Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling of Environmental Waters and Sediments
2.2. Selection of Anticancer Drugs and Their Quantification
2.3. Estimation of Sorption Distribution Coefficient (LogKd) and Mass Balance
3. Results and Discussion
3.1. Distribution of Anticancer Drugs in River Waters and STP Effluents
3.2. Allocation of Anticancer Drugs in the Sediment and Suspended Solid Samples
3.3. Source Distribution of Anticancer Drugs
3.4. Mass Balance of Anticancer Drugs
3.5. Advanced Technologies for Removal of Anticancer Drugs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review-Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the aquatic environment—A review-Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Tiedeken, E.J.; Tahar, A.; McHugh, B.; Rowan, N.J. Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters—A 20 year systematic review. Sci. Total Environ. 2017, 574, 1140–1163. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, M.I.; Lambrianides, A.; Schneider, M.; Kümmerer, K.; Fatta-Kassinos, D. Environmental side effects of pharmaceutical cocktails: What we know and what we should know. J. Hazard. Mater. 2014, 279, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef] [PubMed]
- Bound, J.P.; Voulvoulis, N. Pharmaceuticals in the aquatic environment-a comparison of risk assessment strategies. Chemosphere 2004, 56, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Jobling, S.; Williams, R.; Johnson, A.; Taylor, A.; Gross-Sorokin, M.; Nolan, M.; Tyler, C.R.; van Aerle, R.; Santos, E.; Brighty, G. Predicted exposures to steroid estrogens in U.K. rivers correlate with widespread sexual disruption in wild fish populations. Environ. Health Perspect. 2005, 114, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Besse, J.-P.; Latour, J.-F.; Garric, J. Anticancer drugs in surface waters: What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ. Int. 2012, 39, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; et al. Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Sci. Total Environ. 2016, 548–549, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health Labour and Welfare (Japan). Vital Statistics in Japan (In Japanese); Ministry of Health Labour and Welfare: Tokyo, Japan, 2017; pp. 1–55.
- Nussbaumer, S.; Bonnabry, P.; Veuthey, J.-L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85, 2265–2289. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D. Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment. Environ. Pollut. 2014, 193, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Social Welfare and Public Health in Tokyo (Japan). Summary of Medical Practices Survey in Tokyo, Japan; Social Welfare and Public Health: Tokyo, Japan, 2012; pp. 1–16.
- Booker, V.; Halsall, C.; Llewellyn, N.; Johnson, A.; Williams, R. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci. Total Environ. 2014, 473–474, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Negreira, N.; de Alda, M.L.; Barceló, D. Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: Filtration, occurrence, and environmental risk. Sci. Total Environ. 2014, 497–498, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Toolaram, A.P.; Kümmerer, K.; Schneider, M. Environmental risk assessment of anti-cancer drugs and their transformation products: A focus on their genotoxicity characterization-state of knowledge and short comings. Mutat. Res. Rev. Mutat. Res. 2014, 760, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Borgatta, M.; Waridel, P.; Decosterd, L.-A.; Buclin, T.; Chèvre, N. Multigenerational effects of the anticancer drug tamoxifen and its metabolite 4-hydroxy-tamoxifen on Daphnia pulex. Sci. Total Environ. 2016, 545–546, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Orias, F.; Bony, S.; Devaux, A.; Durrieu, C.; Aubrat, M.; Hombert, T.; Wigh, A.; Perrodin, Y. Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems. Chemosphere 2015, 128, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.; Heimann, K.; Ridd, M.; Negri, A.P. Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae. Water Res. 2013, 47, 5211–5221. [Google Scholar] [CrossRef] [PubMed]
