A Brief Review of Mueller Matrix Calculations Associated with Oceanic Particles
Abstract
:Featured Application
Abstract
1. Introduction
2. Fundamental Concepts for Mueller Matrix Calculations
2.1. Maxwell’s Equations and the Volume/Surface-Integral Equations
2.2. Amplitude Scattering Matrix and Mueller Matrix
3. General Scattering Method for Suspended Particles
3.1. Numerically Exact Methods
3.2. Semi-Analytical T-Matrix Method
3.3. Physical-Geometric Optics Method
4. Computational Results and Discussion
4.1. Dinoflagellate Simulation Using ADDA
- Strong back scattering signals from Mueller matrix element S14 are indeed from the helical structures of the chromosomes.
- Strong S14 back scattering signals are observed when the incident wavelength in the ocean is matched with the pitch of the helical structure, even if the chromosomes are under the random orientation condition.
- Strong S14 back scattering signals are observed when the incident direction is close to the main axis of the helical structure.
- The helical structure with constant rotation angle has stronger S14 back scattering signals than the helical structure with random rotation angle.
4.2. Oceanic Particle Simulation Using ADDA, IITM, and PGOM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stramski, D.; Kiefer, D.A. Light scattering by microorganisms in the open ocean. Prog. Oceanogr. 1991, 28, 343–383. [Google Scholar] [CrossRef]
- Morel, A.; Bricaud, A. Theoretical results concerning the optics of phytoplankton, with special references to remote sensing applications. In Oceanography from Space; Gower, J.F.R., Ed.; Springer: Berlin, Germany, 1981; pp. 313–327. [Google Scholar]
- Morel, A.; Bricaud, A. Inherent optical properties of algal cells, including picoplankton. Theorectical and experimental results. Can. Bull. Fish. Aquat. Sci. 1986, 214, 521–559. [Google Scholar]
- Lerner, A.; Shashar, N.; Haspel, C. Sensitivity study on the effects of hydrosol size and composition on linear polarization in absorbing and nonabsorbing clear and semi-turbid waters. J. Opt. Soc. Am. A 2012, 29, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Tzabari, M.; Lerner, A.; Iluz, D.; Haspel, C. Sensitivity study on the effect of the optical and physical properties of coated spherical particles on linear polarization in clear to semi-turbid waters. Appl. Opt. 2018, 57, 5806–5822. [Google Scholar] [CrossRef] [PubMed]
- Clavano, W.R.; Boss, E.; Karp-Boss, L. Inherent Optical Properties of Non-Spherical Marine-Like Particles—From Theory to Observation. In Oceanography and Marine Biology: An Annual Review; Gibson, R.N., Atkinson, R.J.A., Gordon, J.D.M., Eds.; Taylor & Francis: Didcot, UK, 2007; pp. 1–38. [Google Scholar]
- Quinbyhunt, M.S.; Hunt, A.J.; Lofftus, K.; Shapiro, D.B. Polarized-light scattering studies of marine Chlorella. Limnol. Oceanogr. 1989, 34, 1587–1600. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.A. Light scattering from biological cells: Dependence of backscattering radiation on membrane thickness and refractive index. Appl. Opt. 1979, 18, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, J.C.; Zaneveld, J.R.V. A three-layered sphere model of the optical properties of phytoplankton. Limnol. Oceanogr. 1992, 37, 1680–1690. [Google Scholar] [CrossRef] [Green Version]
- Quirantes, A.; Bernard, S. Light scattering by marine algae: Two-layer spherical and nonspherical models. J. Quant. Spectrosc. Radiat. Transf. 2004, 89, 311–321. [Google Scholar] [CrossRef]
- Sun, B.; Kattawar, W.G.; Yang, P.; Twardowski, S.M.; Sullivan, M.J. Simulation of the scattering properties of a chain-forming triangular prism oceanic diatom. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Mundy, W.C.; Roux, J.A.; Smith, A.M. Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am. 1974, 64, 1593–1597. [Google Scholar] [CrossRef]
- Chylek, P. Light scattering by small particles in an absorbing medium. J. Opt. Soc. Am. 1977, 67, 561–563. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Yang, P. Far-field Lorez-Mie scattering in an absorbing host medium: Theoretical formalism and FORTRAN program. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 241–252. [Google Scholar] [CrossRef]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Parke, N.G., III. Optical Algebra. J. Math. Phys. 1949, 28, 131–139. [Google Scholar] [CrossRef]
- Barakat, R. Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory. Opt. Commun. 1981, 38, 159–161. [Google Scholar] [CrossRef]
