Differential Evolution: A Survey and Analysis
Abstract
:1. Introduction
2. Classic Differential Evolution
2.1. Differential Evolution Strategies
2.2. Initialization
2.3. Crossover
2.4. Selection
2.5. Differential Evolution Paused-Code and Flowchart
Algorithm 1. Pseudocode for classic Differential Evolution. | |
Input: Population size ‘NP’, Problem Size ‘D’, Mutation Rate ‘F’, Crossover Rate ‘Cr’; Stope_Criteria {Number of Generation, Target}, Upper Bound ‘U’, Lower Bound ‘L’ Output: Best_Vector | |
1 | Population = Initialize Population (NP, D, U, L); |
2 | While (Stope_Criteria ≠ True) do |
3 | Best_Vector = EvaluatePopulation (Population); |
4 | = Select_Random_Vector (Population); |
5 | Index = FindIndexOfVector ( //specify row number of a vector |
6 | Select_Random_Vector (Population,) where |
7 | |
8 | For (i = 0; i++; i < D − 1)//Loop for starting Crossover operation |
9 | if ( |
10 | u[i] = [i] |
11 | u[i] = [i] |
12 | End For Loop//end crossover operation |
13 | If (CostFunctionOfVector(u) ≤ CostFunctionOfVector ()) Then |
14 | UpdatePopulation (u, Index, Population); |
15 | End; //While loop |
16 | Retune Best_Vector; |
2.6. DE Applications
3. Parameter Control
3.1. Deterministic Parameter Control
3.2. Adaptive Parameter Control
3.2.1. Differential Evolution with Self-Adapting Populations (DESAP)
3.2.2. Fuzzy Adaptive Differential Evolution (FADE)
3.2.3. Self-Adaptive Differential Evolution (SaDE)
3.2.4. Self-Adaptive NSDE (SaNSDE)
3.2.5. Self-Adapting Parameter Setting in Differential Evolution (jDE)
3.2.6. Adaptive DE Algorithm (ADE)
3.2.7. Modified DE (MDE)
3.2.8. Modified DE with P-Best Crossover (MDE_pBX)
3.2.9. DE with Self-Adaptive Mutation and Crossover (DESAMC)
3.2.10. Adaptive Differential Evolution with Optional External Archive (JADE)
3.2.11. Adaptation of
3.2.12. Differential Covariance Matrix Adaptation Evolutionary Algorithm (CMA-ES)
3.3. Differential Evolution with Multiple Strategies
3.4. Hybrid DE Algorithms
3.5. Hybridization of DE with Other Evolution Algorithms
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Rao, S.S.; Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Brownlee, J. Clever Algorithms: Nature-Inspired Programming Recipes; Jason Brownlee: Melbourne, Australia, 2011. [Google Scholar]
- Zhang, J.; Sanderson, A.C. Adaptive Differential Evolution; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Feoktistov, V. Differential Evolution; Springer: Dordrecht, The Nerthelands, 2006. [Google Scholar]
- Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the NAFIPS, Biennial Conference of the North American Fuzzy Information Processing Society, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar] [Green Version]
- Price, K.V.; Storn, R.M.; Lampinen, J.A. The differential evolution algorithm. In Differential Evolution: A Practical Approach to Global Optimization; Price, K.V., Storn, R.M., Lampinen, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 37–134. [Google Scholar]
- Salman, A.; Engelbrecht, A.P.; Omran, M.G. Empirical analysis of self-adaptive differential evolution. Eur. J. Oper. Res. 2007, 183, 785–804. [Google Scholar] [CrossRef]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2010, 33, 61–106. [Google Scholar] [CrossRef]
- Onwubolu, G.C.; Davendra, D. Differential Evolution: A Handbook for Global Permutation-based Combinatorial Optimization; Springer Science & Business Media: Berlin, Germany, 2009; Volume 175. [Google Scholar]
- Peng, L.; Wang, Y. Differential evolution using uniform-quasi-opposition for initializing the population. Inf. Technol. J. 2010, 9, 1629–1634. [Google Scholar] [CrossRef]
- Adeyemo, J.; Otieno, F. Differential evolution algorithm for solving multi-objective crop planning model. Agric. Water Manag. 2010, 97, 848–856. [Google Scholar] [CrossRef]
- Chang, T.-T.; Chang, H.-C. Application of differential evolution to passive shunt harmonic filter planning. In Proceedings of the 8th International Conference on Harmonics and Quality of Power Proceedings, Athens, Greece, 14–16 October 1998; pp. 149–153. [Google Scholar]
- Bergey, P.K.; Ragsdale, C. Modified differential evolution: A greedy random strategy for genetic recombination. Omega 2005, 33, 255–265. [Google Scholar] [CrossRef]
- Fan, H.-Y.; Lampinen, J. A trigonometric mutation operation to differential evolution. J. Glob. Optim. 2003, 27, 105–129. [Google Scholar] [CrossRef]
