New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. MWCNT Synthesis Methods
3. MWCNT Electrochemical Properties
4. Overview of MWCNT Applications in Electrochemical Sensors
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Nanomaterials history, classification, unique properties, production and market. In Emerging Applications of Nanoparticles and Architecture Nanostructures—Current Prospects and Future Trends; A Volume in Micro and Nano Technologies; Makhlouf, A.S.H., Barhoum, A., Eds.; Elsevier: Cambridge, MA, USA, 2018; pp. 341–384. ISBN 978-0-323-51254-1. [Google Scholar]
- Soriano, M.S.; Zougagh, M.; Valcárcel, M.; Ríos, Á. Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta 2018, 177, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.C.; Barbante, C. Nanoscience, nanotechnology and spectrometry. Spectrochim. Acta Part B 2013, 86, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, L.; Lu, J.; Zhu, H. The formation mechanism of chiral carbon nanotubes. Physica B 2018, 530, 277–282. [Google Scholar] [CrossRef]
- Kurkowska, M.; Awietjan, S.; Kozera, R.; Jezierska, E.; Boczkowska, A. Application of electroless deposition for surface modification of the multiwall carbon nanotubes. Chem. Phys. Lett. 2018, 702, 38–43. [Google Scholar] [CrossRef]
- Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Dumitrescu, I.; Unwin, P.R.; Macpherson, J.V. Electrochemistry at carbon nanotubes: Perspective and issues. Chem. Commun. 2009, 6886–6901. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Sawada, S.-I.; Oshiyama, A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. Thiol functionalized carbon nanotubes: Synthesis by sulfur chemistry and their multi-purpose applications. Appl. Surf. Sci. 2018, 447, 235–243. [Google Scholar] [CrossRef]
- Xiao, Z.; Elike, J.; Reynolds, A.; Moten, R.; Zhao, X. The fabrication of carbon nanotube electronic circuits with dielectrophoresis. Microelectron. Eng. 2016, 164, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Wang, X.; Wang, Y.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, G.; Sun, X.; Wang, X. Electrochemical aptasensor based on multiwalled carbon nanotubes and graphene for tetracycline detection. IEES Sens. J. 2015, 15, 1951–1958. [Google Scholar] [CrossRef]
- Liu, L.; Niu, Z.; Chen, J. Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 2018, 29, 571–581. [Google Scholar] [CrossRef]
- Parveen, S.; Kumar, A.; Husain, S.; Husain, M. Fowler Nordheim theory of carbon nanotube based field emitters. Phys. B Condens. Matter. 2017, 505, 1–8. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 2007, 19, 3214–3228. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, Á.; Valcárcel, M. The third way in analytical nanoscience and nanotechnology: Involvement of nanotools and nanoanalytes in the same analytical process. Trends Analyt. Chem. 2016, 75, 1–9. [Google Scholar] [CrossRef]
- Harris, P.J. Engineering carbon materials with electricity. Carbon 2017, 122, 504–513. [Google Scholar] [CrossRef]
- Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 2015, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Vosguerichian, M.; Zhenan Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, S.; Ghaderi, A.; Boochani, A.; Solaymani, S. Synthesis of multiwalled carbon nanotubes on Cu-Fe nano-catalyst substrate. Res. Phys. 2017, 7, 3640–3644. [Google Scholar] [CrossRef]
- Dhore, V.G.; Rathod, W.S.; Patil, K.N. Synthesis and characterization of high yield multiwalled carbon nanotubes by ternary catalyst. Mater. Today Proc. 2018, 5, 3432–3437. [Google Scholar] [CrossRef]