- Kattawar, G.W.; Yang, P.; You, Y.; Bi, L.; Xie, Y.; Huang, X.; Hioki, S. Polarization of light in the atmosphere and ocean. In Light Scattering Reviews 10: Light Scattering and Radiative Transfer; Kokhanovsky, A.A., Ed.; Springer: Berlin, Germany, 2016; pp. 3–39. [Google Scholar]
- Van de Hulst, H.C. Light Scattering by Small Particles; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Hu, C.; Kattawar, G.W.; Parkin, M.E.; Herb, P. Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer. Appl. Opt. 1987, 26, 4159–4173. [Google Scholar] [CrossRef] [PubMed]
- Hovenier, J.W.; Mackowski, D.W. Symmetry relations for forward and backward scattering by randomly oriented particles. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 483–492. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Asano, S.; Yamamoto, G. Light scattering by a spheroidal particle. Appl. Opt. 1975, 14, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Asano, S.; Sato, M. Light scattering by randomly oriented spheroidal particles. Appl. Opt. 1980, 19, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Voss, K.J.; Fry, E.S. Measurement of the Mueller matrix for ocean water. Appl. Opt. 1984, 23, 4427–4439. [Google Scholar] [CrossRef] [PubMed]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Yee, S.K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Yang, P.; Liou, K.N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A 1996, 13, 2072–2085. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N. Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles. In Light Scattering by Nonspherical Particles; Mishchenko, M.I., Hovenier, J.W., Travis, L.D., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 173–221. [Google Scholar]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Silvester, P.P.; Ferrari, R.L. Finite Elements for Electrical Engineers; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Morgan, M.; Mei, K. Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution. IEEE Trans. Antennas Propag. 1979, 27, 202–214. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Purcell, E.M.; Pennypacker, C.R. Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 1973, 186, 705–714. [Google Scholar] [CrossRef]
- Draine, B.T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 1988, 333, 848–872. [Google Scholar] [CrossRef]
- Draine, B.T. The Discrete Dipole Approximation for Light Scattering by Irregular Targets; Academic Press: San Diego, CA, USA, 2000; pp. 131–144. [Google Scholar]
- Yurkin, M.A.; Hoekstra, A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2234–2247. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv, 2013; arXiv:1305.6497. [Google Scholar]
- Yurkin, M.A.; Hoekstra, A.G. User Manual for the Discrete Dipole Approximation Code ADDA 1.3b4. 2014. Available online: http://a-dda.googlecode.com/svn/tags/rel_1.3b4/doc/manual.pdf (accessed on 6 May 2018).
- Gordon, R.H.; Smyth, J.T.; Balch, M.W.; Boynton, C.G.; Tarran, A.G. Light scattering by coccoliths detached from Emiliania huxleyi. Appl. Opt. 2009, 48, 6059–6073. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.W.; Hu, Y.; Trepte, C.R.; Winker, D.M.; Josset, D.B.; Lucker, P.L.; Kattawar, G.W. Inherent optical properties of the coccolithophore: Emiliania huxleyi. Opt. Express 2013, 21, 17625–17638. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kattawar, G.W. Detection of dinoflagellates by the light scattering properties of the chiral structure of their chromosomes. J. Quant. Spectrosc. Radiat. Transf. 2013, 131, 24–33. [Google Scholar] [CrossRef]
- Waterman, P.C. Matrix formulation of electromagnetic scattering. Proc. IEEE 1965, 53, 805–812. [Google Scholar] [CrossRef]
- Waterman, P.C. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 1971, 3, 825. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A.; Ding, K.H. Scattering of electromagnetic waves. In Theories and Applications; Wiley: Hoboken, NJ, USA, 2000; Volume 1. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 309–324. [Google Scholar] [CrossRef]
- Doicu, A.; Wriedt, T.; Eremin, Y.A. Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs; Springer: Berlin, Germany, 2006; Volume 124. [Google Scholar]