- Das, S.; Abraham, A.; Chakraborty, U.K.; Konar, A. Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 2009, 13, 526–553. [Google Scholar] [CrossRef]
- Qing, A. Differential Evolution: Fundamentals and Applications in Electrical Engineering; John Wiley & Sons: Singapore, 2009. [Google Scholar]
- Lin, C.; Qing, A.; Feng, Q. A comparative study of crossover in differential evolution. J. Heurist. 2011, 17, 675–703. [Google Scholar] [CrossRef]
- Guo, S.-M.; Yang, C.-C.; Hsu, P.-H.; Tsai, J.S.-H. Improving differential evolution with a successful-parent-selecting framework. IEEE Trans. Evol. Comput. 2015, 19, 717–730. [Google Scholar] [CrossRef]
- Eiben, Á.E.; Hinterding, R.; Michalewicz, Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 1999, 3, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, G.; Bäck, T.; Eiben, A.E.; Kok, J.N.; Spaink, H.P. (Eds.) Natural Computing Series; Springer: Berlin, Germany, 2006. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. The Mathematics of Search; Technical Report; Santa Fe Institute: Santa Fe, NM, USA, 1995. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Zaharie, D. On the explorative power of differential evolution. In Proceedings of the 3rd International Workshop on Symbolic and Numerical Algorithms on Scientific Computing, SYNASC-2001, Timişoara, Romania, 2–4 October 2001. [Google Scholar]
- Liu, J. On setting the control parameter of the differential evolution method. In Proceedings of the 8th International Conference on Soft Computing (MENDEL 2002), Brno, Czech Republic, 5–7 June 2002; pp. 11–18. [Google Scholar]
- Šmuc, T. Improving convergence properties of the differential evolution algorithm. In Proceedings of the MENDEL 2002-8th International Conference on Soft Computing, Brno, Czech Republic, 5–7 June 2002. [Google Scholar]
- Yalcin, I.K.; Gokmen, M. Integrating differential evolution and condensation algorithms for license plate tracking. In Proceedings of the ICPR 2006, 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; pp. 658–661. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Baíllo, Á.; Ventosa, M.; Rivier, M.; Ramos, A. Strategic bidding in a competitive electricity market: A decomposition approach. In Proceedings of the IEEE Porto Power Tech Proceedings, Porto, Portugal, 10–13 September 2001; Volume 1, p. 6. [Google Scholar]
- Van Sickel, J.H.; Lee, K.Y.; Heo, J.S. Differential evolution and its applications to power plant control. In Proceedings of the ISAP, International Conference on Intelligent Systems Applications to Power Systems, Niigata, Japan, 5–8 November 2007; pp. 1–6. [Google Scholar]
- Wang, X.; Cheng, H.; Huang, M. QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm. Expert Syst. Appl. 2014, 41, 4513–4528. [Google Scholar] [CrossRef] [Green Version]
- El Ela, A.A.; Abido, M.; Spea, S. Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 878–885. [Google Scholar] [CrossRef]
- Goswami, J.C.; Mydur, R.; Wu, P. Application of differential evolution algorithm to model-based well log-data inversion. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, 16–21 June 2002; pp. 318–321. [Google Scholar]
- Su, C.-T.; Lee, C.-S. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Deliv. 2003, 18, 1022–1027. [Google Scholar] [CrossRef]
- Boughari, Y.; Ghazi, G.; Botez, R.M.; Theel, F. New Methodology for Optimal Flight Control Using Differential Evolution Algorithms Applied on the Cessna Citation X Business Aircraft—Part 1. Design and Optimization. INCAS Bull. 2017, 9, 31. [Google Scholar]
- Price, K.V. Differential evolution vs. the functions of the 2/sup nd/ICEO. In Proceedings of the IEEE International Conference on Evolutionary Computation, Indianapolis, IN, USA, 13–16 April 1997; pp. 153–157. [Google Scholar]
- Xue, F.; Sanderson, A.C.; Bonissone, P.P.; Graves, R.J. Fuzzy logic controlled multi-objective differential evolution. In Proceedings of the 14th IEEE International Conference on Fuzzy Systems, FUZZ ’05, Reno, NV, USA, 25 May 2005; pp. 720–725. [Google Scholar]
- Storn, R. Differrential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces; Technical Report; International Computer Science Institute: Berkeley, CA, USA, 1995. [Google Scholar]