- Monthioux, M.; Serp, P.; Flahaut, E.; Razafinimanana, M.; Laurent, C.; Peigney, A.; Bacsa, W.; Broto, J.-M. Introduction to carbon nanotubes. In Springer Handbook of Nanotechnology, 2nd ed.; Bhushan, B., Ed.; Springer: Berlin, Germany, 2007; pp. 47–118. ISBN 3-540-29855-X. [Google Scholar]
- Araga, R.; Sharma, C.S. One step direct synthesis of multiwalled carbon nanotubes from coconut shell derived charcoal. Mater. Lett. 2017, 188, 205–207. [Google Scholar] [CrossRef]
- Rius, G.; Baldi, A.; Ziaie, B.; Atashbar, M.Z. Introduction to micro-/nanofabrication. In Springer Handbook of Nanotechnology, 4th ed.; Bhushan, B., Ed.; Springer: Berlin, Germany, 2017; pp. 51–86. ISBN 978-3-662-54355-9. [Google Scholar]
- Yáñez-Sedeño, P.; Pingarrón, J.M.; Riu, J.; Rius, F.X. Electrochemical sensing based on carbon nanotubes. Trends Anal. Chem. 2010, 29, 939–953. [Google Scholar] [CrossRef]
- Bandaru, P.R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 2007, 7, 1–29. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Lee, J.-J.; Rahman, M.A. Electrochemical sensors based on carbon nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.; Li, H.; Yu, L.; Hu, X. Electrochemical sensor based on multi-walled carbon nanotubes and chitosan-nickel complex for sensitive determination of metronidazole. J. Electroanal. Chem. 2017, 799, 257–262. [Google Scholar] [CrossRef]
- Holanda, L.F.; Ribeiro, F.W.P.; Sousa, C.P.; Casciano, P.N.S.; De Lima-Neto, P.; Correia, A.N. Multi-walled carbon nanotubes-cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. J. Electroanal. Chem. 2016, 772, 9–16. [Google Scholar] [CrossRef]
- Montes, R.H.O.; Lima, A.P.; Cunha, R.R.; Guedes, T.J.; Dos Santos, W.T.P.; Nosso, E.; Richter, E.M.; Munoz, R.A.A. Size effects of multi-walled carbon nanotubes on the electrochemical oxidation of propionic acid derivative drugs: Ibuprofen and naproxen. J. Electroanal. Chem. 2016, 775, 9–16. [Google Scholar] [CrossRef]
- Pavinatto, A.; Mercante, L.A.; Leandro, C.S.; Mattoso, L.H.C.; Correa, D.S. Layer-by-Layer assembled films of chitosan and multi-walled carbon nanotubes for the electrochemical detection of 17α-ethinylestradiol. J. Electroanal. Chem. 2015, 755, 215–220. [Google Scholar] [CrossRef]
- Chen, L.; Li, K.; Zhu, H.; Meng, L.; Chen, J.; Li, M.; Zhu, Z. A chiral electrochemical sensor for propranolol based on multi-walled carbon nanotubes/ionic liquids nanocomposite. Talanta 2013, 105, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hundari, F.F.; Souza, J.C.; Zanoni, M.V.B. Adsorptive stripping voltammetry for simultaneous determination of hydrochlorothiazide and triamterene in hemodialysis samples using a multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 2018, 179, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Wang, H.; Wanh, S.; Chen, Z.; Wang, S.; Zhou, Q.; Pan, Y. Electrochemical determination of mangiferin and icariin based on Au-AgNPs/MWNTs-SGSs modified glassy carbon electrode. Sens. Actuators B Chem. 2018, 255, 1771–1780. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Heng, Y.; Wang, F. Facile fabrication of 3D graphene-multi walled carbon nanotubes network and its use as a platform for natamycin detection. J. Electroanal. Chem. 2018, 816, 54–61. [Google Scholar] [CrossRef]
- Deng, K.; Liu, X.; Li, C.; Hou, Z.; Huang, H. An electrochemical omeprazole sensor based on shortened multi-walled carbon nanotubes-Fe3O4nanoparticles and poly(2,6-pyridinedicarboxylic acid). Sens. Actuators B Chem. 2017, 253, 1–9. [Google Scholar] [CrossRef]
