saf. Environ. Prot. 2005, 83, 364–370. [Google Scholar] [CrossRef]
- Taccari, M.; Milanovic, V.; Comitini, F.; Casucci, C.; Ciani, M. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int. Biodeterior. Biodegrad. 2012, 66, 39–46. [Google Scholar] [CrossRef]
- Lin, T.C.; Pan, P.T.; Young, C.C.; Chang, J.S.; Chang, T.C.; Cheng, S.S. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ. Sci. Pollut. Res. 2011, 18, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Helingerova, M.; Frouz, J.; Santruckova, H. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol. Eng. 2010, 36, 768–776. [Google Scholar] [CrossRef]
- Drzyzga, O. The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential. Crit. Rev. Microbiol. 2012, 38, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Arenskotter, M.; Broker, D.; Steinbuchel, A. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.; Refaat, J.; Abdelmohsen, U.R.; Fouad, M.A. The Genus Rhodococcus as a source of novel bioactive substances: A review. J. Pharmacogn. Phytochem. 2017, 6, 83–92. [Google Scholar]
- Bell, K.; Philp, J.; Aw, D.; Christofi, N. The genus Rhodococcus. J. Appl. Microbiol. 1998, 85, 195–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzetti, A.; Gandolfi, I.; Bestetti, G.; Smyth, T.J.P.; Banat, I.M. Production and applications of trehalose lipid biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112, 617–627. [Google Scholar] [CrossRef]
- Pi, Y.R.; Chen, B.; Bao, M.T.; Fan, F.Q.; Cai, Q.H.; Ze, L.; Zhang, B.Y. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour. Technol. 2017, 232, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Pagilla, K.R.; Sood, A.; Kim, H. Gordonia (nocardia) amarae foaming due to biosurfactant production. Water Sci. Technol. 2002, 46, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Carrano, C.J.; Jordan, M.; Drechsel, H.; Schmid, D.G.; Winkelmann, G. Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 2001, 14, 119–125. [Google Scholar] [CrossRef]
- Bosello, M.; Zeyadi, M.; Kraas, F.I.; Linne, U.; Xie, X.L.; Marahiel, M.A. Structural Characterization of the Heterobactin Siderophores from Rhodococcus erythropolis PR4 and Elucidation of Their Biosynthetic Machinery. J. Nat. Prod. 2013, 76, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Tischler, D.; Fauser, C.; Lodemann, J.; Heilmeier, H. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea. Int. J. Phytoremediat. 2017, 19, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Anke, M.K.; Szymańska, K.; Schwabe, R.; Wiche, O.; Tischler, D. On the Immobilization of Desferrioxamine-Like Siderophores for Selective Metal Binding. Solid State Phenom. 2017, 262, 517–520. [Google Scholar] [CrossRef]
- Retamal-Morales, G.; Mehnert, M.; Schwabe, R.; Tischler, D.; Schlömann, M.; Levicán, G.J. Genomic Characterization of the Arsenic-Tolerant Actinobacterium, Rhodococcus erythropolis S43. Solid State Phenom. 2017, 262, 660–663. [Google Scholar] [CrossRef]
- Hider, R.C.; Kong, X.L. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637–657. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration |
---|---|
Hydrocarbon content | |
Aliphatics C10-C40 [g∙kg−1 dwt] | 80.7 ± 2.2 |
Sum of PAHs [mg∙kg−1 dwt] 1 | 95 ± 29 |
Water extractable elements 2 | [mg/kg dwt] |
Al | 68.2 ± 1.2 |
As | <0.1 |
Ba | 46.3 ± 1.1 |
Ca | 67478 ± 713 |
Cd | <0.02 |
Co | <0.02 |
Cr | <0.02 |
Cu | 11.4 ± 0.4 |
Fe | 161.1 ± 5.1 |
K | 3253 ± 40 |
Li | <0.1 |
Mg | 2444 ± 46 |
Mn | 242 ± 1.6 |
Mo | 5.8 ± 0.4 |
Na | 1652 ± 81 |
Ni | 9.4 ± 0.0 |
P | 2.6 ± 0.3 |
Pb | <0.07 |
S | 2480 ± 51 |
Sb | <0.1 |
Se | <0.1 |
Sn | <0.3 |
Sr | 244.5 ± 5.0 |
Ti | <0.02 |
Zn | 159.4 ± 4.8 |
Zr | <0.02 |
Chemical properties | |
TOC [g/kg dwt] | 14.3 ± 0.4 |
pH | 7.76 ± 0.10 |
Set-Up, Maintenance | |
---|---|
Experiment A | 2.0 kg soil, periodic addition of… |
AC (control) | Distilled water only |
