Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting
Abstract
:1. Introduction
2. Related Work
2.1. Traffic Situation Awareness Models in ITSs
2.2. Social Transportation in ITSs
2.3. Meteorological Research through Social Media
3. Methods and Modeling
3.1. Data Collection with Word2vec-Based Social Sensors
3.2. Data Filtering and Feature Extraction
3.3. Traffic Regression Models
3.4. Traffic Alerting Model
4. Experiments
4.1. Experiments on Traffic Regression and Alerting
4.2. From Cyberspace to Physical Space: Flexible Verification
5. Prototype and Potential Applications
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmassani, H.S.; Dong, J.; Kim, J.; Chen, R.B.; Park, B. Incorporating Weather Impacts in Traffic Estimation and Prediction Systems; US Department of Transport: Washington, DC, USA, 2009; Volume 108. [Google Scholar]
- Ning, G.; Kang, C.; Chen, D.; Sun, G.; Liu, J.; Wang, S.; Shang, K.; Ma, M. Analysis of characteristics of traffic accidents under adverse weather conditions in china during 2005–2014. J. Arid Meteorol. 2016, 34, 753–762. [Google Scholar]
- Zhang, L.; Colyar, J.; Pisano, P.; Holm, P. Identifying and assessing key weather-related parameters and their impact on traffic operations using simulation. In Compendiums of 2002 Institute of Transportation Engineer Annual Meeting. CD-ROM. Institute of Transportation Engineers; Citeseer: State College, PA, USA, 2003. [Google Scholar]
- Brodsky, H.; Hakkert, A.S. Risk of a road accident in rainy weather. Accid. Anal. Prev. 1988, 20, 161–176. [Google Scholar] [CrossRef]
- Keay, K.; Simmonds, I. The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia. Accid. Anal. Prev. 2005, 37, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Hranac, R.; Sterzin, E.; Krechmer, D.; Rakha, H.A.; Farzaneh, M.; Arafeh, M. Empirical Studies on Traffic Flow in Inclement Weather; Virginia Tech Transportation Institute: Blacksburg, VA, USA, 2006. [Google Scholar]
- Amin, M.S.R.; Zareie, A.; Amador-Jimenez, L.E. Climate change modeling and the weather-related road accidents in Canada. Transp. Res. Part D Transp. Environ. 2014, 32, 171–183. [Google Scholar] [CrossRef]
- Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the internet of things: Perspectives and challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, X. Advances in traffic meteorological service under the influence of disastrous weather. J. Catastrophol. 2015, 30, 144–147. [Google Scholar]
- Zheng, X.; Chen, W.; Wang, P.; Shen, D.; Chen, S.; Wang, X.; Zhang, Q.; Yang, L. Big Data for Social Transportation. IEEE Trans. Intell. Transp. Syst. 2016, 17, 620–630. [Google Scholar] [CrossRef]
- Wang, F. Scanning the Issue and Beyond: Real-Time Social Transportation with Online Social Signals. IEEE Trans. Intell. Transp. Syst. 2014, 15, 909–914. [Google Scholar] [CrossRef]
- Wang, F.Y.; Zhang, J.J. Transportation 5.0 in CPSS: Towards ACP-based society-centered intelligent transportation. In Proceedings of the 2017 IEEE International Conference on Intelligent Transportation Systems, Yokohama, Japan, 16–19 October 2017; pp. 762–767. [Google Scholar]