- Mezura-Montes, E.; Velázquez-Reyes, J.; Coello Coello, C.A. A comparative study of differential evolution variants for global optimization. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 485–492. [Google Scholar]
- Vesterstrom, J.; Thomsen, R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In Proceedings of the Congress on Evolutionary Computation, CEC2004, Portland, OR, USA, 19–23 June 2004; pp. 1980–1987. [Google Scholar] [Green Version]
- Fister, I.; Mernik, M.; Brest, J. Hybridization of Evolutionary Algorithms. arXiv, 2013; arXiv:1301.0929. [Google Scholar]
- Hu, C.; Yan, X. An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation. Chin. J. Chem. Eng. 2009, 17, 232–240. [Google Scholar] [CrossRef]
- Ilonen, J.; Kamarainen, J.-K.; Lampinen, J. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 2003, 17, 93–105. [Google Scholar] [CrossRef]
- Eiben, G.; Schut, M.C. New ways to calibrate evolutionary algorithms. In Advances in Metaheuristics for Hard Optimization; Siarry, P., Michalewicz, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 153–177. [Google Scholar]
- Angeline, P.J. Adaptive and self-adaptive evolutionary computations. In Computational Intelligence: A Dynamic Systems Perspective; IEEE Press: Piscataway, NJ, USA, 1995. [Google Scholar]
- Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin, Germany; London, UK, 2003; Volume 53. [Google Scholar]
- Liu, J.; Lampinen, J.; Matousek, R.; Osmera, P. Adaptive parameter control of differential evolution. In Proceedings of the MENDEL, Brno, Czech Republic, 5–7 June 2002; pp. 19–26. [Google Scholar]
- Abbass, H.A. The self-adaptive pareto differential evolution algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC ’02, Honolulu, HI, USA, 12–17 May 2002; pp. 831–836. [Google Scholar]
- Teo, J. Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. 2006, 10, 673–686. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; pp. 1785–1791. [Google Scholar]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Kaelo, P.; Ali, M. Differential evolution algorithms using hybrid mutation. Comput. Optim. Appl. 2007, 37, 231–246. [Google Scholar] [CrossRef]
- Rocha, A.M.A.; Fernandes, E.M.d.G. On charge effects to the electromagnetism-like algorithm. In Proceedings of the 20th EURO Mini Conference: Continuous Optimization and Knowledge-Based Technologies, Neringa, Lithuania, 20–23 May 2008; pp. 198–203. [Google Scholar]
- Wang, Y.; Cai, Z.; Zhang, Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66. [Google Scholar] [CrossRef]
- Zaharie, D. Control of population diversity and adaptation in differential evolution algorithms In Proceedings of the Mendel, 9th International Conference on Soft Computing, Brno, Czech Republic, 26–28 June 2003.
- Kumar, P.; Pant, M. A self adaptive differential evolution algorithm for global optimization. In Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing, Chennai, India, 16–18 December 2010; pp. 103–110. [Google Scholar]
- Brest, J.; Bošković, B.; Greiner, S.; Žumer, V.; Maučec, M.S. Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput. 2007, 11, 617–629. [Google Scholar] [CrossRef]
- Hendtlass, T. A combined swarm differential evolution algorithm for optimization problems. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Budapest, Hungary, 4–7 June 2001; pp. 11–18. [Google Scholar]
- Yang, Z.; Tang, K.; Yao, X. Differential evolution for high-dimensional function optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 25–28 September 2007; pp. 3523–3530. [Google Scholar]
- Ling, M.-X.; Wang, F.-Y.; Ding, X.; Hu, Y.-H.; Zhou, J.-B.; Zartman, R.E.; Yang, X.-Y.; Sun, W. Cretaceous ridge subduction along the lower Yangtze River belt, eastern China. Econ. Geol. 2009, 104, 303–321. [Google Scholar] [CrossRef]
- Babu, B.; Angira, R. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng. 2006, 30, 989–1002. [Google Scholar] [CrossRef]
- Sayah, S.; Zehar, K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers. Manag. 2008, 49, 3036–3042. [Google Scholar] [CrossRef]
- Lakshminarasimman, L.; Subramanian, S. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc.-Gener. Transm. Distrib. 2006, 153, 693–700. [Google Scholar] [CrossRef]