- Radović, T.T.; Grujić, S.D.; Kovačević, S.R.; Laušević, M.D.; Dimkić, M.A. Sorption of selected pharmaceuticals and pesticides on different river sediments. Environ. Sci. Pollut. Res. 2016, 23, 25232–25244. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Wang, Z.; Zhang, K.; Yu, G.; Duan, X. Sediment pollution and its effect on fish through food chain in the Yangtze River. Int. J. Sediment Res. 2008, 23, 338–347. [Google Scholar] [CrossRef]
- Lopes, C.; Persat, H.; Babut, M. Transfer of PCBs from bottom sediment to freshwater river fish: A food-web modelling approach in the Rhône River (France) in support of sediment management. Ecotoxicol. Environ. Saf. 2012, 81, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Yoon, J. Chronological trends of emission, environmental level and human exposure of POPs over the last 10 years (1999–2010) in Korea: Implication to science and policy. Sci. Total Environ. 2014, 470–471, 1346–1361. [Google Scholar] [CrossRef] [PubMed]
- Hanamoto, S.; Nakada, N.; Yamashita, N.; Tanaka, H. Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products. Environ. Sci. Technol. 2013, 47, 13571–13577. [Google Scholar] [CrossRef] [PubMed]
- Hanamoto, S.; Kawakami, T.; Nakada, N.; Yamashita, N.; Tanaka, H. Evaluation of the photolysis of pharmaceuticals within a river by 2 year field observations and toxicity changes by sunlight. Environ. Sci. Process. Impacts 2014, 16, 2796–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, T.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; Sato, T.; Mino, Y. Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo River basin, Japan. Environ. Sci. Pollut. Res. 2015, 22, 18676–18686. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; et al. Distribution of six anticancer drugs and a variety of other pharmaceuticals, and their sorption onto sediments, in an urban Japanese river. Environ. Sci. Pollut. Res. 2017, 24, 19021–19030. [Google Scholar] [CrossRef] [PubMed]
- Lake Biwa-Yodo River Water Quality Preservation Organization (Japan) 2016. Lake Biwa-Yodo River Water Quality Preservation Organization (BYQ) Report on water environment in Biwa Lake-Yodo River System 2014 (In Japanese); Lake Biwa-Yodo River Water Quality Preservation Organization: Japan, Osaka, 2016; pp. 1–94. [Google Scholar]
- Ministry of the Environment (Japan). Type of Environmental Standard for Water Quality for Conservation of Aquatic Organism; 3rd Report; Ministry of the Environment: Tokyo, Japan, 2009. Available online: http://www.env.go.jp/press/press.php?serial=10970 (accessed on 11 October 2018).
- Osaka Prefecture (Japan). Yodo River System, River Construction Plan for Kanzaki River (In Japanese); Osaka Prefecture: Osaka, Japan, 2012; pp. 1–52.
- Japan Sewage Works Association. Statistics of Sewerage (In Japanese); Japan Sewage Works Association: Tokyo, Japan, 2016.
- Osaka Prefectural Government (Japan). Survey Results based on Water Quality Measurement (In Japanese). Available online: http://www.pref.osaka.lg.jp/kankyohozen/osaka-wan/kokyo-status.html (accessed on 11 October 2018).
- Narumiya, M.; Nakada, N.; Yamashita, N.; Tanaka, H. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J. Hazard. Mater. 2013, 260, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Japan Meteorological Agency. Weather Statistics. 2014. Available online: http://www.jma.go.jp/jma/index.html (accessed on 11 October 2018).
- Jiho. Yakuji Handbook (In Japanese); Jiho: Tokyo, Japan, 2014; ISBN 978-4840745666. [Google Scholar]
- Ministry of Health Labour and Welfare (Japan). Annual Report on Statistics of Production by Pharmaceutical Industry in 2015 (In Japanese). Available online: http://www.mhlw.go.jp/topics/yakuji/2014/nenpo/index.html (accessed on 11 October 2018).