- Lv, Y.; Chen, Y.; Zhang, X.; Duan, Y.; Li, N. Social Media Based Transportation Research: The State of the Work and the Networking. IEEE/CAA J. Autom. Sin. 2017, 4, 19–26. [Google Scholar] [CrossRef]
- Xiong, G.; Zhu, F.; Liu, X.; Dong, X.; Huang, W.; Chen, S.; Zhan, K. Cyber-physical-social System in Intelligent Transportation. IEEE/CAA J. Autom. Sin. 2015, 2, 320–333. [Google Scholar]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Sun, Y.; Leng, B.; Guan, W. A novel wavelet-svm short-time passenger flow prediction in Beijing subway system. Neurocomputing 2015, 166, 109–121. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Pemmanaboina, R. Calibrating a real-time traffic crash-prediction model using archived weather and its traffic data. IEEE Trans. Intell. Transp. Syst. 2006, 7, 167–174. [Google Scholar] [CrossRef]
- Zito, P.; Chen, H.; Bell, M.C. Predicting real-time roadside CO and NO2 concentrations using neural networks. IEEE Trans. Intell. Transp. Syst. 2008, 9, 514–522. [Google Scholar] [CrossRef]
- Yuan, W.; Deng, P.; Taleb, T.; Wan, J.; Bi, C. An unlicensed taxi identification model based on big data analysis. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1703–1713. [Google Scholar] [CrossRef]
- Anta, J.; Pérez-López, J.B.; Martínez-Pardo, A.; Novales, M.; Orro, A. Influence of the weather on mode choice in corridors with time-varying congestion: A mixed data study. Transportation 2016, 43, 337–355. [Google Scholar] [CrossRef]
- Dey, K.C.; Mishra, A.; Chowdhury, M. Potential of intelligent transportation systems in mitigating adverse weather impacts on road mobility: A review. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1107–1119. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, S.-M.; Ha, Y.-G. Highway traffic accident prediction using VDS big data analysis. J. Supercomput. 2016, 72, 2815–2831. [Google Scholar] [CrossRef]
- Lee, J.; Hong, B.; Lee, K.; Jang, Y.-J. A prediction model of traffic congestion using weather data. In Proceedings of the 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS), Sydney, Australia, 11–13 December 2015; pp. 81–88. [Google Scholar]
- Tomás, V.R.; Pla-Castells, M.; Martínez, J.J.; Martínez, J. Forecasting adverse weather situations in the road network. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2334–2343. [Google Scholar] [CrossRef]
- Stamos, I.; Mitsakis, E.; Salanova, J.M.; Aifadopoulou, G. Impact assessment of extreme weather events on transport networks: A data-driven approach. Transp. Res. Part D Transp. Environ. 2015, 34, 168–178. [Google Scholar] [CrossRef]
- Yu, R.; Abdel-Aty, M.A.; Ahmed, M.M.; Wang, X. Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management. IEEE Trans. Intell. Transp. Syst. 2014, 15, 205–213. [Google Scholar] [CrossRef]
- Tsirigotis, L.; Vlahogianni, E.I.; Karlaftis, M.G. Does information on weather affect the performance of short-term traffic forecasting models? Int. J. Intell. Transp. Syst. Res. 2012, 10, 1–10. [Google Scholar] [CrossRef]
- Koesdwiady, A.; Soua, R.; Karray, F. Improving traffic flow prediction with weather information in connected cars: A deep learning approach. IEEE Trans. Veh. Technol. 2016, 65, 9508–9517. [Google Scholar] [CrossRef]