- Khaled, E.; Khalil, M.M.; El Aziz, G.M.A. Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sens. Actuators B Chem. 2017, 244, 876–884. [Google Scholar] [CrossRef]
- Başkaya, G.; Yıldız, Y.; Savk, A.; Okyay, T.O.; Eriş, S.; Sert, H.; Şen, F. Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 2017, 91, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, B.; Liu, J.; Guo, X.; Abudukeyoumu, G.; Zhang, Y.; Ye, B.-C.; Li, Y. A novel electrochemical sensor based on Cu@Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine. Biosens. Bioelectron. 2018, 102, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lee, E.-C. Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor. Sens. Actuators B Chem. 2017, 239, 652–659. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, X.-L.; Zeng, Q.; Wang, H.-S.; Wang, L.-S. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta 2017, 164, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Alexander, S. A potentiometric sensor for the trace level determination of hemoglobin in real samples using multiwalled carbon nanotube based molecular imprinted polymer. Eur. Polym. J. 2017, 97, 84–93. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Rubianes, M.D.; Rivas, G.A. Electrochemical sensor for amino acids and glucose based on glassy carbon electrodes modified with multi-walled carbon nanotubes and copper microparticles dispersed in polyethylenimine. J. Electroanal. Chem. 2016, 765, 16–21. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Taurino, I.; Van Hoof, V.; De Micheli, G.; Carrara, S. Superior sensing performance of multi-walled carbon nanotube-based electrodes to detect unconjugated bilirubin. Thin Solid Films 2013, 548, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.V.; Gualandi, I.; Vlamidis, Y.; Tonelli, D. Electrochemical behavior of reduced graphene oxide and multi-walled carbon nanotubes composites for catechol and dopamine oxidation. Electrochim. Acta 2017, 246, 415–423. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Mao, Y.; Bai, Z.; Ning, X.; Zheng, J. Sensitive and low-potential detection of NADH based on boronic acid functionalized multi-walled carbon nanotubes coupling with an electrocatalysis. J. Electroanal. Chem. 2017, 794, 1–7. [Google Scholar] [CrossRef]
- Wayu, M.B.; DiPasquale, L.T.; Schwarzmann, M.A.; Gillespie, S.D.; Leopold, M.C. Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J. Electroanal. Chem. 2016, 783, 192–200. [Google Scholar] [CrossRef]
- Tarditto, L.V.; Arévalo, F.J.; Zon, M.A.; Ovando, H.G.; Vettorazzi, N.R.; Fernández, H. Electrochemical sensor for the determination of enterotoxigenic Escherichia coli in swine feces using glassy carbon electrodes modified with multi-walled carbon nanotubes. Microchem. J. 2016, 127, 220–225. [Google Scholar] [CrossRef]
- Sipa, K.; Brycht, M.; Leniart, A.; Urbaniak, P.; Nosal-Wiercińska, A.; Pałecz, B.; Skrzypek, S. β-Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen. Talanta 2018, 176, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Özcan, A.; Gürbüz, M. Development of a modified electrode by using a nanocomposite containing acid-activated multi-walled carbon nanotube and fumed silica for the voltammetric determination of clopyralid. Sens. Actuators B Chem. 2018, 255, 262–267. [Google Scholar] [CrossRef]
