Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Pellet Production
2.2. Batch Experiment for Nutrient Leaching Test
2.3. Chemical Analysis
2.4. Releasing Models
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Patterns of Accumulated NH4-N Releasing Amount with Different Pellets and Application of a Modified Hyperbola Model
4.2. Pattern of Accumulated PO4-P, K and SiO2 Releasing Amounts with Different Pellets and Appication of a Modified Hyperbola Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shin, J.; Hong, S.; Kim, S.; Yang, J.; Lee, S.; Li, F. Estimation of potential methane production through the mass balance equations from agricultural biomass in Korea. Appl. Biol. Chem. 2016, 59, 765–773. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiang, H.; Yu, H.Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Li, A. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. J. Environ. Manag. 2017, 201, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Husk, B.; Major, J. Commercial Scale Agricultural Biochar Field Trial in Quebec, Canada, Over Two Years: Effects of Biochar on Soil Fertility, Biology, Crop Productivity and Quality; Blue Leaf Inc.: Drummondville, QC, Canada, 2008. [Google Scholar]
- Lai, W.; Lai, C.; Ke, G.; Chung, R.; Chen, C.; Cheng, C.; Pai, C.; Chen, S.; Chen, C. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J. Taiwan Inst. Chem. Eng. 2013, 44, 1039–1044. [Google Scholar] [CrossRef]
- Shin, J.D.; Hong, S.G.; Lee, S.; Hong, S.; Lee, J. Estimation of soil carbon sequestration and profit analysis on mitigation of CO2-eq. emission in cropland cooperated with compost and biochar. Appl. Biol. Chem. 2017, 60, 467–472. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Teutscherova, N.; Houska, J.; Navas, M.; Masaguer, A.; Benito, M.; Vazquez, E. Leaching ammonium and nitrate from Acrisol and calcisol amended with holm oak biochar: A column study. Geoderma 2018, 323, 136–145. [Google Scholar] [CrossRef]
- Choi, Y.; Shin, J.; Lee, S.; Kim, S. Adsorption characteristics of aqueous ammonium using rice hull-derived biochar. Korean J. Environ. Agric. 2015, 34, 115–160. [Google Scholar] [CrossRef]
- Shin, J.D. Nitrogen transformation in soil cooperated with organic composts and bio-char during corn (Zea mays) cultivation. J. Korea Org. Resour. Recycl. Assoc. 2014, 22, 33–40. [Google Scholar]
- Almeelbi, T.; Bezbaruah, A. Nanoparticle-sorbed phosphate: Iron and phosphate bioavailability studies with spinacia oleracea and selenastrum capricornutum. ACS Sustain. Chem. Eng. 2014, 2, 1625–1632. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Zheng, W.; Scott, J.W.; Sharma, B.K.; Chen, X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustain. Chem. Eng. 2016, 4, 1630–1636. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, S.; Shin, J. Adsorption characteristics of aqueous phosphate using biochar derived from oak tree. J. Korea Org. Resour. Recycl. Assoc. 2015, 23, 60–67. [Google Scholar] [CrossRef]
- Kumar, D. Definitional Glossary of Agricultural Terms; IK International Pvt Ltd.: Delhi, India, 2008; Volume 1, p. 218. [Google Scholar]
- Romheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Kinekar, B.K. Potassium fertilizer situation in India: Current use and perspectives. Karnataka J. Agric. Sci. 2011, 24, 1–6. [Google Scholar]
- Zorb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Savant, N.K.; Korndörfer, G.H.; Datnoff, L.E.; Snyder, G.H. Silicon nutrition and sugarcane production: A review. J. Plant Nutr. 1999, 22, 1853–1903. [Google Scholar] [CrossRef]
- Currie, H.A.; Perry, C.C. Silica in plants: Biological, biochemical and chemical studies. Ann. Bot. 2007, 100, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 2009, 155, 155–160. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef]