- Koetse, M.J.; Rietveld, P. The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res. Part D Transp. Environ. 2009, 14, 205–221. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, X.; Zhang, Q.; Wang, T.; Shen, D. Crowdsourcing in its: The state of the work and the networking. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1596–1605. [Google Scholar] [CrossRef]
- Chaniotakis, E.; Antoniou, C.; Pereira, F. Mapping social media for transportation studies. IEEE Intell. Syst. 2016, 31, 64–70. [Google Scholar] [CrossRef]
- Xu, X.; Su, B.; Zhao, X.; Xu, Z.; Sheng, Q.Z. Effective traffic flow forecasting using taxi and weather data. In Proceedings of the ADMA 2016 Advanced Data Mining and Applications: 12th International Conference, Gold Coast, QLD, Australia, 12–15 December 2016; pp. 507–519. [Google Scholar]
- Maghrebi, M.; Abbasi, A.; Rashidi, T.H.; Waller, S.T. Complementing Travel Diary Surveys with Twitter Data: Application of Text Mining Techniques on Activity Location, Type and Time. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 208–213. [Google Scholar]
- Anantharam, P.; Barnaghi, P.; Thirunarayan, K.; Sheth, A. Extracting city traffic events from social streams. ACM Trans. Intell. Syst. Technol. 2015, 6, 43. [Google Scholar] [CrossRef]
- Ni, M.; He, Q.; Gao, J. Forecasting the subway passenger flow under event occurrences with social media. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1623–1632. [Google Scholar] [CrossRef]
- D’Andrea, E.; Ducange, P.; Lazzerini, B.; Marcelloni, F. Real-time detection of traffic from twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2269–2283. [Google Scholar] [CrossRef]
- Zeng, K.; Liu, W.; Wang, X.; Chen, S. Traffic congestion and social media in China. IEEE Intell. Syst. 2013, 28, 72–77. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, K.; Wang, H.; Cheng, J.; Qiao, F.; Wen, D.; Gao, Y. Web-based traffic sentiment analysis: Methods and applications. IEEE Trans. Intell. Transp. Syst. 2014, 15, 844–853. [Google Scholar]
- Tse, R.; Zhang, L.F.; Lei, P.; Pau, G. Social Network Based Crowd Sensing for Intelligent Transportation and Climate Applications. Mob. Netw. Appl. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Haghighi, P.D.; Kang, Y.B.; Buchbinder, R.; Burstein, F.; Whittle, S. Investigating Subjective Experience and the Influence of Weather among Individuals with Fibromyalgia: A Content Analysis of Twitter. JMIR Public Health Surveill. 2017, 3, e4. [Google Scholar] [CrossRef] [PubMed]
- Gaztelumendi, S.; Martija, M.; Principe, O.; Palacio, V. An overview of the use of Twitter in National Weather Services. Adv. Sci. Res. 2015, 12, 141–145. [Google Scholar] [Green Version]
- Kirilenko, A.P.; Stepchenkova, S.O. Public microblogging on climate change: One year of twitter worldwide. Glob. Environ. Chang. 2014, 26, 171–182. [Google Scholar] [CrossRef]
- Grasso, V.; Crisci, A. Codified hashtags for weather warning on twitter: An italian case study. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, S.; Kim, E.; Park, M.; Park, J.; Cha, M. Mood and weather: Feeling the heat? In Proceedings of the 2013 ICWSM, Cambridge, MA, USA, 8–10 July 2013. [Google Scholar]