- Ghodsi, J.; Rafati, A.A. A voltammetric sensor for diazinon pesticide based on electrode modified with TiO2 nanoparticles covered multi walled carbon nanotube nanocomposite. J. Electroanal. Chem. 2017, 807, 1–9. [Google Scholar] [CrossRef]
- Wei, X.-P.; Luo, Y.-L.; Xu, F.; Chen, Y.-S.; Yang, L.H. In-situ non-covalent dressing of multi-walled carbon nanotubes@titanium dioxides with carboxymethyl chitosan nanocomposite electrochemical sensors for detection of pesticide residues. Mater. Des. 2016, 111, 445–452. [Google Scholar] [CrossRef]
- Ertan, B.; Eren, T.; Ermiş, İ.; Saral, H.; Atar, N.; Yola, M.L. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid. Interface Sci. 2016, 470, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Park, J.Y. A miniaturized and flexible cadmium and lead ion detection sensorbased on micro-patterned reduced graphene oxide/carbonnanotube/bismuth composite electrodes. Sens. Actuators B Chem. 2018, 255, 1220–1227. [Google Scholar] [CrossRef]
- Roushani, M.; Saedi, Z.; Hamdi, F.; Dizajdizi, B.Z. Preparation an electrochemical sensor for detection of manganese (II) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer. J. Electroanl. Chem. 2017, 804, 1–6. [Google Scholar] [CrossRef]
- Firmino, M.L.M.; Morais, S.; Correia, A.N.; De Lima-Neto, P.; Carvalho, F.A.O.; Castro, S.S.L.; Oliveira, T.M.B.F. Sensor based on β-NiOx hybrid film/multi-walled carbon nanotubes composite electrode for groundwater salinization inspection. Chem. Eng. J. 2017, 323, 47–55. [Google Scholar] [CrossRef]
- Sudha, V.; Kumar, S.M.S.; Thangamuthu, R. Simultaneous electrochemical sensing of sulphite and nitrite on acid-functionalized multi-walled carbon nanotubes modified electrodes. J. Alloys Compd. 2018, 749, 990–999. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Ding, L.; Zhou, D.; Cui, H.; Wei, Z.; Zhai, J. Synthesis of silver/multi-walled carbon nanotubes composite and its application for electrocatalytic reduction of bromate. Chem. Eng. J. 2013, 217, 28–33. [Google Scholar] [CrossRef]
- Qiu, X.; Lu, L.; Leng, J.; Yu, Y.; Wang, W.; Jiang, M.; Bai, L. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of sunset yellow and tartrazine. Food Chem. 2019, 190, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Jin, B. Poly (crystal violet)-Multi-walled carbon nanotubes modified electrode for electroanalytical determination of luteolin. J. Electroanal. Chem. 2016, 780, 46–52. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mahajan, A.; Bedi, R.K.; Kumar, S.; Debnath, A.K.; Aswal, D.K. Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor. Appl. Surf. Sci. 2018, 427, 202–209. [Google Scholar] [CrossRef]
- Jesionek, M.; Nowak, M.; Mistewicz, K.; Kępińska, M.; Stróż, D.; Bednarczyk, I.; Paszkiewicz, R. Sonochemical growth of nanomaterials in carbon nanotube. Ultrasonics 2018, 83, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.; Mohan, K.; Pegu, D.; Gohain, C.B.; Dolui, S.K. A room temperature methanol vapor sensor based on highlyconducting carboxylated multi-walled carbon nanotube/polyanilinenanotube composite. Sens. Actuators B Chem. 2017, 253, 977–986. [Google Scholar] [CrossRef]
- Arévalo, F.J.; Osuna-Sánchez, Y.; Sandoval-Cortés, J.; Tocco, A.D.; Granero, A.M.; Robledo, S.N.; Zon, M.A.; Vettorazzi, N.R.; Martínez, J.L.; Segura, E.P.; et al. Development of an electrochemical sensor for the determination of glycerol based on glassy carbon electrodes modified with a copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Sens. Actuators B Chem. 2017, 244, 949–957. [Google Scholar] [CrossRef]