AA (bioaugmentation) | Bacillus sp. + Ochrobactrum sp. suspended in water |
AS (biostimulation) | Mineral nutrients BSM |
AD (combination) | Bacillus sp. + Ochrobactrum sp. suspended in mineral nutrients medium (BSM) |
Experiment B | 0.5 kg soil, initial addition of… |
BC (control) | water (60 mL) |
BD (DFOB) | 2 mM Desferrioxamine (60 mL) |
BG1 (Fe2+) | G. rubripertincta CWB2 + 60 mL Fe2+-containing BSM |
BG2 (no Fe) | G. rubripertincta CWB2 + 60 mL Fe-free BSM |
BG3 (Fe3+) | G. rubripertincta CWB2 + 60 mL Fe-free BSM + FeCl3 (5 g∙kg−1 soil) |
BR1 (Fe2+) | R. erythropolis S43 + 60 mL Fe2+-containing BSM |
BR2 (no Fe2+) | R. erythropolis S43 + 60 mL Fe-free BSM |
BR3 (Fe3+) | R. erythropolis S43 + 60 mL Fe-free BSM + FeCl3 (5 g∙kg−1 soil) |
Variant | C10−C40 [g·kg−1 dwt] | DHA [mU·kg−1 dwt] | Respiration [U·kg−1 dwt] | TOC [%] | Fe 1 [kg−1 dwt] |
---|---|---|---|---|---|
Experiment A–Mixed culture (455 days) | |||||
Day 0 | 81.6 ± 2.5 | 9.9 ± 3.2 | 9.4 ± 2.2 | 14.9 ± 0.5 | NA |
Day 455 | |||||
AC (control) | 78.4 ± 0.9 | 0.9 ± 0.3 | 1.7 ± 0.3 | 14.7 ± 0.6 | NA |
AA (bioaugmentation) | 86.2 ± 3.4 | 6.4 ± 0.8 *** | 2.5 ± 0.8 * | 15.1 ± 0.4 | NA |
AS (biostimulation) | 87.8 ± 3.3 | 2.4 ± 1.1 ** | 2.9 ± 0.7 *** | 14.3 ± 0.7 | NA |
AD (biostim. + bioaug.) | 78.1 ± 3.1 | 10.1 ± 1.8 *** | 4.3 ± 0.4 *** | 15.1 ± 2.9 | NA |
Experiment B-G. rubripertincta CWB2, R. erythropolis S43 (45 days) | |||||
Day 0 | †† 79.7 ± 2.0c | 3.4 ± 1.6a * | 11.7 ± 0.9c ** | 13.5 ± 0.4a | 197 ± 6a |
Day 45 | |||||
BC (control) | 78.2 ± 2.2bc | 0.8 ± 0.9a | †† 0.6 ± 0.9a | †† 13.3 ± 0.5a | 198 ± 7a |
BD (DFOB) | 60.3 ± 0.7de ** | †† 4.3 ± 1.3a ** | A 0 ± 0a | 13.0 ± 0.6a | 223 ± 32a |
BG1 (Fe2+) | 54.2 ± 4.6e ** | 6.7 ± 4.0ab * | 2.6 ± 1.6a | 12.8 ± 0.6a | 224 ± 26a |
BG2 (no Fe) | 66.4 ± 7.5ad ** | 3.7 ± 3.5a | A 0 ± 0a | 13.4 ± 0.4a | 213 ± 24a |
BG3 (Fe3+) | 75.1 ± 5.8bc | †† 7.2 ± 9.5ab | ††† 0.4 ± 0.2a | 13.1 ± 0.9a | 221 ± 15a * |
BR1 (Fe2+) | 70.2 ± 0.9ab ** | † 40.8 ± 7.8c ** | 6.5 ± 1.7b ** | † 13.0 ± 0.6a | 220 ± 41ab |
BR2 (no Fe2+) | †† 67.0 ± 3.6ad ** | 17.0 ± 9.8b ** | 12.0 ± 4.0c ** | 13.5 ± 0.4a | 253 ± 18b * |
BR3 (Fe3+) | 73.2 ± 8.5abc | 52.4 ± 13.5c ** | 7.9 ± 1.4b ** | 13.1 ± 0.7a | 208 ± 41a |
Comparison of microorganisms considered as single factors | |||||
Day 45 | |||||
G. rubripertincta CWB2 (BG1 to BG3) | 65.2 ± 10.5 ** | 5.9 ± 6.5 ** | 1.0 ± 1.4 | 13.1 ± 0.7 | 219 ± 20 * |
R. erythropolis S43 (BR1 to BR3) | 70.2 ± 5.9 ** | 36.7 ± 18.1 *** | 8.8 ± 3.5 *** | 13.2 ± 0.6 | 227 ± 36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trögl, J.; Esuola, C.O.; Kříženecká, S.; Kuráň, P.; Seidlová, L.; Veronesi-Dáňová, P.; Popelka, J.; Babalola, O.O.; Hrabák, P.; Czinnerová, M.; et al. Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. Appl. Sci. 2018, 8, 1855. https://doi.org/10.3390/app8101855
Trögl J, Esuola CO, Kříženecká S, Kuráň P, Seidlová L, Veronesi-Dáňová P, Popelka J, Babalola OO, Hrabák P, Czinnerová M, et al. Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. Applied Sciences. 2018; 8(10):1855. https://doi.org/10.3390/app8101855
Chicago/Turabian StyleTrögl, Josef, Catherine Oluwakemi Esuola, Sylvie Kříženecká, Pavel Kuráň, Lenka Seidlová, Petra Veronesi-Dáňová, Jan Popelka, Olubukola Oluranti Babalola, Pavel Hrabák, Marie Czinnerová, and et al. 2018. "Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains" Applied Sciences 8, no. 10: 1855. https://doi.org/10.3390/app8101855
APA StyleTrögl, J., Esuola, C. O., Kříženecká, S., Kuráň, P., Seidlová, L., Veronesi-Dáňová, P., Popelka, J., Babalola, O. O., Hrabák, P., Czinnerová, M., Kakosová, E., Ševců, A., & Tischler, D. (2018). Biodegradation of High Concentrations of Aliphatic Hydrocarbons in Soil from a Petroleum Refinery: Implications for Applicability of New Actinobacterial Strains. Applied Sciences, 8(10), 1855. https://doi.org/10.3390/app8101855