- Li, J.; Wang, X.; Hovy, E. What a Nasty day: Exploring Mood-Weather Relationship from Twitter. In Proceedings of the 2014 ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 3–7 November 2014; pp. 1309–1318. [Google Scholar]
- An, X.; Ganguly, A.R.; Fang, Y.; Scyphers, S.B.; Hunter, A.M.; Dy, J.G. Tracking climate change opinions from twitter data. In Proceedings of the Workshop on Data Science for Social Good, New York, NY, USA, 24 August 2014. [Google Scholar]
- Cody, E.M.; Reagan, A.J.; Mitchell, L.; Dodds, P.S.; Danforth, C.M. Climate change sentiment on twitter: An unsolicited public opinion poll. PLoS ONE 2015, 10, e0136092. [Google Scholar] [CrossRef] [PubMed]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the 2013 International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [Google Scholar]
- Mikolov, T.; Yih, W.T.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 HLT-NAACL, Atlanta, GA, USA, 9–14 June 2013. [Google Scholar]
- Luo, Z. China’s administrative region division reform and mechanism. City Plan. Rev. 2005, 8, 29–35. [Google Scholar]
- Suh, B.; Hong, L.; Pirolli, P.; Chi, E.H. Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In Proceedings of the 2010 IEEE Second International Conference on Social Computing, Minneapolis, MN, USA, 20–22 August 2010; pp. 177–184. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill: Irwin, PA, USA, 2004; ISBN 0073014664. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the 2013 ECML PKDD Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122. [Google Scholar]
- Zhou, Z.H.; Feng, J. Deep Forest: Towards an Alternative to Deep Neural Networks. In Proceedings of the 2017 IJCAI, Melbourne, Australia, 19–25 August 2017. [Google Scholar]
- Peng, Y.; Zhu, W.; Zhao, Y.; Xu, C.; Huang, Q.; Lu, H.; Zheng, Q.; Huang, T. Cross-media analysis and reasoning: Advances and directions. Front. Inf. Technol. Electron. Eng. 2017, 18, 44–57. [Google Scholar] [CrossRef]
- Sakaki, T.; Okazaki, M.; Matsuo, Y. Earthquake shakes twitter users: Real-time event detection by social sensors. In Proceedings of the 2010 International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 851–860. [Google Scholar]
- Earle, P. Earthquake twitter. Nat. Geosci. 2010, 3, 221–222. [Google Scholar] [CrossRef]
Words | Similarity |
---|---|
堵塞 (jam) | 0.952356529236 |
堵情 (congestion situation) | 0.898310112953 |
交通阻塞 (traffic jam) | 0.893572020531 |
堵车 (heavy traffic) | 0.80860207081 |
路阻 (road block) | 0.740446996689 |
空气污染 (air contamination) | 0.680577373505 |
停车难 (difficulty of parking) | 0.678475296497 |
内涝 (waterlogging) | 0.655691361427 |
供需矛盾 (contradiction between supply and demand) | 0.6066395998 |
停运 (stoppage in transit) | 0.598671365489 |
Type | Keywords |
---|---|
congestion related | 交通拥堵 (traffic congestion), 交通堵塞 (traffic jam), 交通阻塞 (traffic block), 交通停运 (traffic halt), 交通受阻 (disrupted transportation), 交通中断 (interruption of transport communication), 交通管制 (traffic control), 交通限流 (traffic flow limiting), 交通瘫痪 (traffic paralysis), 堵车 (traffic jam), 高速关闭 (highway closing), 高速封闭 (closed highway), 高速中断 (highway interruption), 高速堵塞 (highway congestion), 高速阻塞 (highway block), 高速拥堵 (highway congestion), 高速管制 (highway control), 高速限行 (highway flow control), 高速停运 (highway halt), 早高峰拥堵 (morning rush hour), 晚高峰拥堵 (evening rush hour), 道路封闭 (road closure), 路段封闭 (road section closed) |