- Yu, H.; Feng, X.; Chen, X.-X.; Qiao, J.-L.; Gao, X.-L.; Xu, B.; Gao, L.-J. Electrochemical determination of bisphenol A on a glassy carbon electrode modified with gold nanoparticles loaded on reduced graphene oxide-multi walled carbon nanotubes composite. Chin. J. Anal. Chem. 2017, 45, 713–720. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, Z.; Zhang, J.; Li, G.; Li, P.; Zhang, W.; Lian, K. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications. Appl. Surf. Sci. 2017, 396, 523–529. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, K.; Zhang, N.; Zhang, L.; Wang, H.; Xu, J.; Shi, H.; Zhuo, X.; Qin, M.; Wu, X. A simple strategy for fabricating a prussian blue/chitosan/carbon nanotube composite and its application for the sensitive determination of hydrogen peroxide. Micro Nano Lett. 2016, 12, 23–26. [Google Scholar] [CrossRef]
Sensor | Modification Procedure | Analyte(s) | Technique(s)/Detection Limit | Application | Stability | Reference |
---|---|---|---|---|---|---|
Pharmaceuticals | ||||||
Ni-CTS/MWCNT/GCE | GCE modified with MWCNT and Ni-CTS complex through drop coating and self-assembly, respectively | metronidazole | DPV/0.025 μmol L−1 | tablet and biological samples | 81% after one month | [29] |
Co-Pht@f-MWCNT/Au-NP/GCE | suspension of Co-Pht and f-MWCNT immobilized on Au-NP modified GCE by drop coating | acetaminophen | SWV/0.135 μmol L−1 | commercial formulations | n.r. | [30] |
MWCNT(shorter diameter)/GCE | MWCNT (diameter × length: 6–9 nm × 5 μm) dropped on GCE | ibuprofen | CV/1.90 μmol L−1 | tablet and liquid commercial formulations | n.r. | [31] |
Three bilayer MWCNT@CTS/FTO | FTO coated with nanostructured Layer-by-Layer films of MWCNT@CTS | 17-α-ethinylestradiol | SWV/0.09 μmol L−1 | synthetic urine samples | n.r. | [32] |
MWCNT@IL/GCE | immobilization of MWCNT and IL (1-octyl-3-methyl-imidazolium hexa-fluorophosphate) nanocomposite on GCE | propranolol | LSV/n.r. | commercial reagent and wastewater | n.r. | [33] |
MWCNT/GCE | suspension of MWCNT dropped on GCE | hydrochlorothiazide and triamterene | ASV/2.8 × 10−8 and 2.9 × 10−8 mol L−1 for hydrochlorothiazide and triamterene, respectively | hemodialysis samples | n.r. | [34] |
Au@Ag-NP/MWCNT-SGSs/GCE | layer-by-layer assembly of Au@Ag-NP and MWCNT-SGSs on GCE | mangiferin and icariin | DPV/0.017 μmol L−1 for both compounds | Rhizoma anemarrhenae, Artemisia capillaris Herba and Epimedium macranthum samples | ≤95.1% after one month | [35] |
3D-Grf@MWCNT/GCE | electrodeposition of 3D-Grf@MWCNT suspension on GCE | natamycin | LSV/1.0 × 10−8 mol L−1 | red wine and beverage samples | 94.6% after two weeks | [36] |
Fe3O4-NP@MWCNT/PDDA/GCE | casting of PDDA modified GCE with Fe3O4-NP@MWCNT hybrid film | omeprazole | LSV/15 nmol L−1 | tablet, capsules, wastewater, serum, and urine | 92.1% after three weeks | [37] |
Calixarene/MWCNT/SPE | dip coating of graphite-based SPE in composite matrix of calixarene and MWCNT | gentamicin sulphate | potentiometry/7.5 × 10−8 mol L−1 | dosage forms and spiked surface water samples | n.r. | [38] |
Biologically active molecules | ||||||
Ni-NP@f-MWCNTs/GCE | drop coating of hybrid film (Ni-NP and f-MWCNT) on GCE | glucose | CV and amperometry/0.021 μmol L−1 | human blood serum samples | practically constant signal after 1000th cycle | [39] |
Cu@Ni-NP/MWCNT/GCE | immobilization of hybrid film of Cu@Ni-NP and MWCNT on GCE | guanine and adenine | DPV/0.17 μmol L−1 and 0.33 μmol L−1 for guanine and adenine, respectively | ds-DNA from mice brain tissues | 96.7% for 30 days | [40] |