- Islam, S.M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P.N. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 482–500. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, J. Differential evolution with neighborhood and direction information for numerical optimization. IEEE Trans. Cybern. 2013, 43, 2202–2215. [Google Scholar] [CrossRef] [PubMed]
- Alguliev, R.M.; Aliguliyev, R.M.; Isazade, N.R. DESAMC+ DocSum: Differential evolution with self-adaptive mutation and crossover parameters for multi-document summarization. Knowl.-Based Syst. 2012, 36, 21–38. [Google Scholar] [CrossRef]
- Selamat, A.; Nguyen, N.T.; Haron, H. Intelligent Information and Database Systems. In Proceedings of the 5th Asian Conference, ACIIDS 2013, Kuala Lumpur, Malaysia, 18–20 March 2013; Springer: Berlin/Heidelberg, German, 2013; Volume 7803. [Google Scholar]
- Zhang, J.; Sanderson, A.C. JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 25–28 September 2007; pp. 2251–2258. [Google Scholar]
- Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 71–78. [Google Scholar]
- Ghosh, S.; Das, S.; Roy, S.; Islam, S.M.; Suganthan, P.N. A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf. Sci. 2012, 182, 199–219. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, S.; Islam, S.M.; Das, S.; Suganthan, P.N. A differential covariance matrix adaptation evolutionary algorithm for global optimization. In Proceedings of the 2011 IEEE Symposium on Differential Evolution (SDE), Paris, France, 11–15 April 2011; pp. 1–8. [Google Scholar]
- Elsayed, S.M.; Sarker, R.A.; Essam, D.L. An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans. Ind. Inform. 2013, 9, 89–99. [Google Scholar] [CrossRef]
- Lichtblau, D. Relative position indexing approach. In Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–120. [Google Scholar]
- Blum, C.; Puchinger, J.; Raidl, G.R.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey. Appl. Soft Comput. 2011, 11, 4135–4151. [Google Scholar] [CrossRef]
- Dragoi, E.-N.; Dafinescu, V. Parameter control and hybridization techniques in differential evolution: A survey. Artif. Intell. Rev. 2016, 45, 447–470. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Vas, P. Artificial-Intelligence-Based Electrical Machines and Drives: Application of Fuzzy, Neural, Fuzzy-Neural, and Genetic-Algorithm-Based Techniques; Oxford University Press: Oxford, UK, 1999; Volume 45. [Google Scholar]
- Panigrahi, B.K.; Suganthan, P.N.; Das, S.; Dash, S.S. Swarm, Evolutionary, and Memetic Computing. In Proceedings of the Third International Conference SEMCCO, Chennai, India, 16–18 December 2010. [Google Scholar]
- Nwankwor, E.; Nagar, A.K.; Reid, D. Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci. 2013, 17, 249–268. [Google Scholar] [CrossRef]
- Vitaliy, F. Differential Evolution—In Search of Solutions; Springer: New York, NY, USA, 2006. [Google Scholar]
- Fister, I.; Fister, I., Jr. Adaptation and Hybridization in Computational Intelligence; Springer: Cham, Switzerland, 2015; Volume 18. [Google Scholar]
- Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Network, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the Congress on Evolutionary Computation, CEC ’99, Washington, DC, USA, 6–9 July 1999; pp. 1945–1950. [Google Scholar]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC ’02, Honolulu, HI, USA, 12–17 May 2002; pp. 1671–1676. [Google Scholar]
- He, Z.; Wei, C.; Yang, L.; Gao, X.; Yao, S.; Eberhart, R.C.; Shi, Y. Extracting rules from fuzzy neural network by particle swarm optimisation. In Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 74–77. [Google Scholar]
- Das, S.; Abraham, A.; Konar, A. Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives. In Advances of Computational Intelligence in Industrial Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–38. [Google Scholar]
- Van Sickel, J.H.; Lee, K.Y.; Heo, J.S. Differential evolution and its applications to power plant control. In Proceedings of the International Conference on Intelligent Systems Applications to Power Systems (ISAP 2007), Niigata, Japan, 5–8 November 2007; pp. 1–6. [Google Scholar]
- Yu, X.; Cao, J.; Shan, H.; Zhu, L.; Guo, J. An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. Sci. World J. 2014, 2014, 215472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Xie, X.-F. DEPSO: Hybrid particle swarm with differential evolution operator. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 October 2003; pp. 3816–3821. [Google Scholar]