accident related | 交通事故 (traffic accident), 高速事故 (highway accident), 车祸 (car crash), 撞车追尾 (shunt), 车辆剐蹭 (vehicle rub) |
long-distance transport related | 航班延误 (flight delay), 航班取消 (flight cancellation), 航班停运 (flight outage), 列车晚点 (train delay), 列车停运 (train halt), 停航 (suspension of ships) |
Category | Warning Levels | Example words | |
---|---|---|---|
台风 (Typhoon) | I, II, III and IV | 台风 (typhoon), 热带风暴 (tropical storm), 热带气旋 (tropical cyclone), 飓风 (hurricane) | |
暴雨 (Rain Storm) | I, II, III and IV | 暴雨 (rain storm), 暴风雨 (tempest), 强降雨 (heavy rainfall), 强降水 (severe precipitation) | |
暴雪 (Snow Storm) | I, II, III and IV | 暴雪 (snow storm), 暴风雪 (blizzard), 雪暴 (buran) | |
寒潮 (Cold Wave) | I, II, III and IV | 寒潮 (cold wave), 寒流 (cold surge) | |
大风 (Gale) | I, II, III and IV | 大风 (gale), 狂风 (fierce wind), 强风 (wild wind), 暴风 (fierce wind) | |
沙尘暴 (Sand Storm) | I, II and III | 沙尘暴 (sand storm), 沙暴 (desert storm), 黑尘暴 (dust storm) | |
高温 (Heat Wave) | I, II and III | 高温 (heat wave), 热浪 (high temperature), 桑拿天 (suana weather), 酷暑 (canicule), 三伏天 (dog days), 炎热 (blazing) | |
干旱 (Drought) | I and II | 干旱 (drought), 旱灾 (aridity) | |
雷击 (Lightning) | I, II and III | 雷击 (lighting), 雷暴 (thunder), 打雷 (thunder), 雷电 (thunder and lightning) | |
冰雹 (Hail) | I and II | 冰雹 (hail), 降雹 (hail fall), 风雹 (hail fall), 雹灾 (hailstorm) | |
霜冻 (Frost) | II, III and IV | 霜冻 (frost), 霜降 (frost descent) | |
大雾 (Heavy Fog) | I, II and III | 大雾 (heavy fog), 浓雾 (thick fog), 雾灾 (mist) | |
霾 (Haze) | II and III | 霾 (haze), 雾霾 (smog) | |
道路结冰 (Road Icing) | I, II and III | 道路结冰 (road icing), 路面结冰 (icy road), 公路结冰 (road icing) |
Training Dataset | Validation Dataset | Test Dataset | Physical Space: Verification Dataset | |||
---|---|---|---|---|---|---|
Weibo Data | Traffic Incidents | Weibo Data | Traffic Incidents | Weibo Data | Traffic Incidents | News Data |
128,815 | 28,024 | 10,993 | 1830 | 1213 | 200 | 15,130 |
Model | MAPE | RMSE |
---|---|---|
Linear Regression (LR) | 496.89 | 50.83 |
Support Vector Regression (SVR) | 355.67 | 22.25 |
Random Forest Regression (RFR) | 263.10 | 21.00 |
Gradient Boosting Regression Tree (GBRT) | 252.09 | 20.41 |
Stacked auto encoder (SAE) | 239.18 | 20.05 |
gcForest (Deep Forest) | 168.08 | 18.97 |
Rank | Forecasting Event | Forecasting Heat Value | Rank | Labeled Event | Labeled Heat Value | Labeled Traffic Situation |
---|---|---|---|---|---|---|
1 | Shijiazhuang 21 July 12: 00–18: 00 | 120.13 | 1 | Shijiazhuang 21 July 12: 00–18: 00 | 497.0 | traffic interruption, flight delay |
2 | Kunming 20 July 6: 00–12: 00 | 113.61 | 2 | Kunming 20 July 6: 00–12: 00 | 224.0 | traffic interruption, highway interruption |
3 | Beijing 28 July 6: 00–12: 00 | 45.98 | 3 | Beijing 28 July 6: 00–12: 00 | 63.0 | traffic congestion |
4 | Chengdu 28 July 6: 00–12: 00 | 32.77 | 4 | Guangzhou 21 July 18: 00–24: 00 | 60.0 | road closure |
5 | Shanghai 27 July 6: 00–12: 00 | 29.24 | 5 | Changsha 25 July 6: 00–12: 00 | 44.0 | road closure |
6 | Taiyuan 24 July 6: 00–12: 00 | 26.37 | 6 | Chengdu 28 July 6: 00–12: 00 | 34.0 | flight delay |
7 | Beijing 28 July 12: 00–18: 00 | 24.62 | 7 | Shanghai 27 July 6: 00–12: 00 | 30.0 | traffic congestion |