Gold electrode | measurements with unmodified gold electrode, keeping f-MWCNT additive and DNA sequence in electrolyte solution | breast cancer marker (5′-GTG TTG TCT CCT AGG TTG GCT CTG-3′; 24-base fraction of the p53 gene) | DPV/141.2 pmol L−1 | solution containing the complementary sequence (5′-CAG AGC CAA CCT AGG AGA CAA CAC-3′) | n.r. | [41] |
HIV-p24/MIP /MWCNT/GCE | HIV-p24 crosslinking MIP (acrylamide functional monomer, N,N′-methylenebisacrylamide as crosslinking agent and ammonium persulphate as initiator) immobilized on MWCNT/GCE | HIV-p24 protein | DPV/0.083 pg cm−3 | real human serum samples | 98.6% after 10 days | [42] |
MIP/MWCNT/Cu | MIP (itaconic acid monomer, ethylene glycol dimethacrylate cross-linker and α,α′-azobisisobutyronitrile as initiator) on MWCNT modified Cu electrode | hemoglobin | potentiometry/1.0 µg mlL−1 | human bile juice and urine samples | 6 months without significant change in the electrode performance | [43] |
Cu-MP@polyethylenimine /MWCNT/GCE | Cu-MP dispersed in polyethylenimine and dropped on MWCNT/GCE | amino acids, albumin and glucose | SWV and amperometry/0.10–0.37 μmol L−1 for the amino acids (L-cystine, L-histidine and L-serine); 1.2 mg mL−1 for albumin; and 182 nmol L−1 for glucose | pharmaceutical products and beverages | 7.7% RSD after 10 successive calibration plots using the same surface | [44] |
MIP/Au-NP/MWCNT/GCE | Au-NP electrodeposited on MWCNT/GCE, and assembled with MIP (tetrabutylammonium perchlorate) | cholesterol | DPV/3.3 × 10−14 mol L−1 | n.r. | 91.7% after one month | [45] |
MWCNT/SPE | MWCNT films casted onto SPE | bilirubin | CV/9.4 µmol L−1 | n.r. | n.r. | [46] |
Grf-Ox@MWCNT/GCE | drop coating of Grf-Ox@MWCNT suspension on GCE | catechol and dopamine | CV/n.r. | n.r. | n.r. | [47] |
Phenazine methosulfate/3-aminophenylboronic acid/f-MWCNT/GCE | drop coating of phenazine methosulfate and 3-aminophenyl boronic acid on f-MWCNT/GCE | NADH | amperometry/0.16 μmol L−1 | human serum | 96.7% after five consecutive measurements | [48] |
HPU/β-CD/MWCNT@Nafion®/GCE | layer-by-layer of HPU, β-CD and composite film (MWCNT@Nafion®) on GCE | uric acid | amperometry/n.r. | n.r. | n.r. | [49] |
Microorganisms | ||||||
MWCNT@Nafion®/GCE | dip coating of composite suspension (MWCNT@Nafion®) on GCE | Enterotoxigenic Escherichia coli F4 (K88) | SWV/6 × 104 CFU mL−1 | swine stool samples | n.r. | [50] |
Pesticides | ||||||
β-CD/MWCNT/GCE | β-CD and MWCNT composite suspension dropped on GCE | dichlorophen | SWAdSV/ 4.4 × 10−8 mol L−1 | river water | 93.9% after one week | [51] |
Fumed silica/acid-activated MWCNT/GCE | drop coating of a nanocomposite suspension (Fumed silica and acid-activated MWCNT) on GCE | clopyralid | DPV/0.8 nmol L−1 | urine, river water, sugar beet, wheat, and herbicide formulations (Phaeton and Lontrel) | 91% after three weeks | [52] |
TiO2-NP@MWCNT/GCE | TiO2-NP@MWCNT nanocomposite dropped on GCE | diazinon | CV an SWV/3.0 nmol L−1 | well and tap water | 89% after 28 days | [53] |
Nafion®/TiO2-NP@MWCNT @carboxymethyl chitosan/GCE | Nafion® assembled on composite film (TiO2-NP@MWCNT @carboxymethyl chitosan) previously immobilized on GCE | trichlorfon | DPV/4.0 × 10−7 mol L−1 | apple, mushroom, and cucumber | 98% after one week | [54] |
MIP/Pt-NP@polyoxometalate@f-MWCNT/GCE | MIP (pyrrole in the presence of the analyte) assembled on hybrid film (Pt-NP@polyoxometalate@f-MWCNT) immobilized on GCE | simazine | DPV/2.0 × 10−11 mol L−1 | wastewater samples | 96.9% after 45 days | [55] |