- Houben, D.; Sonnet, P.; Cornelis, J.T. Biochar from Miscanthus: A potential silicon fertilizer. Plant Soil 2013, 374, 871–882. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, L.G.; Vasquez, V.R.; Coronella, C.J. Pelletization of biochar from hydrothermally carbonized wood. Environ. Progress Sustain. Energy 2012, 31, 225–234. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Martin, J.H., II. Poultry litter and switchgrass blending and pelleting characteristics for biochar production. Trans. ASABE 2012, 57, 543–553. [Google Scholar]
- Shin, J.; Choi, E.; Jang, E.S.; Hong, S.G.; Lee, S.; Ravindran, B. Adsorption characteristics of ammonium nitrogen and plant responses to biochar pellet. Sustainability 2018, 10, 1331. [Google Scholar] [CrossRef]
- Loney, M.W.; Tabatabaie, M. Mathematical modeling of heavy metals removal from bio-film coated cylindrical cement base waste forms. Chem. Prod. Process Model. 2015, 10, 229–236. [Google Scholar] [CrossRef]
- Eberwein, J.; Shen, W.; Jenerette, D. Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests. Sci. Rep. 2017, 7, 1752. [Google Scholar] [CrossRef] [PubMed]
- Martens, D.A.; Dick, W.A. Recovery of fertilizer nitrogen from continuous corn soils under contrasting tillage management. Biol. Fertil. Soils 2003, 38, 144–153. [Google Scholar] [CrossRef]
- Ortega, R.A.; Westfall, D.G.; Peterson, G.A. Climatic gradient, cropping system, and crop residues impact on carbon and nitrogen mineralization in no-till soils. Commun. Soil Sci. Plant Anal. 2005, 36, 2875–2887. [Google Scholar] [CrossRef]
- Liang, X.Q.; Chen, Y.X.; Li, H.; Tian, G.M.; Ni, W.Z.; He, M.M.; Zhang, Z.J. Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field. Environ. Pollut. 2007, 50, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Hosen, Y.; Yagi, K. N2O, CH4 and CO2 fluxes in winter barely field of Japanese Andisol as affected by N fertilizer management. Soil Biol. Biochem. 2007, 39, 330–339. [Google Scholar] [CrossRef]
- Prakongkep, N.; Gilkes, R.J.; Wiriyakinateekul, W. Forms and solubility of plant nutrient elements in tropical plant waste biochars. J. Plant Nutr. Soil Sci. 2015, 178, 732–740. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, Y.H.; Kwang, J.H.; Ra, C.S. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J. Hazard. Mater. 2011, 186, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, V.; Thiyagarajan, S.K.; Raji, K.; Suresh, R.; Ramamurthy, P. Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain. Chem. Eng. 2016, 4, 4724–4731. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chpra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorous to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, I.; Meena, V.S.; Kumar, S. Importance and application of potassium bio-fertilizer in Indian agriculture. Int. J. Res. Biol. Sci. 2014, 3, 80–85. [Google Scholar]
- Song, Z.; Wang, H.; Strong, P.J.; Shan, S. Increase of available soil silicon by Si-rich manure for sustainable rice production. Agron. Sustain. Dev. 2014, 34, 813–819. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Bian, R.; Chen, D.; Qu, J.; Wanjiru Kibue, G.; Pan, G.; Zhang, X.; Zheng, J.; Zheng, J. Effect of biochar amendment on soil-silicon availability and rice uptake. J. Plant Nutr. Soil Sci. 2014, 177, 91–96. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Zia-ur-Rehman, M.; Qayyum, M.F.; Abbas, F.; Hannan, F.; Rinklebe, J.; Ok, Y.S. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol. Environ. Saf. 2017, 140, 37–47. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | Biochar | Pig Manure Compost |
---|---|---|---|