- Johnson, B.R. Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt. 1988, 27, 4861–4873. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Yang, P.; Kattawar, G.W.; Mishchenko, M.I. Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 169–183. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transf. 2014, 138, 17–35. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P. Impact of calcification state on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores. J. Quant. Spectrosc. Radiat. Transf. 2015, 155, 10–21. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Takano, Y.; Liou, K.N. Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci. 1989, 46, 3–19. [Google Scholar] [CrossRef]
- Macke, A.; Mueller, J.; Raschke, E. Single scattering properties of atmospheric ice crystals. J. Atmos. Sci. 1996, 53, 2813–2825. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N. Geometric-optics—Integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 1996, 35, 6568–6584. [Google Scholar] [CrossRef] [PubMed]
- Muinonen, K. Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt. 1989, 28, 3044–3050. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Liou, K.N. Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm. JOSA A 1997, 14, 2278–2289. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P.; Kattawar, G.W.; Hu, Y.; Baum, B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1492–1508. [Google Scholar] [CrossRef]
- Borovoi, A.G.; Grishin, I.A. Scattering matrices for large ice crystal particles. JOSA A 2003, 20, 2071–2080. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yang, P.; Kattawar, G.W.; Zhang, X. Physical-geometric optics method for large size faceted particles. Opt. Express 2017, 25, 24044–24060. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.R.; Mcfarland, M.N.; Sullivan, J.M.; Twardowski, M.S. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows. Limnol. Oceanogr. 2018, 63, 122–143. [Google Scholar] [CrossRef] [PubMed]
- Heil, C.A.; Steidinger, K.A. Monitoring, management, and mitigation of Karenia blooms in the eastern Gulf of Mexico. Harmful Algae 2009, 8, 611–617. [Google Scholar] [CrossRef]
- Kiefer, D.A.; Olson, R.J.; Wilson, W.H. Reflectance spectroscopy of marine phytoplankton. part I. optical properties as related to age and growth rate. Limnol. Oceanogr. 1979, 24, 664–672. [Google Scholar] [CrossRef]
- Steidinger, K.A.; Truby, E.W.; Dawes, C.J. Ultrastructure of the red tide dinoflagellate Gymnodinium breve. I. General description 2.3. J. Phycol. 1978, 14, 72–79. [Google Scholar] [CrossRef]
- Rizzo, P.J.; Jones, M.; Ray, S.M. Isolation and properties of isolated nuclei from the Florida red tide dinoflagellate Gymnodinium breve (Davis). J. Protozool. 1982, 29, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Gautier, A.; Michel-Salamin, L.; Tosi-Couture, E.; McDowall, A.W.; Dubochet, J. Electron microscopy of the chromosomes of dinoflagellates in situ: Confirmation of Bouligand’s liquid crystal hypothesis. J. Ultrastruct. Mol. Struct. Res. 1986, 97, 10–30. [Google Scholar] [CrossRef]
- Rill, R.L.; Livolant, F.; Aldrich, H.C.; Davidson, M.W. Electron microscopy of liquid crystalline DNA: Direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 1989, 98, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.B.; Quinbyhunt, M.S.; Hunt, A.J. Origin of the Induced circular-polarization in the light-scattering from a dinoflagellate. Ocean Opt. X 1990, 1302, 281–289. [Google Scholar]
- Shapiro, D.B.; Hunt, A.J.; Quinby-Hunt, M.S.; Hull, P.G. Circular-polarization effects in the light-scattering from single and suspensions of dinoflagellates. Underw. Imaging Photogr. Visibility 1991, 1537, 30–41. [Google Scholar]
- Bouligand, Y.; Soyer, M.O.; Puiseux-Dao, S. La structure fibrillaire et l’orientation des chromosomes chez les Dinoflagellés. Chromosoma 1968, 24, 251–287. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Kattawar, G.W.; Yang, P.; Zhang, X. A Brief Review of Mueller Matrix Calculations Associated with Oceanic Particles. Appl. Sci. 2018, 8, 2686. https://doi.org/10.3390/app8122686
Sun B, Kattawar GW, Yang P, Zhang X. A Brief Review of Mueller Matrix Calculations Associated with Oceanic Particles. Applied Sciences. 2018; 8(12):2686. https://doi.org/10.3390/app8122686
Chicago/Turabian StyleSun, Bingqiang, George W. Kattawar, Ping Yang, and Xiaodong Zhang. 2018. "A Brief Review of Mueller Matrix Calculations Associated with Oceanic Particles" Applied Sciences 8, no. 12: 2686. https://doi.org/10.3390/app8122686
APA StyleSun, B., Kattawar, G. W., Yang, P., & Zhang, X. (2018). A Brief Review of Mueller Matrix Calculations Associated with Oceanic Particles. Applied Sciences, 8(12), 2686. https://doi.org/10.3390/app8122686