- Liu, B. Uncertain risk analysis and uncertain reliability analysis. J. Uncertain Syst. 2010, 4, 163–170. [Google Scholar]
- Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [Google Scholar] [CrossRef]
- Hästbacka, J.; de la Chapelle, A.; Mahtani, M.M.; Clines, G.; Reeve-Daly, M.P.; Daly, M.; Hamilton, B.A.; Kusumi, K.; Trivedi, B.; Weaver, A. The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994, 78, 1073–1087. [Google Scholar] [CrossRef]
- Das, S.; Abraham, A.; Konar, A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2008, 38, 218–237. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison: Reading, MA, USA, 1989. [Google Scholar]
- Mezura-Montes, E. Nature-Inspired Algorithms Evolutionary and Swarm Intelligence Approaches. In Proceedings of the 7th Mexican Internatioal Conference of Arifical Intelligence “MICAI“, Instituto Tecnol ogico de Monterrey, Monterrey, Mexico, 27–31 October 2008. [Google Scholar]
- Xu, X.; Li, Y. Comparison between particle swarm optimization, differential evolution and multi-parents crossover. In Proceedings of the International Conference on Computational Intelligence and Security, Harbin, China, 15–19 December 2007; pp. 124–127. [Google Scholar]
- Codreanu, I. A parallel between differential evolution and genetic algorithms with exemplification in a microfluidics optimization problem. In Proceedings of the International Semiconductor Conference (CAS 2005), Sinaia, Romania, 3–5 October 2005; pp. 421–424. [Google Scholar]
- Sentinella, M.R. Comparison and integrated use of differential evolution and genetic algorithms for space trajectory optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 25–28 September 2007; pp. 973–978. [Google Scholar]
- Hegerty, B.; Hung, C.-C.; Kasprak, K. A comparative study on differential evolution and genetic algorithms for some combinatorial problems. In Proceedings of the 8th Mexican International Conference on Artificial Intelligence, Seattle, WA, USA, 8–12 July 2006. [Google Scholar]
- Liao, T.W. Two hybrid differential evolution algorithms for engineering design optimization. Appl. Soft Comput. 2010, 10, 1188–1199. [Google Scholar] [CrossRef]
- Boussaïd, I.; Chatterjee, A.; Siarry, P.; Ahmed-Nacer, M. Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO). Comput. Oper. Res. 2011, 38, 1188–1198. [Google Scholar] [CrossRef]
- Boussaïd, I.; Chatterjee, A.; Siarry, P.; Ahmed-Nacer, M. Hybridizing biogeography-based optimization with differential evolution for optimal power allocation in wireless sensor networks. IEEE Trans. Veh. Technol. 2011, 60, 2347–2353. [Google Scholar] [CrossRef]
- Moral, R.; Sahoo, D.; Dulikravich, G. Multi-objective hybrid evolutionary optimization with automatic switching. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, USA, 6–8 September 2006. [Google Scholar]
- Guo, H.; Li, Y.; Li, J.; Sun, H.; Wang, D.; Chen, X. Differential evolution improved with self-adaptive control parameters based on simulated annealing. Swarm Evol. Comput. 2014, 19, 52–67. [Google Scholar] [CrossRef]
- Pholdee, N.; Bureerat, S.; Yıldız, A.R. Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int. J. Veh. Des. 2017, 73, 20–53. [Google Scholar] [CrossRef]
- Pholdee, N.; Bureerat, S. Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inf. Sci. 2013, 223, 136–152. [Google Scholar] [CrossRef]
- Pholdee, N.; Bureerat, S. Hybrid real-code population-based incremental learning and approximate gradients for multi-objective truss design. Eng. Optim. 2014, 46, 1032–1051. [Google Scholar] [CrossRef]
- Bureerat, S.; Pholdee, N.; Park, W.-W.; Kim, D.-K. An Improved Teaching-Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling Process. In Proceedings of the International Workshop on Multi-disciplinary Trends in Artificial Intelligence, Chiang Mai, Thailand, 7–9 December 2016; pp. 12–23. [Google Scholar]
- Neri, F.; Cotta, C. Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol. Comput. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Zou, D.; Wu, J.; Gao, L.; Li, S. A modified differential evolution algorithm for unconstrained optimization problems. Neurocomputing 2013, 120, 469–481. [Google Scholar] [CrossRef]
- Zhan, Z.-H.; Zhang, J. Enhance differential evolution with random walk. In Proceedings of the ACM 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 1513–1514. [Google Scholar]