pH | - | 9.78 (1:20 ratio) | 8.77 (1:5 ratio) |
EC | dS m−1 | 16.5 | 3.4 |
TC | g kg−1 | 566.0 | 289.0 |
TOC | g kg−1 | 553.5 | 259.0 |
TIC | g kg−1 | 42.5 | 30.2 |
N | g kg−1 | 2.0 | 29.1.0 |
P | mg kg−1 | 132.9 | 1744.7 |
K | g kg−1 | 20.2 | 14.5 |
Si | mg kg−1 | 1096.0 | 403.6 |
Treatments | Model Parameters | Analysis of Variance | R2 | ||||
---|---|---|---|---|---|---|---|
Amax | p-Values | t1/2(Amax) | p-Values | F | p-Values | ||
PMC | 455.7 | <0.0001 | 16.5 | 0.0003 | 2375.7 | <0.0001 | 0.98 |
PMCP | 441.3 | <0.0001 | 41.2 | <0.0001 | 1747.7 | <0.0001 | 0.97 |
BCP (9:1) | 72.7 | <0.0001 | 8.2 | <0.0001 | 2044.5 | <0.0001 | 0.97 |
BCP (8:2) | 99.3 | <0.0001 | 6.5 | <0.0001 | 2341.1 | <0.0001 | 0.98 |
BCP (4:6) | 350.9 | <0.0001 | 42.0 | <0.0001 | 2247.0 | <0.0001 | 0.98 |
BCP (2:8) | 455.5 | <0.0001 | 43.5 | <0.0001 | 1607.4 | <0.0001 | 0.97 |
Treatments | Model Parameters | Analysis of Variance | R2 | ||||
---|---|---|---|---|---|---|---|
Amax | p-Values | t1/2(Amax) | p-Values | F | p-Values | ||
PMC | 1966.4 | <0.0001 | 7.6 | 0.0003 | 378.8 | <0.0001 | 0.88 |
PMCP | 1108.3 | <0.0001 | 20.9 | <0.0001 | 686.4 | <0.0001 | 0.93 |
BCP (9:1) | 208.8 | <0.0001 | 1.4 | <0.0001 | 122.3 | <0.0001 | 0.70 |
BCP (8:2) | 422.3 | <0.0001 | 3.3 | <0.0001 | 200.2 | <0.0001 | 0.79 |
BCP (4:6) | 908.5 | <0.0001 | 21.2 | <0.0001 | 1092.1 | <0.0001 | 0.95 |
BCP (2:8) | 1050.3 | <0.0001 | 24.5 | <0.0001 | 1002.5 | <0.0001 | 0.95 |
Treatments | Model Parameters | Analysis of Variance | R2 | ||||
---|---|---|---|---|---|---|---|
Amax | p-Values | t1/2(Amax) | p-Values | F | p-Values | ||
PMC | 1456.1 | <0.0001 | 0.8 | 0.0003 | 94.2 | <0.0001 | 0.76 |
PMCP | 1864.5 | <0.0001 | 0.7 | <0.0001 | 257.5 | <0.0001 | 0.90 |
BCP (9:1) | 1056.8 | <0.0001 | 0.6 | <0.0001 | 299.5 | <0.0001 | 0.91 |
BCP (8:2) | 1182.4 | <0.0001 | 0.6 | <0.0001 | 259.6 | <0.0001 | 0.90 |
BCP (4:6) | 1789.9 | <0.0001 | 1.6 | <0.0001 | 346.3 | <0.0001 | 0.92 |
BCP (2:8) | 1649.6 | <0.0001 | 1.5 | <0.0001 | 302.0 | <0.0001 | 0.91 |
Treatments | Model Parameters | Analysis of Variance | R2 | ||||
---|---|---|---|---|---|---|---|
Amax | p-Values | t1/2(Amax) | p-Values | F | p-Values | ||
PMC | 1006.8 | <0.0001 | 10.1 | 0.0003 | 871.4 | <0.0001 | 0.94 |
PMCP | 1742.1 | <0.0001 | 9.1 | <0.0001 | 3047.1 | <0.0001 | 0.98 |
BCP (9:1) | 2445.0 | <0.0001 | 26.5 | <0.0001 | 1440.5 | <0.0001 | 0.96 |
BCP (8:2) | 2871.6 | <0.0001 | 31.6 | <0.0001 | 1449.7 | <0.0001 | 0.96 |
BCP (4:6) | 2277.7 | <0.0001 | 22.0 | <0.0001 | 957.3 | <0.0001 | 0.95 |
BCP (2:8) | 1935.4 | <0.0001 | 15.5 | <0.0001 | 886.0 | <0.0001 | 0.94 |
Treatments | Total Water Soluble Amounts (mg) | |||
---|---|---|---|---|
NH4-N | PO4-P | K | SiO2 | |
PMC | 397 a | 1953 a | 1727 b | 985 d |
PMCP | 321 b | 1002 a | 1917 a | 1600 c |
BCP (9:1) | 69 d | 223 e | 1078 b | 2041 b |
BCP (8:2) | 92 d | 432 d | 1223 b | 2329 a |
BCP (4:6) | 255 c | 795 c | 1870 b | 2013 b |
BCP (2:8) | 333 b | 910 c | 1756 b | 1821 bc |
F | 77.0 | 259.2 | 5826.9 | 46.9 |
p-values | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Park, S. Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model. Appl. Sci. 2018, 8, 2274. https://doi.org/10.3390/app8112274
Shin J, Park S. Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model. Applied Sciences. 2018; 8(11):2274. https://doi.org/10.3390/app8112274
Chicago/Turabian StyleShin, JoungDu, and SangWon Park. 2018. "Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model" Applied Sciences 8, no. 11: 2274. https://doi.org/10.3390/app8112274
APA StyleShin, J., & Park, S. (2018). Optimization of Blended Biochar Pellet by the Use of Nutrient Releasing Model. Applied Sciences, 8(11), 2274. https://doi.org/10.3390/app8112274