- American Chemical Society SciFinder. American Chemical Society. 2018; SciFinder online database (subscription database). [Google Scholar]
- Steger-Hartmann, T.; Kümmerer, K.; Schecker, J. Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by twostep solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 1996, 726, 179–184. [Google Scholar] [CrossRef]
- Tauxe-Wuersch, A.; De Alencastro, L.F.; Grandjean, D.; Tarradellas, J. Trace determination of tamoxifen and 5-fluorouracil in hospital and urban wastewaters. Int. J. Environ. Anal. Chem. 2006, 86, 473–485. [Google Scholar] [CrossRef]
- Mullot, J.-U.; Karolak, S.; Fontova, A.; Huart, B.; Levi, Y. Development and validation of a sensitive and selective method using GC/MS-MS for quantification of 5-fluorouracil in hospital wastewater. Anal. Bioanal. Chem. 2009, 394, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Kosjek, T.; Heath, E. Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC Trends Anal. Chem. 2011, 30, 1065–1087. [Google Scholar] [CrossRef]
- Negreira, N.; Mastroianni, N.; López de Alda, M.; Barceló, D. Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography–electrospray–tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution. Talanta 2013, 116, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabii, F.W.; Segura, P.A.; Fayad, P.B.; Sauvé, S. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Sci. Total Environ. 2014, 487, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Radović, T.; Grujić, S.; Petković, A.; Dimkić, M.; Laušević, M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 2015, 187, 4092. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wu, X.-L.; Jiang, Y.-N.; Yan, Q.-Y.; Li, Y.-W.; Huang, X.-P.; Cai, Q.-Y.; Mo, C.-H. Occurrence and risk assessment of tetracycline antibiotics in soil from organic vegetable farms in a subtropical city, south China. Environ. Sci. Pollut. Res. 2016, 23, 13984–13995. [Google Scholar] [CrossRef] [PubMed]
- Prasse, C.; Schlüsener, M.P.; Schulz, R.; Ternes, T.A. Antiviral drugs in wastewater and surface waters: A new pharmaceutical class of environmental relevance? Environ. Sci. Technol. 2010, 44, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Golovko, O.; Koba, O.; Kodesova, R.; Fedorova, G.; Kumar, V.; Grabic, R. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ. Sci. Pollut. Res. 2016, 23, 14068–14077. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Škrbić, B.; Živančev, J.; Ferrando-Climent, L.; Barcelo, D. Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Sci. Total Environ. 2014, 468–469, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Schlüsener, M.P.; Hardenbicker, P.; Nilson, E.; Schulz, M.; Viergutz, C.; Ternes, T.A. Occurrence of venlafaxine, other antidepressants and selected metabolites in the Rhine catchment in the face of climate change. Environ. Pollut. 2015, 196, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, R.M.P.; Alleoni, L.R.F.; Tornisielo, V.L.; Regitano, J.B. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere 2013, 92, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Lu, J.; Liu, Z.; Tong, Y.; Li, S. Concentration and distribution of antibiotics in water–sediment system of Bosten Lake, Xinjiang. Environ. Sci. Pollut. Res. 2015, 22, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.F.d.; Jelic, A.; López-Serna, R.; Mozeto, A.A.; Petrovic, M.; Barceló, D. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 2011, 85, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Broodbank, N. Sediment-water interactions of pharmaceutical residues in the river environment. Water Res. 2014, 48, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Ishida, M.; Hisamatsu, K.; Yunoki, A.; Otomo, K.; Kunitou, M.; Shimizu, M.; Hosomaru, K.; Mikata, S.; Mino, Y. Fate of new three anti-influenza drugs and one prodrug in the water environment. Chemosphere 2017, 169, 550–557. [Google Scholar] [CrossRef] [PubMed]
- OECD. Adsorption-Desorption Using a Batch Equilibrium Method, OECD Guideline for the Testing of Chemicals No.106; OECD: Paris, France, 2000; pp. 1–45. [Google Scholar]
- Sangster, J.L.; Oke, H.; Zhang, Y.; Bartelt-Hunt, S.L. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment. J. Hazard. Mater. 2015, 299, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Ashton, D.; Hilton, M.; Thomas, K.V. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. 2004, 333, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography–triple-quadrupole mass spectrometry. J. Sep. Sci. 2011, 34, 3166–3177. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Yin, J.; Duan, H.; Wu, Y.; Shao, B. Analysis of hormone antagonists in clinical and municipal wastewater by isotopic dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Climent, L.; Rodriguez-Mozaz, S.; Barceló, D. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples. Anal. Bioanal. Chem. 2013, 405, 5937–5952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockshott, I. Bicalutamide: Clinical pharmacokinetics and metabolism. Clin. Pharmacokinet. 2004, 43, 855–878. [Google Scholar] [CrossRef] [PubMed]
- Borisover, M.; Keren, Y.; Usyskin, A.; Bukhanovsky, N. Effects of γ-irradiation of original and organic matter-amended soils on the sorption of triclosan and diuron from aqueous solutions. Chemosphere 2016, 152, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.R. Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci. Total Environ. 1996, 185, 3–26. [Google Scholar] [CrossRef]
- De Oliveira, T.; Guégan, R.; Thiebault, T.; Milbeau, C.L.; Muller, F.; Teixeira, V.; Giovanela, M.; Boussafir, M. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. J. Hazard. Mater. 2017, 323, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra Caracciolo, A.; Topp, E.; Grenni, P. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Environment Canada (Canada). Screening Sssessment, Ethanamine, 2-[4-[(1Z)-1,2-diphenyl-1-butenyl]phenoxy]-N,N-dimethyl-(Tamoxifen); Environment Canada: Vancouver, BC, Canada, 2015; pp. 1–63.