Metallic cations | ||||||
BiF/Grf-Red/MWCNT/SPE | layer-by-layer of BiF, Grf-Red and MWCNT on SPE (gold support) | Cd2+ and Pb2+ | SWV/0.6 ppb for Cd and 0.2 ppb for Pb | drinking water | n.r. | [56] |
Mn2+-imprinted polymer /IL@CTS@MWCNT/GCE | thermal immobilization of Mn2+-imprinted polymer on composite layer (IL@CTS@MWCNT) dropped on GCE | Mn2+ | SWAdSV/0.15 μmol L−1 | wastewater | 94.8% after two weeks | [57] |
β-NiOx/MWCNT-modified CPE | electrodeposition of hybrid film of β-NiOx on MWCNT-modified CPE | Na+ | SWV/9.86 × 10−8 mol L−1 | groundwater | practically constant signal for more than five hundred consecutive cycles | [58] |
Anions | ||||||
f-MWCNT/GCE | drop coating of f-MWCNT (COOH-functionalized structures) as suspension on GCE | SO32− and NO2− | DPV/215 nmol L−1 for SO32− and 565 nmol L−1 for NO2− | groundwater | ≥96.4% after one week | [59] |
Ag-NP@MWCNT/GCE | drop coating of nanocomposite (Ag-NP@MWCNT) on GCE | BrO3− | amperometry/n.r. | n.r. | n.r. | [60] |
Dyes | ||||||
Grf-Ox@MWCNT/GCE | suspension of Grf-Ox@MWCNT immobilized on GCE by drop coating | sunset yellow and tartrazine | LSV/0.025 µmol L−1 for sunset yellow and 0.010 µmol L−1 for tartrazine | orange juice | 89–93% after one month | [61] |
Poly(crystal violet)/MWCNT/GCE | electropolymerization of crystal violet on MWCNT/GCE | luteolin | DPV/5.0 × 10−9 mol L−1 | Chrysanthemum samples | 93% after one month | [62] |
Gas/Vapor | ||||||
Hexa-decafluorinated zinc phthalocyanine @f-MWCNT/SPE (gold support) | drop coating of the composite (Hexa-decafluorinated zinc phthalocyanine@f-MWCNT) on SPE | Cl2 | resistance/0.06 ppb | n.r. | n.r. | [63] |
SbSI@CNTs/Au-microelectrode | ultrasonic bonding of SbSI@CNTs composite on Au-microelectrode | CO2 | amperometry/n.r. | n.r. | n.r. | [64] |
MWCNT@polyaniline/FTO | drop coating of MWCNT@polyaniline nanocomposite on FTO | methanol vapor | resistance/≈50 ppm | n.r. | the signal remained almost constant for up to 20 days | [65] |
Industrial by-products | ||||||
CuO-NP/MWCNT/GCE | electrodeposition of CuO-NP on MWCNT/GCE | glycerol | amperometry/5.8 × 10−6 g dm−3 | biodiesel samples | n.r. | [66] |
Au-NP/Grf-Red@MWCNT/GCE | electrodeposition of Au-NP on Grf-Red@MWCNT/GCE | bisphenol A | DPV/1.0 × 10−9 mol L−1 | river water and shopping receipt samples | 98% after 30 days | [67] |
Pd-NP/Grf-Red@MWCNT/GCE | electrodeposition of Pd-NP on Grf-Red@MWCNT/GCE | hydrazine | amperometry/0.15 µmol L−1 | tap water spiked with hydrazine | n.r. | [68] |
Prussian blue/CTS@MWCNT /GCE | electrodeposition of Prussian blue complex on GCE Modified with CTS@MWCNT nanocomposite | hydrogen peroxide | amperometry/0.10 µmol L−1 | routine analysis in pure electrolyte | 90.5–92.6% after two weeks | [69] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.M.B.F.; Morais, S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2018, 8, 1925. https://doi.org/10.3390/app8101925
Oliveira TMBF, Morais S. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Applied Sciences. 2018; 8(10):1925. https://doi.org/10.3390/app8101925
Chicago/Turabian StyleOliveira, Thiago M. B. F., and Simone Morais. 2018. "New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes" Applied Sciences 8, no. 10: 1925. https://doi.org/10.3390/app8101925
APA StyleOliveira, T. M. B. F., & Morais, S. (2018). New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Applied Sciences, 8(10), 1925. https://doi.org/10.3390/app8101925