8 | Changsha 25 July 6: 00–12: 00 | 23.91 | 8 | Beijing 28 July 12: 00–18: 00 | 30.0 | traffic congestion |
9 | Shanghai 24 July 6: 00–12: 00 | 11.80 | 9 | Taiyuan 24 July 6: 00–12: 00 | 20.0 | traffic interruption |
10 | Haikou 24 July 12: 00–18: 00 | 7.80 | 10 | Haikou 24 July 12: 00–18: 00 | 18.0 | traffic control |
No. | Date | Time Period | Weekday | Heat Value | Corresponding Heat of Weather (Top 3) | Warning Level | Corresponding News (Facts) |
---|---|---|---|---|---|---|---|
1 | 2 January | 6:00–12:00 | Monday | 540.0 | Heavy fog: 52 Frost: 2 Haze: 1 | 1 | 新华网:北京遇大雾红色预警多条高速采取封闭措施 (Xinhua Net: Beijing met red alert of heavy fog and a number of high-speed closed) |
2 | 16 January | 18:00–24:00 | Monday | 1038.0 | Haze: 48 Snow storm: 3 Gale: 2 | 1 | 千龙网:北京:雾霾袭扰多条高速路封闭 (Qianlong Net: Beijing: haze attack numbers of high-speed road which result in closing) |
3 | 28 January | 12:00–18:00 | Saturday | 784.0 | Haze: 40 Gale: 26 Heavy fog: 2 | 1 | 北京晚报:大风救驾大年初二:北京大风蓝色预警雾霾再见 (Beijing Evening News: the wind saves the Lunar New Year’s Day: Beijing says goodbye to blue warning of haze) 凤凰网:北京启动“空城”模式人都去哪了? (Phoenix Net: Beijing start “empty city” model:where are the people?) |
4 | 11 February | 6:00–12:00 | Saturday | 590.0 | Snow storm: 101 Haze: 95 Cold wave: 6 | 1 | 网易新闻:北京喜迎首场春雪:部分地区雪量较大,影响交通出行 (Netease News: Beijing in the first spring snow: huge snow volume in some area affected traffic and travel) |
5 | 21 March | 12:00–18:00 | Tuesday | 741.0 | Heavy fog: 182 Haze: 165 Sand Storm: 9 | 1 | 中国青年网:北京遭遇雾霾天,使京藏高速进京方向发生车祸造成大面积拥堵 (China Youth Network: Beijing encountered haze days, Beijing–Tibet high-speed has a large area of traffic congestion caused by car accidents) |
6 | 7 June | 6:00–12:00 | Wednesday | 1758.0 | Rain storm: 247 Gale: 86 Heavy fog: 34 | 1 | 网易新闻:2017高考未破“下雨魔咒”高峰路况拥堵 (Netease News: 2017 college entrance examination obey “the rain curse”, congestion worsen by the weather during the morning peak) |
7 | 4 July | 6:00–12:00 | Tuesday | 588.0 | Rain storm:461 Heat wave: 40 Haze:15 | 1 | 网易新闻:北京首都机场受雷雨天气影响已取消航班113架次 (Netease News: Beijing Capital Airport has canceled 113 flights due to a thunderstorm) |
Actual Incidents | |||
---|---|---|---|
Hot Traffic Incident (Warning Level 1) | Non-Hot Traffic Incident | ||
Forecasting incidents | Hot traffic incident (warning level 1) | 7 | 0 |
Non-hot traffic incident | 4 | 335 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Zhu, Y.; Shi, K.; Lv, Y.; Shi, P.; Niu, Z. Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. Appl. Sci. 2018, 8, 1193. https://doi.org/10.3390/app8071193
Lu H, Zhu Y, Shi K, Lv Y, Shi P, Niu Z. Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. Applied Sciences. 2018; 8(7):1193. https://doi.org/10.3390/app8071193
Chicago/Turabian StyleLu, Hao, Yifan Zhu, Kaize Shi, Yisheng Lv, Pengfei Shi, and Zhendong Niu. 2018. "Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting" Applied Sciences 8, no. 7: 1193. https://doi.org/10.3390/app8071193
APA StyleLu, H., Zhu, Y., Shi, K., Lv, Y., Shi, P., & Niu, Z. (2018). Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. Applied Sciences, 8(7), 1193. https://doi.org/10.3390/app8071193