- Sun, L.; Chi, J.; Hu, X.; Fu, Z. Tamoxifen concepts and cancer: New paradigms (Cancer etiology, diagnosis and treatments: Pharmacology -research, safety testing and regulation), Ectoxicological effects of tamoxifen in the aquatic environment. In Tamoxifen Concepts and Cancer: New Paradigms (Cancer Etiology, Diagnosis and Treatments: Pharmacology—Research, Safety Testing and Regulation); Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2015; pp. 47–60. [Google Scholar]
- Azuma, T.; Nakada, N.; Yamashita, N.; Tanaka, H. Mass balance of anti-influenza drugs discharged into the Yodo River system, Japan, under an influenza outbreak. Chemosphere 2013, 93, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Osaka Prefectural Government (Japan). River Development Project of Kanzaki River in Yodo River System (In Japanese); Osaka Prefectural Government: Osaka, Japan, 2015; pp. 1–24.
- Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 2003, 50, 1319–1330. [Google Scholar] [CrossRef]
- Patrolecco, L.; Capri, S.; Ademollo, N. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ. Sci. Pollut. Res. 2015, 22, 5864–5876. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Hanamoto, S.; Johnson, A.C.; Yamashita, N.; Nakada, N.; Tanaka, H. Elevated risk from estrogens in the Yodo River basin (Japan) in winter and ozonation as a management option. Environ. Sci. Process. Impacts 2014, 16, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T.A. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res. 2015, 87, 237–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ternes, T.A.; Prasse, C.; Eversloh, C.L.; Knopp, G.; Cornel, P.; Schulte-Oehlmann, U.; Schwartz, T.; Alexander, J.; Seitz, W.; Coors, A.; et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens. Environ. Sci. Technol. 2017, 51, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Otomo, K.; Kunitou, M.; Shimizu, M.; Hosomaru, K.; Mikata, S.; Mino, Y.; Hayashi, T. Performance and efficiency of removal of pharmaceutical compounds from hospital wastewater by lab-scale biological treatment system. Environ. Sci. Pollut. Res. 2018, 25, 14647–14655. [Google Scholar] [CrossRef] [PubMed]
- Gmurek, M.; Olak-Kucharczyk, M.; Ledakowicz, S. Photochemical decomposition of endocrine disrupting compounds—A review. Chem. Eng. J. 2017, 310, 437–456. [Google Scholar] [CrossRef]
- Barceló, D.; Petrovic, M. Emerging Contaminants from Industrial and Municipal Waste; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5S/2. [Google Scholar]
- Verbyla, M.E.; Mihelcic, J.R. A review of virus removal in wastewater treatment pond systems. Water Res. 2015, 71, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Zhang, T.C.; Valero, J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016, 547, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908. [Google Scholar] [CrossRef] [PubMed]