- Yu, W.-J.; Zhang, J. Multi-population differential evolution with adaptive parameter control for global optimization. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; pp. 1093–1098. [Google Scholar]
- Bujok, P.; Tvrdik, J.; Polakova, R. Differential evolution with rotation-invariant mutation and competing-strategies adaptation. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2253–2258. [Google Scholar]
- Trivedi, A.; Srinivasan, D.; Biswas, S.; Reindl, T. A genetic algorithm–differential evolution based hybrid framework: Case study on unit commitment scheduling problem. Inf. Sci. 2016, 354, 275–300. [Google Scholar] [CrossRef]
- Pant, M.; Thangaraj, R.; Grosan, C.; Abraham, A. Hybrid differential evolution-particle swarm optimization algorithm for solving global optimization problems. In Proceedings of the ICDIM 2008, Third International Conference on Digital Information Management, London, UK, 13–16 November 2008; pp. 18–24. [Google Scholar]
Strategy | Formulation |
---|---|
1. DE/best/1/exp | |
2. DE/rand-to-best/1/exp | |
3. DE/best/2/exp | |
4. DE/rand/2/exp | |
5. DE/best/1/bin | |
6. DE/rand/1/bin | |
7. DE/rand-to-best/1/bin | |
8. DE/best/2/bin | |
9. DE/rand/2/bin |
Algorithm | Strategy | Note |
---|---|---|
Multi Population DE algorithm (MPDE) [116] | DE/best/1 | MPDE created subpopulation in random manner from the main population and then the migration of the best vector from subpopulations to main population |
Adaptive DE [117] | Six DE strategies and one strategy is randomly selected by a roulettewheel | Adaptively selects trial vector generation, scale factor “F” is 0.8 and it is constant for all strategies, also the crossover rate is constant as well that is 0.5 |
Self-Adapting Parameter Setting in Differential Evolution (jDE) | DE/rand/1/bin | jDE enhances the population size through the optimization procedure based on the developed DE parameters |
Self-adaptive Mutation DE (SaMDE) | DE/rand/1, DE/best/1, DE/best/2andDE/current-to-rand/1 | The strategy is chosen by a roulette wheel strategy. The scale factor is dynamic and chosen from a range (0.7; 1.0) after each generation. |
Modified DE(MDE)with pbest crossover(MDE-pBX) [66] | DE/current-to-best/1, DE/current-to-gr_best/1 [gr indicate for group] | F and Cr directed by the information of their effective values that are capable of producing improved offspring |
Modified DE algorithm (MDE) | DE/rand/1, DE/best/1 | One of two strategies is chosen based on a probability. |
DE with Self-Adaptive Mutation and Crossover (DESAMC) | Classic DE Strategy | Working to self-adapt the parameters values |
Differential Covariance Matrix Adaptation Evolutionary Algorithm (CMA-ES) | New population vector is created using DE/rand/1/bin | Parameters are chosen randomly |
Differential Evolution with Multiple Strategies | DE/best/1/bin,rand/1/bin, DE/best/1/exp, and DE/rand/1/exp | Parameters are chosen randomly |
DE-PSO | Classic DE strategy + The two basic equations which govern the working of PSO | “DE-PSO” Hybrid differential evolution - Particle Swarm Optimization. The inclusion of PSO phase creates a perturbation in the population, which in turn helps in maintaining diversity of the population and producing a good optimal solution. |
Hybrid of DE and GA (hGADE) [118] | Hybridized GA with only 2 classical DE variants | Randomly generated binary unit commitment matrices while the RPM of all the individuals in the initial population are generated |
Hybridization of DE and Biogeography Based Optimization (BBO) [119] | Classical DE DE/rand/1/bin + classic BBO | The main operator of DE/BBO is the hybrid migration operator, |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltaeib, T.; Mahmood, A. Differential Evolution: A Survey and Analysis. Appl. Sci. 2018, 8, 1945. https://doi.org/10.3390/app8101945
Eltaeib T, Mahmood A. Differential Evolution: A Survey and Analysis. Applied Sciences. 2018; 8(10):1945. https://doi.org/10.3390/app8101945
Chicago/Turabian StyleEltaeib, Tarik, and Ausif Mahmood. 2018. "Differential Evolution: A Survey and Analysis" Applied Sciences 8, no. 10: 1945. https://doi.org/10.3390/app8101945
APA StyleEltaeib, T., & Mahmood, A. (2018). Differential Evolution: A Survey and Analysis. Applied Sciences, 8(10), 1945. https://doi.org/10.3390/app8101945