- Seira, J.; Sablayrolles, C.; Montréjaud-Vignoles, M.; Albasi, C.; Joannis-Cassan, C. Elimination of an anticancer drug (cyclophosphamide) by a membrane bioreactor: Comprehensive study of mechanisms. BioChem. Eng. J. 2016, 114, 155–163. [Google Scholar] [CrossRef]
- Wang, L.; Albasi, C.; Faucet-Marquis, V.; Pfohl-Leszkowicz, A.; Dorandeu, C.; Marion, B.; Causserand, C. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res. 2009, 43, 4115–4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ridder, D.J.; McConville, M.; Verliefde, A.R.D.; van der Aa, L.T.J.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Rietveld, L.C.; van Dijk, J.C. Development of a predictive model to determine micropollutant removal using granular activated carbon. Drink. Water Eng. Sci. 2009, 2, 57–62. [Google Scholar] [CrossRef]
- Lin, A.-C.; Hsueh, J.-F.; Hong, P.K.A. Removal of antineoplastic drugs cyclophosphamide, ifosfamide, and 5-fluorouracil and a vasodilator drug pentoxifylline from wastewaters by ozonation. Environ. Sci. Pollut. Res. 2015, 22, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Česen, M.; Kosjek, T.; Laimou-Geraniou, M.; Kompare, B.; Širok, B.; Lambropolou, D.; Heath, E. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes. Sci. Total Environ. 2015, 527–528, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Nanaboina, V.; Chen, F.; Korshin, G.V. Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: Quantitation based on the data of differential spectroscopy. J. Hazard. Mater. 2016, 304, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Ferre-Aracil, J.; Valcárcel, Y.; Negreira, N.; de Alda, M.L.; Barceló, D.; Cardona, S.C.; Navarro-Laboulais, J. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process. Sci. Total Environ. 2016, 556, 70–79. [Google Scholar] [CrossRef] [PubMed]
Sample-ID | Service Area (ha) | Service Population (person) | Flow Rate (m3/day) | Treatment Process | |
---|---|---|---|---|---|
Mean | SD | ||||
S1 | 5459 | 494,974 | 256,110 | 31,285 | CAS + Chlorine disinfection |
A2O + Chlorine disinfection | |||||
S2 | 453 | 50,732 | 17,050 | 2355 | CAS + Chlorine disinfection |
S3(1) | 3550 | 415,364 | 128,497 | 11,876 | CAS + Chlorine disinfection |
Step AO + Chlorine disinfection | |||||
S3(2) | 2152 | 18 | CAS + Ozonation | ||
Step AO + Ozonation |
Sample-ID | Basin | Class | Flow Rate (m3/day) | BOD (mg/L) | |
---|---|---|---|---|---|
Mean | SD | ||||
R1 | Ai | Main stream | 7311 | 5710 | 1.2 |
T1 | Tributary | 27,415 | 19,872 | 1.6 | |
T2 | Tributary | 5751 | 11,995 | 4.3 | |
R2 | Main stream | 546,352 | 245,310 | 1.5 | |
R3 | Kanzaki | Main stream | 1,180,800 | 132,832 | N.A. |
R4 | Main stream | 1,379,428 | 88,647 | 1.0 | |
T3 | Tributary | N.A. | N.A. | N.A. | |
T4 | Tributary | 198,627 | 78,298 | 3.2 | |
R5 | Main stream | 1,925,780 | 286,903 | 1.7 | |
R6 | Yodo | Main stream | 17,815,523 | 8,742,816 | 1.1 |
Compound | CAS Registry Number | Molecular Formula | Molecular Mass (g/mol) | Structure | pKa | logP | Action Mechanism |
---|---|---|---|---|---|---|---|
Bicalutamide (BLT) | 90357-06-5 | C18H14F4N2O4S | 430.4 | | 11.5 | 4.1 | Antiandrogens |
Tamoxifen (TAM) | 10540-29-1 | C26H29NO | 371.5 | | 8.7 | 5.1 | Antiestrogens |
Cyclophosphamide (CP) | 50-18-0 | C7H15Cl2N2O2P | 261.1 | | 2.8 | 0.2 | Nitrogen mustard analogues |
Capecitabine (CAP) | 154361-50-9 | C15H22FN3O6 | 359.4 | | 5.4 | 1.0 | Pyrimidine analogues |
Doxifluridine (DFUR) | 3094-09-5 | C9H11FN2O5 | 246.2 | | 7.6 | −0.7 | Pyrimidine analogues |
Tegafur (TGF) | 17902-23-7 | C8H9FN2O3 | 200.2 | | 7.6 | −0.6 | Pyrimidine analogues |
Compound | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) | Ionization Mode |
---|---|---|---|---|---|---|
Bicalutamide (BLT) | 14.8 | 429.3 | 255.2 | 30 | 16 | − |
Tamoxifen (TAM) | 17.9 | 372.4 | 72.3 | 45 | 15 | + |
Cyclophosphamide (CP) | 10.2 | 261.2 | 106.2, 139.9, 181.9, 233.4 | 35 | 15 | + |
Capecitabine (CAP) | 12.4 | 360.4 | 174.2, 244.2 | 25 | 16 | + |
Doxifluridine (DFUR) | 2.0 | 247.2 | 73.0, 99.1, 117.0 | 15 | 12 | + |
Tegafur (TGF) | 2.8 | 201.2 | 71.0, 131.1 | 15 | 18 | + |
Compound | Sample Type | Concentration (ng/L) | Frequency (%) | |||
---|---|---|---|---|---|---|
Mean (SD) | Median | Max | Min | |||
Bicalutamide | Main stream | 55 (71) | 32 | 254 | N.D. | 83 |
(BLT) | Tributary | 46 (43) | 30 | 151 | N.D. | 94 |
STP effluent | 316 (303) | 245 | 1032 | 49 | 100 | |
STP effluent (ozonation) | 13 (20) | 5 | 41 | N.D. | 50 | |
Tamoxifen | Main stream | 5 (16) | N.D. | 76 | N.D. | 33 |
(TAM) | Tributary | 8 (12) | N.D. | 33 | N.D. | 44 |
STP effluent | 1 (3) | N.D. | 9 | N.D. | 10 | |
STP effluent (ozonation) | N.D. (0) | N.D. | N.D. | N.D. | 0 | |
Cyclophosphamide | Main stream | 3 (5) | 2 | 16 | N.D. | 63 |
(CP) | Tributary | 4 (6) | 3 | 20 | N.D. | 56 |
STP effluent | 11 (7) | 10 | 20 | N.D. | 90 | |
STP effluent (ozonation) | 7 (10) | 3 | 22 | N.D. | 50 | |
Capecitabine | STP effluent | 3 (4) | 2 | 20 | N.D. | 88 |
(CAP) | Tributary | 3 (4) | 1 | 16 | N.D. | 100 |
STP effluent | 6 (3) | 6 | 11 | 2 | 100 | |
STP effluent (ozonation) | 2 (2) | 2 | 4 | N.D. | 50 | |
Doxifluridine | Main stream | 2 (8) | N.D. | 39 | N.D. | 8 |
(DFUR) | Tributary | 1 (3) | N.D. | 12 | N.D. | 6 |
STP effluent | 1 (3) | N.D. | 8 | N.D. | 20 | |
STP effluent (ozonation) | N.D. (0) | N.D. | N.D. | N.D. | 0 | |
Tegafur | Main stream | 5 (13) | N.D. | 56 | N.D. | 25 |
(TGF) | Tributary | 6 (12) | N.D. | 35 | N.D. | 25 |
STP effluent | 20 (16) | 23 | 49 | N.D. | 70 | |
STP effluent (ozonation) | 4 (8) | N.D. | 17 | N.D. | 25 |
Compound | Hirakata Bridge | Suita Bridge | ||
---|---|---|---|---|
logKd (L/kg) | r2 | logKd (L/kg) | r2 | |
Bicalutamide (BLT) | 0.4 | 0.98 | 1.4 | 0.85 |
Tamoxifen (TAM) | 2.1 | 0.99 | 1.6 | 0.99 |
Cyclophosphamide (CP) | 0.8 | 0.99 | 0.6 | 0.99 |
Capecitabine (CAP) | −0.4 | 0.99 | 0.1 | 0.99 |
Doxifluridine (DFUR) | 0.9 | 0.99 | 1.5 | 0.97 |
Tegafur (TGF) | 1.3 | 0.99 | 0.4 | 0.86 |
Category | Technology | Treatment | Source | Initial Concentration (pH) | Temperature (°C) | % Removal | Reference |
---|---|---|---|---|---|---|---|
Physico-chemical | Membrane separtion | MBR | Supplemented wastewater COD 1750 mg/L | 5 μg/L (pH 7~8) | 25~32 °C | 60% (153 days) | Seira et al., 2016 [87] |
NF | 20 °C | ~60% | Wang et al., 2009 [88] | ||||
RO | MBR-effluent | 1.513 μg/L 1.382 μg/L | 20 °C 20 °C | 92.0~96.9% 92.5~96.7% | Wang et al., 2009 [88] | ||
Adsorption | PAC | MBR-permeate | 0.185 μg/L | 27~28 °C | Kovalova et al., 2013 [89] | ||
8 mg/L | 41% | ||||||
23 mg/L | 73% | ||||||
43 mg/L | 73% | ||||||
AC | Effluent 22 mg/L | 2 μg/L | 27~28 °C | 28% | Kovalova et al., 2013 [86] | ||
AC | Surface water Wastewater 84~444 (mg/L) | 2 μg/L | 12 °C | ˃95% | de Ridder et al., 2009 [89] | ||
Chemical | Oxidation | O3 | MBR-effluent | 0.185 μg/L | 27~28 °C | Kovalova et al., 2013 [86] | |
0.64 (g/g DOC) | 33% | ||||||
0.89 | 47% | ||||||
1.08 | 57% | ||||||
O3 (3g/L) | Hospital wastewater | 20 mg/L (pH 3.5~11) | 20 °C | 100% (pH11) 69.8% (pH9) 61.2% (pH5.6) | Lin et al., 2015 [90] | ||
O3 (10 mg/L) | Artificial wastewater (36 mg O3/g DOC) | 10 μg /L | - | 42% (120 min) | Česen et al., 2015 [91] | ||
O3 (1 mg/mg DOC) | Wastewater effluent (10.0 mg/L DOC) | 5 μg/L (pH 7.2) | - | ca. 70% | Li et al., 2016 [92] | ||
O3 | Hospital wastewater | (pH 8.1~8.2) | 20 °C | Ferre-Aracil et al., 2016 [93] | |||
(43.9 g/m−3) | 97% | ||||||
(55.3 g/m−3) | 99% | ||||||
O3/UV (10 mg/L, O3; 44 mJ/cm2, UV254) | Artificial wastewater | 10 μg/L | - | 59% (120 min) | Česen et al., 2015 [91] | ||
O3/UV/H2O2 (10 mg/L, O3; 2.5~5 g/L, H2O2; 44 mJ/cm2, UV254) | Artificial wastewater | 10 μg/L | - | 99% (120 min) 21% (UV only, 120 min) | Česen et al., 2015 [91] | ||
O3/H2O2 (10 mg/L, O3; (2.5~5 g/L, H2O2) | Artificial wastewater | 10 μg/L | - | 30~40% (120 min) | Česen et al., 2015 [91] | ||
O3/H2O2 [O3]sat:[H2O2] = 1:0.5~1:3 | Hospital wastewater | 1.187 μg/L (pH 8.1~8.6) | 20 °C | 100% (20 min) | Ferre-Aracil et al., 2016 [93] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azuma, T. Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan. Appl. Sci. 2018, 8, 2043. https://doi.org/10.3390/app8112043
Azuma T. Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan. Applied Sciences. 2018; 8(11):2043. https://doi.org/10.3390/app8112043
Chicago/Turabian StyleAzuma, Takashi. 2018. "Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan" Applied Sciences 8, no. 11: 2043. https://doi.org/10.3390/app8112043
APA StyleAzuma, T. (2018). Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan. Applied Sciences, 8(11), 2043. https://doi.org/10.3390/app8112043